Warm Up I

Potential Mechanisms and the Effects of Passive Warm Up on Exercise Performance

Abstract

Despite limited scientific evidence supporting their effectiveness, warm-up routines prior to exercise are a well-accepted practice. The majority of the effects of warm up have been attributed to temperature-related mechanisms (e.g. decreased stiffness, increased nerve-conduction rate, altered force-velocity relationship, increased anaerobic energy provision and increased thermoregulatory strain), although non-temperature-related mechanisms have also been proposed (e.g. effects of acidaemia, elevation of baseline oxygen consumption (V̇O2) and increased postactivation potentiation). It has also been hypothesised that warm up may have a number of psychological effects (e.g. increased preparedness). Warm-up techniques can be broadly classified into two major categories: passive warm up or active warm up. Passive warm up involves raising muscle or core temperature by some external means, while active warm up utilises exercise. Passive heating allows one to obtain the increase in muscle or core temperature achieved by active warm up without depleting energy substrates. Passive warm up, although not practical for most athletes, also allows one to test the hypothesis that many of the performance changes associated with active warm up can be largely attributed to temperature-related mechanisms.

This is a preview of subscription content, access via your institution.

Table I
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Table II
Fig. 7
Table III
Table IV
Fig. 8

Notes

  1. 1.

    Q10 = (R2/R1)[10/(T2-T1)]; R1 and R2 are rate processes at temperatures T2 and T1 and T2 > T1. Q10 > 1.0 indicates a positive thermal dependence.

References

  1. 1.

    Shellock FG, Prentice WE. Warming-up and stretching for improved physical performance and prevention of sports-related injuries. Sports Med 1985; 2: 267–78

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Gerbino A, Ward S, Whipp B. Effects of prior exercise on pulmonary gas-exchange kinetics during high-intensity exercise in humans. J Appl Physiol 1996; 80(1): 99–107

    PubMed  CAS  Google Scholar 

  3. 3.

    Andzel WD. One mile run performance as a function of prior exercise. Sports Med Phys Fitness 1982; 22: 80–4

    CAS  Google Scholar 

  4. 4.

    Gullich A, Schmidtbleicher D. MVC-induced short-term potentiation of explosive force. New Stud Athletics 1996; 11(4): 67–81

    Google Scholar 

  5. 5.

    Young WB, Jenner A, Griffiths K. Acute enhancement of power performance from heavy load squats. J Strength Cond Res 1998; 12: 82–4

    Google Scholar 

  6. 6.

    Massey BH, Johnson WR, Kramer GF. Effect of warm-up exercise upon muscular performance using hypnosis to control the psychological variable. Res Q Exerc Sport 1961; 32: 63–71

    Google Scholar 

  7. 7.

    Asmussen E, Boje O. Body temperature and capacity for work. Acta Physiol Scand 1945; 10: 1–22

    Article  Google Scholar 

  8. 8.

    Saltin B, Gagge AP, Stolwijk JAJ. Muscle temperature during submaximal exercise in man. J Appl Physiol 1968; 25: 679–88

    PubMed  CAS  Google Scholar 

  9. 9.

    Sargeant AJ. Effect of muscle temperature on leg extension force and short-term power output in humans. Eur J Appl Physiol 1987; 56: 693–8

    Article  CAS  Google Scholar 

  10. 10.

    Muido L. The influence of body temperature on performance in swimming. Acta Physiol Scand 1946; 12: 102–9

    Article  CAS  Google Scholar 

  11. 11.

    Fisher M, Paolone V, Rosene J, et al. The effect of submaximal exercise on recovery hemodynamics and thermoregulation in men and women. Res Q Exerc Sport 1999; 70(4): 361–8

    PubMed  CAS  Google Scholar 

  12. 12.

    Matthews DK. Physiological responses during exercise and recovery in a football uniform. J Appl Physiol 1969; 26: 611

    Google Scholar 

  13. 13.

    Price MJ, Campbell IG. Thermoregulatory responses of paraplegic and able-bodied athletes at rest and during prolonged upper body exercise and passive recovery. Eur J Appl Physiol 1997; 76: 552–60

    Article  CAS  Google Scholar 

  14. 14.

    Wright V, Johns RJ. Quantitative and qualitative analysis of joint stiffness in normal subjects and in patients with connective tissue disease. Ann Rheum Dis 1961; 20: 36–46

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Wright V. Stiffness: a review of it’s measurement and physiological importance. Physiotherapy 1973; 59: 59–111

    Google Scholar 

  16. 16.

    Buchthal F, Kaiser E, Knappeis GG. Elasticity, viscosity and plasticity in the cross striated muscle fibre. Acta Physiol Scand 1944; 8: 16–37

    Article  Google Scholar 

  17. 17.

    McCutcheon LJ, Geor RJ, Hinchcliff KW. Effects of prior exercise on muscle metabolism during sprint exercise in humans. J Appl Physiol 1999; 87(5): 1914–22

    PubMed  CAS  Google Scholar 

  18. 18.

    Barcroft J, King WOR. The effect of temperature on the dissociation curve of blood. J Physiol 1909; 39: 374–84

    PubMed  CAS  Google Scholar 

  19. 19.

    Theorell H. The effect of temperature on myoglobin. Biochem Z 1934; 73: 268

    Google Scholar 

  20. 20.

    Barcroft H, Edholm OG. The effect of temperature on blood flow and deep temperature in the human forearm. J Physiol 1943; 102: 5–12

    PubMed  CAS  Google Scholar 

  21. 21.

    Grassi B, Gladden LB, Samaja M, et al. Faster adjustment of O2 delivery does not affect V̇O2 on-kinetics in isolated in situ canine muscle. J Appl Physiol 1998; 85(4): 1394–403

    PubMed  CAS  Google Scholar 

  22. 22.

    Grassi B, Gladden LB, Stary CM, et al. Peripheral O2 diffusion does not affect V̇O2 on-kinetics in isolated in situ canine muscle. J Appl Physiol 1998; 85(4): 1404–12

    PubMed  CAS  Google Scholar 

  23. 23.

    Grassi B, Hogan MC, Kelley KM, et al. Role of convective O2 delivery in determining V̇O2 on-kinetics in canine muscle contracting at peak V̇O2. J Appl Physiol 2000; 89: 1293–301

    PubMed  CAS  Google Scholar 

  24. 24.

    Burnley M, Jones AM, Carter H, et al. Effects of prior exercise on phase II pulmonary oxygen uptake kinetics during exercise. J Appl Physiol 2000; 89: 1387–96

    PubMed  CAS  Google Scholar 

  25. 25.

    Koppo K, Bouckaert J. The effect of prior high-intensity cycling exercise on the V̇O2 kinetics during high-intensity cycling exercise is situated at the additional slow component. Int J Sports Med 2001; 22: 21–6

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Koga S, Shiojiri T, Kondo N, et al. Effect of increased muscle temperature on oxygen uptake kinetics during exercise. J Appl Physiol 1997; 83(4): 1333–8

    PubMed  CAS  Google Scholar 

  27. 27.

    Scheuermann BW, Bell C, Peterson DH, et al. Oxygen uptake kinetics for moderate exercise are speeded in older humans by prior heavy exercise. J Appl Physiol 2002; 92: 609–15

    PubMed  Google Scholar 

  28. 28.

    Bell C, Paterson DH, Kowalchuk JM, et al. Detrminants of oxygen uptake kinetics in older humans following single-limb endurance exercise training. Exp Physiol 2001; 86(5): 659–65

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Barcroft H, Dornhorst AC. The blood flow through the human calf during rhythmic exercise. J Physiol 1949; 109: 402–11

    PubMed  CAS  Google Scholar 

  30. 30.

    Brooks GA, Hittelman KJ, Fauklner JA, et al. Temperature, skeletal muscle functions, and oxygen debt. Am J Physiol 1971; 220(4): 1053–9

    PubMed  CAS  Google Scholar 

  31. 31.

    Bennett AF. Thermal dependence of muscle function. Am J Physiol 1984; 247: R217–29

    PubMed  CAS  Google Scholar 

  32. 32.

    Fink WJ, Costill DL, Van Handel PJ. Leg muscle metabolism during exercise in the heat and cold. Eur J Appl Physiol 1975; 34: 183–90

    Article  CAS  Google Scholar 

  33. 33.

    Febbraio MA, Carey MF, Snow RJ, et al. Influence of elevated muscle temperature on metabolism during intense, dynamic exercise. Am J Physiol 1996; 271(40): R1251–5

    PubMed  CAS  Google Scholar 

  34. 34.

    Febbraio MA. Does muscle function and metabolism affect exercise performance in the heat? Exerc Sport Sci Rev 2000; 28(4): 171–6

    PubMed  CAS  Google Scholar 

  35. 35.

    Bergstrom J, Hermansen L, Hultman E, et al. Diet, muscle, glycogen and physical performance. Acta Physiol Scand 1967; 71: 140–50

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Febbraio MA. Temperature, muscle metabolism and performance. In: Lamb DL, Murray R, editors. Perspectives in exercise science and sports medicine. Carmel (IN): Cooper Publishing Group, 1999: 315–53

    Google Scholar 

  37. 37.

    Edwards RHT, Harris RC, Hultman E, et al. Effect of temperature on muscle energy metabolism and endurance during successive isometric contractions, sustained to fatigue, of the quadriceps muscle in man. J Physiol 1972; 220: 335–52

    PubMed  CAS  Google Scholar 

  38. 38.

    Karvonen J. Importance of warm up and cool down on exercise performance. In: Karvonen J, Lemon PWR, Iliev I, editors. Medicine and sports training and coaching. Basel: Karger, 1992: 190–213

    Google Scholar 

  39. 39.

    Ross A, Leveritt M. Long-term metabolic and skeletal muscle adaptations to short-sprint training: implications for sprint training and tapering. Sports Med 2001; 31: 1063–82

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Kozlowski S, Brzezinska Z, Kruk B, et al. Exercise hyperthermia as a factor limiting physical performance: temperature effect on muscle metabolism. J Appl Physiol 1985; 59(3): 766–73

    PubMed  CAS  Google Scholar 

  41. 41.

    Romer LM, Barrington JP, Jeukendrup AE. Effects of oral creatine supplementation on high intensity, intermittent exercise performance in competitive squash players. Int J Sports Med 2001; 22: 546–52

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Nadel ER. Prolonged exercise and high and low ambient temperatures. Can J Sport Sci 1987; 12 (3 Suppl. 1): 140S–2S

    Google Scholar 

  43. 43.

    Lee DT, Haymes EM. Exercise duration and thermoregulatory responses after whole body precooling. J Appl Physiol 1995; 79(6): 1971–6

    PubMed  CAS  Google Scholar 

  44. 44.

    Fortney S, Wenger C, Bove J, et al. Effect of hyperosmolality on control of blood flow and sweating. J Appl Physiol 1984; 57: 1688–95

    PubMed  CAS  Google Scholar 

  45. 45.

    McComas AJ. Skeletal muscle: form and function. Champaign (IL): Human Kinetics, 1996: 213

    Google Scholar 

  46. 46.

    Kiens B, Saltin B, Wallye L, et al. Temporal relationship between blood flow changes and release of ions and metabolites from muscle upon single weak contractions. Acta Physiol Scand 1989; 213: 235–54

    Google Scholar 

  47. 47.

    Guyton AC. Textbook of medical physiology. Philadelphia (PA): W.B. Saunders, 1986: 235

    Google Scholar 

  48. 48.

    Boning D, Hollnagel C, Boecker A, et al. Bohr shift by lactic acid and the supply of O2 to skeletal muscle. Respir Physiol 1991; 85: 231–43

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Burnley M, Doust JH, Carter H, et al. Effects of prior exercise and recovery duration on oxygen uptake kinetics during heavy exercise in humans. Exp Physiol 2001; 86(3): 417–25

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Bishop D, Bonetti D, Dawson B. The influence of three different warm up intensities on sprint kayak performance in trained athletes. Med Sci Sports Exerc 2001; 33(6): 1026–32

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Hermansen L. Muscle fatigue during maximal exercise of short duration. In: di Prampero PE, Poortmans J, editors. Physiological chemistry of exercise and training. medicine and sport science. Basel: Karger, 1981: 45–52

    Google Scholar 

  52. 52.

    Fabiato A, Fabiato F. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from the cardiac and skeletal muscles. J Physiol (Lond) 1978; 276: 233–55

    CAS  Google Scholar 

  53. 53.

    Bishop D, Bonetti D, Dawson B. The influence of pacing strategy on V̇O2 and kayak ergometer performance. Med Sci Sports Exerc 2002; 34(6): 1041–7

    PubMed  Article  Google Scholar 

  54. 54.

    Gastin PB, Costill DL, Lawson DL, et al. Accumulated oxygen deficit during supramaximal all-out and constant intensity exercise. Med Sci Sports Exerc 1995; 27(2): 255–63

    PubMed  CAS  Google Scholar 

  55. 55.

    Gollnick PD, Armstrong RB, Sembrowich WL, et al. Glycogen depletion pattern in human skeletal muscle fibres after heavy exercise. J Appl Physiol 1973; 34(5): 615–8

    PubMed  CAS  Google Scholar 

  56. 56.

    Ingjer F, Stromme SB. Effects of active, passive or no warm-up on the physiological response to heavy exercise. Eur J Appl Physiol 1979; 40: 273–82

    Article  CAS  Google Scholar 

  57. 57.

    Stewart IB, Sleivert GG. The effect of warm-up intensity on range of motion and anaerobic performance. JOSPT 1998; 27(2): 154–61

    PubMed  CAS  Google Scholar 

  58. 58.

    Gutin B, Stewart K, Lewis S, et al. Oxygen consumption in the first stages of strenuous work as a function of prior exercise. Sports Med Phys Fitness 1976; 16: 60–5

    CAS  Google Scholar 

  59. 59.

    di Prampero E, Davies CTM, Cerretelli P, et al. An analysis of O2 debt contracted in submaximal exercise. J Appl Physiol 1970; 29(5): 547–51

    PubMed  Google Scholar 

  60. 60.

    Ozyener F, Rossiter HB, Ward SA, et al. Influence of exercise intensity on the on- and off-transient kinetics of pulmonary oxygen uptake in humans. J Physiol 2001; 533(3): 891–902

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Vandervoort AA, Quinlan J, McComas AJ. Twitch potentiation after voluntary contraction. Exp Neurol 1983; 81: 141–52

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Sale DG. Postactivation potentiation: role in human performance. Exerc Sport Sci Rev 2002; 30(3): 138–43

    PubMed  Article  Google Scholar 

  63. 63.

    Gossen ER, Sale DG. Effect of postactivation potentiation on dynamic knee extension performance. Eur J Appl Physiol 2000; 83: 524–30

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Moore RL, Stull JT. Myosin light chain phosphorylation in fast and slow skeletal muscles in situ. Am J Physiol 1984; 247: C462–71

    PubMed  CAS  Google Scholar 

  65. 65.

    Allen DG, Lee JA, Westerblad H. Intracellular calcium and tension during fatigue in isolated single muscle fibres from xenopus laevis. J Physiol 1989; 415: 433–58

    PubMed  CAS  Google Scholar 

  66. 66.

    Hamada T, Sale DG, MacDougall JD, et al. Postactivation potentiation, fibre type and twitch contraction time in human knee extensor muscles. J Appl Physiol 2000; 88: 2131–7

    PubMed  CAS  Google Scholar 

  67. 67.

    Enoka RM. Acute adaptations. In: Enoka RM, editor. Neuromechanical basis of kinesiology. 2nd ed. Champaign (IL): Human Kinetics, 1994: 271–302

    Google Scholar 

  68. 68.

    Proske V, Morgan DL, Gregory JE. Thixotropy in skeletal muscle spindles: a review. Prog Neurobiol 1993; 41: 705–21

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Wiegner AW. Mechanism of thixotropic behaviour at relaxed joints in the rat. J Appl Physiol 1987; 62: 1615–21

    PubMed  CAS  Google Scholar 

  70. 70.

    Wiktorsson-Muller M, Oberg B, Ekstrand J, et al. Effects of warming up, massage, and stretching on range of motion and muscle strength in the lower extremity. Am J Sports Med 1983; 11(4): 249–52

    Article  Google Scholar 

  71. 71.

    Lakie M, Robson LG. Thixotropic changes in human muscle stiffness and the effects of fatigue. Q J Exp Physiol 1988; 73: 487–500

    PubMed  CAS  Google Scholar 

  72. 72.

    De Vries HA. Effects of various warm-up procedures on 100-yard times of competitive swimmers. Res Q Exerc Sport 1959; 30: 11–22

    Google Scholar 

  73. 73.

    Pyke FS. The effect of preliminary activity on maximal motor performance. Res Q Exerc Sport 1968; 39(4): 1069–76

    CAS  Google Scholar 

  74. 74.

    Malareki I. Investigation of physiological justification of so-called ‘warming up’. Acta Physiol Pol 1954; 5: 543–6

    Google Scholar 

  75. 75.

    Orlick T, Partington J. The sport psychology consultant: analysis of critical components as viewed by Canadian Olympic athletes. Sport Psychol 1987; 2: 105–30

    Google Scholar 

  76. 76.

    Binkhorst RA, Hoofd L, Vissers ACA. Temperature and force-velocity relationship of human muscles. J Appl Physiol 1977; 42(4): 471–5

    PubMed  CAS  Google Scholar 

  77. 77.

    Clarke RSJ, Hellon RF, Lind AR. The duration of sustained contractions of the human forearm at different muscle temperatures. J Physiol 1958; 143: 454–73

    PubMed  CAS  Google Scholar 

  78. 78.

    Davies CTM, Young K. Effect of temperature on the contractile properties and muscle power of triceps surae in humans. J Appl Physiol 1983; 55(1): 191–5

    PubMed  CAS  Google Scholar 

  79. 79.

    Ranatunga KW, Sharpe B, Turnbull B. Contractions of human skeletal muscle at different temperatures. J Physiol 1987; 390: 383–95

    PubMed  CAS  Google Scholar 

  80. 80.

    Asmussen E, Bonde-Petersen F, Jorgensen K. Mechano-elastic properties of human muscles at different temperatures. Acta Physiol Scand 1976; 96: 83–93

    PubMed  Article  CAS  Google Scholar 

  81. 81.

    Bergh U, Ekblom B. Influence of muscle temperature on maximal muscle strength and power output in human skeletal muscles. Acta Physiol Scand 1979; 107: 33–7

    PubMed  Article  CAS  Google Scholar 

  82. 82.

    O’Brien B, Payne W, Gastin P, et al. A comparison of active and passive warm ups on energy system contribution and performance in moderate heat. Aust J Sci Med Sport 1997; 29(4): 106–9

    PubMed  Google Scholar 

  83. 83.

    Petrofsky JS, Lind AR. The influence of temperature on the isometric characteristics of fast and slow muscle of the cat. Pflugers Arch 1981; 389: 149–54

    PubMed  Article  CAS  Google Scholar 

  84. 84.

    Ranatunga KW. Influence of temperature on isometric tension development in mouse fast- and slow-twitch skeletal muscles. Exp Neurol 1980; 70: 211–8

    PubMed  Article  CAS  Google Scholar 

  85. 85.

    Asmussen EO, Hansen O, Lammert O. The relation between isometric and dynamic muscle strength in man [communication 20]. Copenhagen: National Association for Infant Paralysis, 1965

    Google Scholar 

  86. 86.

    Dolan P, Greig C, Sargeant AJ. Effect of active and passive warm-up on maximal short-term power output of human muscle. J Physiol 1985; 365: P74

    Google Scholar 

  87. 87.

    Sargeant AJ. Effect of muscle temperature on maximal short-term power output in man. J Physiol 1983; 341: 35P

    Google Scholar 

  88. 88.

    Carlile F. Effect of preliminary passive warming on swimming performance. Res Q Exerc Sport 1956; 27(2): 143–51

    Google Scholar 

  89. 89.

    Ferguson RA, Ball D, Sargeant AJ. Effect of muscle temperature on rate of oxygen uptake during exercise in humans at different contraction frequencies. J Exp Biol 2002; 205: 981–7

    PubMed  Google Scholar 

  90. 90.

    Gregson W, Batterham A, Drust B, et al. The effects of pre-warming on the metabolic and thermoregulatory responses to prolonged intermittent exercise in moderate ambient temperatures. J Sports Sci 2002; 20(1): 49–50

    Google Scholar 

  91. 91.

    Gregson WA, Drust B, Batterham A, et al. The effects of pre-warming on the metabolic and thermoregulatory responses to prolonged submaximal exercise in moderate ambient temperature. Eur J Appl Physiol 2002; 86: 526–33

    PubMed  Article  CAS  Google Scholar 

  92. 92.

    Grose JE. Depression of muscle fatigue curves by heat and cold. Res Q Exerc Sport 1958; 29: 19–31

    Google Scholar 

  93. 93.

    Sedgwick AW, Whalen HR. Effect of passive warm-up on muscular strength and endurance. Res Q Exerc Sport 1964; 35(1): 45–59

    CAS  Google Scholar 

  94. 94.

    McLellan TM, Cheung SS, Jacobs I. Variability of time to exhaustion during submaximal exercise. Can J Appl Physiol 1995; 20(1): 39–51

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors have provided no information on sources of funding or on conflicts of interest directly relevant to the content of this review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Bishop.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bishop, D. Warm Up I. Sports Med 33, 439–454 (2003). https://doi.org/10.2165/00007256-200333060-00005

Download citation

Keywords

  • Anaerobic Capacity
  • Intermediate Performance
  • Increase Oxygen Delivery
  • Aerobic Energy Production
  • Increase Muscle Blood Flow