The Conscious Perception of the Sensation of Fatigue

Abstract

In this review, fatigue is described as a conscious sensation rather than a physiological occurrence. We suggest that the sensation of fatigue is the conscious awareness of changes in subconscious homeostatic control systems, and is derived from a temporal difference between subconscious representations of these homeostatic control systems in neural networks that are induced by changes in the level of activity. These mismatches are perceived by consciousness-producing structures in the brain as the sensation of fatigue. In this model, fatigue is a complex emotion affected by factors such as motivation and drive, other emotions such as anger and fear, and memory of prior activity. It is not clear whether the origin of the conscious sensation of fatigue is associated with particular localised brain structures, or is the result of electrophysiological synchronisation of entire brain activity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Derman EW, A St Clair Gibson, Schwellnus MP, et al. The differential diagnosis and clinical approach to the athlete with clinical fatigue [online]. Available from URL: http://www.esportmed.com/ismj/. Int Sportmed J 2000, 1

    Google Scholar 

  2. 2.

    Hagberg M. Muscular endurance and surface electromyogram in isometric and dynamic exercise. J Appl Physiol 1981; 51: 1–7

    PubMed  CAS  Google Scholar 

  3. 3.

    Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 2001; 81: 1725–89

    PubMed  CAS  Google Scholar 

  4. 4.

    Vogeley KT, Seitz RJ. Representation and identity: convergence of brain research and mind-brain philosophy. J Hist Neurosci 1995; 4: 183–203

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Rees G, Kreiman G, Koch C. Neural correlates of consciousness in humans. Nat Rev Neurosci 2002; 3: 261–70

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Searle JR. How to study consciousness scientifically. Philos Trans R Soc Lond B Biol Sci 1998; 353: 1935–42

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Crick F. The astonishing hypothesis: the scientific search for the soul. New York: Scribner, 1994

    Google Scholar 

  8. 8.

    Fitts RH. Cellular mechanisms of muscle fatigue. Physiol Rev 1994; 74; 49–94

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Green H. Mechanisms of muscle fatigue in intense exercise. J Sports Sci 1997; 15: 247–56

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Hargreaves M, McKenna MJ, Jenkins DG, et al. Muscle metabolites and performance during high-intensity, intermittent exercise. J Appl Physiol 1998; 84: 1687–91

    PubMed  CAS  Google Scholar 

  11. 11.

    Sahlin K, Tonkonogi M, Soderland K. Energy supply and muscle fatigue in humans. Acta Physiol Scand 1998; 162: 261–6

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Balsom PD, Gaitanos GC, Soderlund K, et al. High intensity exercise and muscle glycogen availability in humans. Acta Physiol Scand 1999; 165: 337–45

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Coggan AR, Coyle EF. Reversal of fatigue during prolonged exercise by carbohydrate infusion or ingestion. J Appl Physiol 1987; 63: 2388–95

    PubMed  CAS  Google Scholar 

  14. 14.

    Costill DL, Bennett A, Branam G, et al. Glucose ingestion at rest and during prolonged exercise. J Appl Physiol 1973; 34: 764–9

    PubMed  CAS  Google Scholar 

  15. 15.

    Coyle EF, Coggan AR, Hemmert MK, et al. Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol 1986; 61: 165–72

    PubMed  CAS  Google Scholar 

  16. 16.

    McConnell G, Snow RJ, Proietto J, et al. Muscle metabolism during prolonged exercise in humans: influence of carbohydrate availability. J Appl Physiol 1999; 87: 1083–6

    Google Scholar 

  17. 17.

    Bassett DR, Howley ET. Maximal oxygen uptake: ‘classical’ versus ‘contemporary’ viewpoints. Med Sci Sports Exerc 1997; 29: 591–603

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Howley ET, Bassett DR, Welch HG. Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc 1995; 27: 1292–301

    PubMed  CAS  Google Scholar 

  19. 19.

    Myers J, Ashley E. Dangerous curves: a perspective on exercise, lactate, and the anaerobic threshold. Chest 1997; 111: 787–95

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Mihevic PM. Sensory cues for perceived exertion: a review. Med Sci Sports Exerc 1981; 13: 150–63

    PubMed  CAS  Google Scholar 

  21. 21.

    Noble BJ, Metz KF, Pandolf KB, et al. Perceptual responses to exercise: a multiple regression study. Med Sci Sports 1973; 5: 104–9

    PubMed  CAS  Google Scholar 

  22. 22.

    Pandolf KB, Burse RL, Goldman RF. Differentiated ratings of perceived exertion during physical conditioning of older individuals using leg-weight loading. Percept Mot Skills 1975; 40: 563–74

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Bongiovanni LG, Hagbarth KE. Tonic vibration reflexes elicited during fatigue from maximal voluntary contractions in man. J Physiol 1990; 423: 1–14

    PubMed  CAS  Google Scholar 

  24. 24.

    Hayward L, Breitbach D, Rymer WZ. Increased inhibitory effects on close synergists during muscle fatigue in the decerebrate cat. Brain Res 1988; 440: 199–203

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Rotto DM, Kaufman MP. Effect of metabolic products of muscular contraction on discharge of group III and IV afferents. J Appl Physiol 1988; 64: 2306–13

    PubMed  CAS  Google Scholar 

  26. 26.

    Cafarelli E. Peripheral contributions to the perception of effort. Med Sci Sports Exerc 1982; 14: 382–9

    PubMed  CAS  Google Scholar 

  27. 27.

    Utter AC, Kang J, Nieman DC, et al. Effect of carbohydrate ingestion and hormonal responses on ratings of perceived exertion during prolonged cycling and running. Eur J Appl Physiol Occup Physiol 1999; 80: 92–9

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Nybo L, Nielsen B. Perceived exertion is associated with altered brain activity during exercise with progressive hyperthermia. J Appl Physiol 1998; 91: 2017–23

    Google Scholar 

  29. 29.

    Hampson DB, St Clair Gibson A, Lambert MI, et al. The influence of sensory cues on the performance of effort during exercise and central regulation of exercise performance. Sports Med 2001, 952

    Google Scholar 

  30. 30.

    Pandolf KB. Differentiated ratings of perceived exertion during physical exercise. Med Sci Sports Exerc 1982; 14: 397–405

    PubMed  CAS  Google Scholar 

  31. 31.

    St Clair Gibson A, Lambert MI, Noakes TD. Neural control of force output during maximal and submaximal exercise. Sports Med 2001; 31: 637–50

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Ulmer HV. Concept of an extracellular regulation of muscular metabolic rate during heavy exercise in humans by psychophysiological feedback. Experentia 1996; 52: 416–20

    Article  CAS  Google Scholar 

  33. 33.

    Morgan WP, Raven PB, Drinkwater BL, et al. Perceptual and metabolic responsivity to standard bicycle ergometry following various hypnotic suggestions. Int J Clin Exp Hypn 1973; 21: 86–101

    Article  Google Scholar 

  34. 34.

    Morgan WP, Hirta K, Weitz GA, et al. Hypnotic perturbation of perceived exertion, ventilatory consequences. Am J Clin Hypn 1976; 18: 182–90

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Williamson JW, McColl R, Mathews D, et al. Hypnotic manipulation of effort sense during dynamic exercise: cardiovascular responses and brain activation. J Appl Physiol 2001; 90: 1392–9

    PubMed  CAS  Google Scholar 

  36. 36.

    Rejeski WJ, Ribisil PM. Expected task duration and perceived effort: an attributional analysis. J Sport Psychol 1980; 2: 227–36

    Google Scholar 

  37. 37.

    Gibson H, Carroll N, Clague JE, et al. Exercise performance and fatiguability in patients with chronic fatigue syndrome. J Neurol Neurosurg Psychiatry 1993; 56: 993–8

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Mullis R, Campbell IT, Wearden AJ, et al. Prediction of peak oxygen uptake in chronic fatigue syndrome. Br J Sports Med 1999; 33: 352–6

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    St Clair Gibson A. Fatigue, aging and the neuromuscular system [MD thesis]. Cape Town: University of Cape Town, 2002

    Google Scholar 

  40. 40.

    Carson RG, Riek S, Shahbazpour N. Central and peripheral mediation of human force sensation following eccentric or concentric contractions. J Physiol 2002; 539: 913–23

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Brasil-Neto JP, Pascual-Leone A, Valls-Sole J, et al. Postexercise depression of motor evoked potentials: a measure of central nervous system fatigue. Exp Brain Res 1993; 93: 181–4

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Latash ML. Neurophysiological basis of movement. Champaign (IL): Human Kinetics, 1998

    Google Scholar 

  43. 43.

    Pritchard TC, Alloway KD. Medical neuroscience. Maiden (MA): Blackwell Science Inc, 1999

    Google Scholar 

  44. 44.

    von Helmholtz H. Treatise on physiological optics. Southall JPC, editor/translator. Menasha (WI): Optical Society of America, 1925: 3

  45. 45.

    McCloskey DI, Ebeling P, Goodwin GM. Estimation of weights and tensions and apparent involvement of a ‘sense of effort’. Exp Neurol 1974; 42: 220–32

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Sperry RW. Neural basis of the spontaneous optokinetic response produced by visual neural inversion. J Comp Physiol Psychol 1950; 43: 482–9

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Enoka RM, Stuart DG. Neurobiology of muscle fatigue. J Appl Physiol 1992; 72: 1631–48

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Boutcher SH, Trenske M. The effects of sensory deprivation and music on perceived exertion and affect during exercise. J Sport Exerc Psych 1990; 12: 167–76

    Google Scholar 

  49. 49.

    Masters KS, Ogles BM. Associative and dissociative cognitive strategies in exercise and running: 20 years later, what do we know? Sport Psychol 1998; 12: 253–70

    Google Scholar 

  50. 50.

    LeDoux J. The emotional brain. London: Weidenfeld and Nicolson, 1998

    Google Scholar 

  51. 51.

    Damasio A. The feeling of what happens: body, emotion and the making of consciousness. London: Vintage, 2000

    Google Scholar 

  52. 52.

    Damasio A. Fundamental feelings [letter]. Nature 2001; 413: 781

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Dougherty DD, Shin LM, Alpert NM, et al. Anger in healthy men: a PET study using script-image driven imagery. Biol Psychiatry 1999; 15: 466–72

    Article  Google Scholar 

  54. 54.

    Blair RJ, Morris JS, Frith CD, et al. Dissociable neural responses to facial expressions of sadness and anger. Brain 1999; 122: 883–93

    PubMed  Article  Google Scholar 

  55. 55.

    Mayberg HS, Liotti M, Brannan SK, et al. Reciprocal limbiccortical function and negative mood: converging PET findings in depression and normal sadness. Am J Clin Psych 1999; 154: 675–82

    Google Scholar 

  56. 56.

    Morris JS, Fristen KJ, Buchel C, et al. A neuromodulatory role for the human amygdala in processing emotional facial expressions. Brain 1998; 121: 47–57

    PubMed  Article  Google Scholar 

  57. 57.

    Gorno-Tempini ML, Pradelli S, Serafini M, et al. Explicit and incidental facial processing: an fMRI study. Neuroimage 2001; 14: 465–73

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Eichenbaum H. A cortical-hippocampal system for declarative memory. Nat Rev Neurosci 2000; 1: 41–50

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Miller EK. The prefrontal cortex and cognitive control. Nat Rev Neurosci 2000; 1: 59–65

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Parvizi J, Damasio A. Consciousness and the brainstem. Cognition 2001; 79: 135–59

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Bassin PV, Berstein NA, Latash LP. On the problem of the relation between structure and function in the brain from a contemporary point of view. Motor Control 1999; 3: 332–42

    PubMed  CAS  Google Scholar 

  62. 62.

    Salinas E, Sejnowski TJ. Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2001; 2: 539–50

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Engel AK, Fries P, Singer W. Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2001; 2: 704–16

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Varela F, Lachaux JP, Rodriguez E, et al. The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2001; 2: 229–39

    PubMed  Article  CAS  Google Scholar 

  65. 65.

    Blomstrand E, Hassmen P, Newsholme EA. Effect of branched-chain amino acid supplementation on mental performance. Acta Physiol Scand 1991; 143: 225–6

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Guezennec CY, Abdelmalki A, Serrurier B, et al. Effects of prolonged exercise on brain ammonia and amino acids. Int J Sports Med 1998; 19: 323–7

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Ide K, Schmalbruch IK, Quistorff B, et al. Lactate, glucose and O2 uptake in human brain during recovery from maximal exercise. J Physiol 2000; 522: 159–64

    PubMed  Article  CAS  Google Scholar 

  68. 68.

    Kalsgaard MK, Ide K, Cai Y, et al. The intent to exercise influences the cerebral 02/carbohydrate uptake ration in humans. J Physiol 2002; 540: 681–9

    Article  Google Scholar 

  69. 69.

    Baars B. In the theatre of consciousness: the workspace of the mind. UK: Oxford University Press, 1997

    Google Scholar 

  70. 70.

    St Clair Gibson A, Lambert EV, Lambert MI, et al. Exercise and fatigue control mechanisms [online]. Available from URL: http://www.esportmed.com/ismj/. Int Sport Med J 2001; 2(3)

    Google Scholar 

  71. 71.

    Ceci R, Hassmen P. Self-monitored exercise in three different RPE intensities in treadmill vs field running. Med Sci Sports Exerc 1991; 23: 732–8

    PubMed  CAS  Google Scholar 

  72. 72.

    Dunbar CC, Robertson RJ, Baun R, et al. The validity of regulating exercise intensity by ratings of perceived exertion. Med Sci Sports Exerc 1992; 24: 94–9

    PubMed  CAS  Google Scholar 

  73. 73.

    Eston RG, Williams JG. Reliability of ratings of perceived effort regulation of exercise intensity. Br J Sports Med 1988; 22: 153–5

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

The Medical Research Council of South Africa, National Research Foundation of South Africa, Technology and Human Resources for Industry Programme of South Africa and the Harry Crossley Research Funds of the University of Cape Town provided financial assistance for studies described in this review. The authors have no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alan St Clair Gibson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gibson, A.S., Baden, D.A., Lambert, M.I. et al. The Conscious Perception of the Sensation of Fatigue. Sports Med 33, 167–176 (2003). https://doi.org/10.2165/00007256-200333030-00001

Download citation

Keywords

  • Chronic Fatigue Syndrome
  • Conscious Perception
  • Conscious Knowledge
  • Neural Network Activity
  • Subconscious Level