Skip to main content
Log in

Doppler Echocardiography for the Estimation of Cardiac Output with Exercise

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Insights into both normal and pathological cardiac responses to exercise have been hampered by lack of a safe, accurate, feasible means of estimating cardiac output (.Q) during high-intensity and maximal exercise. Doppler ultrasound noninvasively measures blood velocity as it exits the heart and can be performed during exhaustive exercise without interference of the subject or need for steady state. From the product of aortic blood velocity and cross-sectional area of the aorta, stroke volume (SV) can be calculated. Despite these advantages of the Doppler technique, a number of potential sources of error have raised concern regarding the accuracy of this method. These include transducer angulation, change in aortic cross-sectional area during exercise, turbulence and alteration of a flat velocity profile in the aorta with increased.Q, and uncertainties regarding the proper location for measurement of aortic outflow area.

The magnitude of the influence of these potentially confounding variables on the accuracy of SV measurements determined by the Doppler technique is unknown. Estimates of both construct and concurrent validity suggest that the overall error may be small. Test-retest studies have indicated a high level of reliability with this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2
Fig. 3
Table I
Fig. 1

Similar content being viewed by others

References

  1. Warburton DER, Haykowski MJF, Quinney A, et al. Reliability and validity of measures of cardiac output during incremental to maximal aerobic exercise. Part 1: conventional techniques. Sports Med 1999; 27: 23–41

    Article  PubMed  CAS  Google Scholar 

  2. Driscoll DJ, Staats BA, Beck KC. Measurement of cardiac output in children during exercise: a review. Pediatr Exerc Sci 1989; 1: 102–15

    Google Scholar 

  3. Feigenbaum H. Echocardiography. 5th ed. Philadelphia (PA): Lea & Febiger, 1994

    Google Scholar 

  4. Daley PJ, Sagar KB, Wann LS. Doppler echocardiographic measurement of flow velocity in the ascending aorta during supine and upright exercise. Br Heart J 1985; 54: 562–7

    Article  PubMed  CAS  Google Scholar 

  5. Cortes RGS, Satomi G, Yoshigi M, et al. Maximal hemodynamic response after the Fontan procedure: Doppler evaluation during the treadmill test. Pediatr Cardiol 1994; 15: 170–7

    Article  PubMed  CAS  Google Scholar 

  6. Christie J, Sheldahl LM, Tristani FE, et al. Determination of stroke volume and cardiac output during exercise: comparison of two-dimensional and Doppler echocardiography, Fick oximetry, and thermodilution. Circulation 1987; 76: 539–47

    Article  PubMed  CAS  Google Scholar 

  7. Rowland TW, Lisowski R. Determinants of diastolic cardiac filling during exercise. J Sports Med Phys Fitness. In press

  8. Takahasi T, Miyamoto Y. Influence of light physical activity on cardiac responses during recovery from exercise in humans. Eur J Appl Physiol 1998; 77: 305–11

    Article  Google Scholar 

  9. Schuster AH, Nanda NC. Doppler echocardiographic measurement of cardiac output: comparison with a non-golden standard. Am J Cardiol 1984; 53: 257–9

    Article  PubMed  CAS  Google Scholar 

  10. Stewart WJ, Jiang L, Mich R, et al. Variable effect of changes in flow rate through the aortic, pulmonary and mitral valves on valve area and flow velocity: impact on quantitative Doppler flow calculations. J Am Coll Cardiol 1985; 6: 653–62

    Article  PubMed  CAS  Google Scholar 

  11. Steingart RM, Meller J, Barovick J, et al. Pulsed Doppler echocardiographic measurements of beat-to-beat changes in stroke volume in dogs. Circulation 1980; 62: 542–8

    Article  PubMed  CAS  Google Scholar 

  12. Lewis JF, Kuo LC, Nelson JG, et al. Pulsed Doppler echocardiographic determination of stroke volume and cardiac output: clinical validation of two new methods using the apical window. Circulation 1984; 70: 425–31

    Article  PubMed  CAS  Google Scholar 

  13. Darsee JR, Walter PF, Nutter DO. Transcutaneous Doppler method of measuring cardiac output. Am J Cardiol 1980; 46: 613–8

    Article  PubMed  CAS  Google Scholar 

  14. Esperson K, Jensen EW, Rosenborg D, et al. Comparison of cardiac output measurement techniques: thermodilution, Doppler, CO2 rebreathing, and the direct Fick method. Acta Anaesthesiol Scand 1995; 39: 245–51

    Article  Google Scholar 

  15. Warburton DER, Haykowski MJF, Quinney HA, et al. Reliability and validity measures of cardiac output during incremental to maximal exercise. Part II: novel techniques and new advances. Sports Med 1999; 27: 241–60

    Article  PubMed  CAS  Google Scholar 

  16. Sjoberg BJ, Wranne B. Cardiac output determined by ultrasound Doppler: clinical applications. Clin Physiol 1990; 10: 463–73

    Article  PubMed  CAS  Google Scholar 

  17. Taylor SH, Shillingford JP. Clinical application of Coomassie blue. Br Heart J 1959; 21: 497–504

    Article  PubMed  CAS  Google Scholar 

  18. Reddy PS, Curtiss EI, Bell B, et al. Determinants of variation between Fick and indicator estimates of cardiac output during diagnostic catheterization: Fick vs dye cardiac outputs. J Lab Clin Med 1976; 87: 568–76

    PubMed  CAS  Google Scholar 

  19. Nottin S, Vinet A, Lecoq A-M, et al. Test-retest reproducibility of submaximal and maximal cardiac output by Doppler echocardiography and CO2 rebreathing in prepubertal children. Pediatr Exerc Sci 2001; 13: 214–24

    Google Scholar 

  20. Rowland TW, Popowski B. Comparison of bioimpedance and Doppler cardiac output during exercise in children [abstract]. Pediatr Exerc Sci 1996; 9: 188–9

    Google Scholar 

  21. Lock JE, Einzig S, Moller JH. Hemodynamic responses to exercise in normal children. Am J Cardiol 1978; 41: 1278–84

    Article  PubMed  CAS  Google Scholar 

  22. Ekelund LG, Holmgren A. Central hemodynamics during exercise. Circ Res 1967; 20 Suppl. 1: I33–43

    Google Scholar 

  23. Malmborg RO. Clinical and hemodynamic analysis of factors limiting the cardiac performance in patients with coronary heart disease. Acta Med Scand 1965; 177 Suppl. 126: 1–30

    Google Scholar 

  24. Liu Y, Menold E, Duilenkopf A, et al. Validation of the acetylene rebreathing method for measurement of cardiac output at rest and during high intensity exercise. Clin Physiol 1997; 17: 171–82

    Article  PubMed  CAS  Google Scholar 

  25. Bar-Or O, Shephard RJ, Allen CL. Cardiac output of 10- to 13-year-old boys and girls during submaximal exercise. J Appl Physiol 1971; 30: 219–23

    PubMed  CAS  Google Scholar 

  26. Turley KR, Wilmore JH. Cardiovascular responses to treadmill and cycle ergometer exercise in children and adults. J Appl Physiol 1997; 83: 948–57

    PubMed  CAS  Google Scholar 

  27. Marx GR, Hicks RW, Allen HD. Measurement of cardiac output and exercise factor by pulsed Doppler echocardiography during supine bicycle ergometry in normal young adolescent boys. J Am Coll Cardiol 1987; 10: 430–4

    Article  PubMed  CAS  Google Scholar 

  28. Rowland T, Popowski B, Ferrone L. Cardiac responses to maximal upright cycle exercise in healthy boys and men. Med Sci Sports Exerc 1997; 29: 1146–51

    Article  PubMed  CAS  Google Scholar 

  29. Nottin S, Agnes V, Stecken F, et al. Central and peripheral cardiovascular adaptations during maximal cycle exercise in boys and men. Med Sci Sports Exerc 2002; 33: 456–63

    Google Scholar 

  30. Vinet A, Nottin S, Lecoq A-M, et al. Cardiovascular responses to progressive cycle exercise in healthy children and adults. Int J Sports Med. In press

  31. Miyamura M, Honda Y. Maximum cardiac output related to sex and age. Jap J Physiol 1973; 23: 645–56

    Article  CAS  Google Scholar 

  32. Eriksson BO, Koch G. Effect of physical training on hemodynamic response during submaximal and maximal exercise in 11–13 year old boys. Acta Physiol Scand 1973; 87: 27–39

    Article  PubMed  CAS  Google Scholar 

  33. Yamaji K, Miyashita M. Oxygen transport during exhaustive exercise in Japanese boys. Eur J Appl Physiol 1977; 36: 93–9

    Article  CAS  Google Scholar 

  34. Rosenthal M, Bush A. Haemodynamics in children during rest and exercise: methods and normal values. Eur Respir J 1998; 11: 854–6

    Article  PubMed  CAS  Google Scholar 

  35. Rowland TW, Blum JW. Cardiac dynamics during upright cycle exercise in boys. Am J Hum Biol 2000; 12: 749–57

    Article  PubMed  Google Scholar 

  36. Rowland TW, Kline G, Goff D, et al. One mile run performance and cardiovascular fitness in children. Arch Pediatr Adolesc Med 1999; 153: 845–9

    Article  PubMed  CAS  Google Scholar 

  37. Shaw GS, Johnson EC, Voyles WF, et al. Noninvasive Doppler determination of cardiac output during submaximal and peak exercise. J Appl Physiol 1985; 59: 722–31

    PubMed  CAS  Google Scholar 

  38. Bevegard S, Freyschuss U, Strandell T. Circulatory adaptation to arm and leg exercise in supine and sitting position. J Appl Physiol 1966; 21: 37–46

    PubMed  CAS  Google Scholar 

  39. Stenberg J, Astrand P-O, Ekblom B, et al. Hemodynamic response to work with different muscle groups, sitting and supine. J Appl Physiol 1967; 22: 61–70

    PubMed  CAS  Google Scholar 

  40. Vinet A, Nottin S, Lecoq A-M, et al. Reproducibility of cardiac output measurements by Doppler echocardiography in prepubertal children and adults. Int J Sports Med 2000; 22: 1–5

    Google Scholar 

  41. Rowland TW, Melanson EL, Popowski BE, et al. Test-retest reproducibility of maximum cardiac output by Doppler echocardiography. Am J Cardiol 1998; 81: 1228–9

    Article  PubMed  CAS  Google Scholar 

  42. Mouliner L, Venet T, Schiller NB, et al. Measurement of aortic blood flow by Doppler echocardiography: day to day variability in normal subjects and applicability in clinical research. J Am Coll Cardiol 1991; 17: 1326–33

    Article  Google Scholar 

  43. Ihlen H, Endresen K, Myreng Y, et al. Reproducibility of cardiac stroke volume estimated by Doppler echocardiography. Am J Cardiol 1987; 59: 975–8

    Article  PubMed  CAS  Google Scholar 

  44. Nicolosi GL, Pungercic E, Cervesato E, et al. Feasibility and variability of six methods for the echocardiographic and Doppler determination of cardiac output. Br Heart J 1988; 59: 299–303

    Article  PubMed  CAS  Google Scholar 

  45. Gardin JM, Tobis JM, Dabestani A, et al. Superiority of two dimensional measurement of aortic vessel diameter in Doppler echocardiographic estimates of left ventricular stroke volume. J Am Coll Cardiol 1985; 6: 66–74

    Article  PubMed  CAS  Google Scholar 

  46. Huntsman LL, Stewart DK, Barnes SR, et al. Noninvasive Doppler determination of cardiac output in man. Circulation 1983; 67: 593–602

    Article  PubMed  CAS  Google Scholar 

  47. Ihlen H, Amlie JP, Dale J, et al. Determination of cardiac output by Doppler echocardiography. Br Heart J 1984; 51: 54–60

    Article  PubMed  CAS  Google Scholar 

  48. Roman MJ, Devereux RB, Kramer-Fox R, et al. Two-dimensional echocardiographic aortic root dimensions in normal children and adults. Am J Cardiol 1989; 64: 507–12

    Article  PubMed  CAS  Google Scholar 

  49. Morrow WR, Murphy DJ, Fisher DJ, et al. Continuous wave Doppler cardiac output: use in pediatric patients receiving inotropic support. Pediatr Cardiol 1988; 9: 131–6

    Article  PubMed  CAS  Google Scholar 

  50. Greenfield JC, Patel DJ. Relation between pressure and diameter in the ascending aorta in man. Circ Res 1962; 10: 778–81

    Article  PubMed  Google Scholar 

  51. Imura T, Yamamoto K, Kanamori K, et al. Non-invasive ultrasonic measurement of the elastic properties of the human abdominal aorta. Cardiovasc Res 1986; 20: 208–14

    Article  PubMed  CAS  Google Scholar 

  52. Loeber CP, Goldberg SJ, Marx GR, et al. How much does aortic and pulmonary artery area vary during the cardiac cycle? Am Heart J 1987; 113: 95–100

    Article  PubMed  CAS  Google Scholar 

  53. Davison WR, Pasquale MJ, Fanelli C. A Doppler echocardiographic examination of the normal aortic valve and left ventricular outflow tract. Am J Cardiol 1991; 67: 547–9

    Article  Google Scholar 

  54. Rossvoll O, Samstad S, Torp HG, et al. The velocity distribution in the aortic anulus in normal subjects: a quantitative analysis of two-dimensional Doppler flow maps. J Am Soc Echocardiogr 1991; 4: 367–78

    PubMed  CAS  Google Scholar 

  55. Lucas CL, Keagy BA, Hsiao HS, et al. The velocity profile in the canine ascending aorta and its effects on the accuracy of pulsed Doppler determinations of mean blood velocity. Cardiovasc Res 1984; 18: 282–93

    Article  PubMed  CAS  Google Scholar 

  56. Seed WA, Wood NB. Velocity patterns in the aorta. Cardiovasc Res 1971; 5: 319–30

    Article  PubMed  CAS  Google Scholar 

  57. Mathison M, Furuse A, Asano K, et al. Doppler analysis of flow velocity profile at the aortic root. J Am Coll Cardiol 1988; 12: 947–54

    Article  PubMed  CAS  Google Scholar 

  58. Falsetti HL, Carroll RJ, Swope RD. Turbulent blood flow in the ascending aorta of dogs. Cardiovasc Res 1983; 17: 427–36

    Article  PubMed  CAS  Google Scholar 

  59. Loeppky JA, Greene ER, Hoekenga DE, et al. Beat-by-beat stroke volume assessment by pulsed Doppler in upright and supine exercise. J Appl Physiol 1981; 50: 1173–82

    PubMed  CAS  Google Scholar 

  60. Berne RM, Levy MN. Cardiovascular physiology. 8th ed. St Louis (MO): Mosby, 2001

    Google Scholar 

Download references

Acknowledgments

The authors have provided no information on sources of funding or on conflicts of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Rowland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowland, T., Obert, P. Doppler Echocardiography for the Estimation of Cardiac Output with Exercise. Sports Med 32, 973–986 (2002). https://doi.org/10.2165/00007256-200232150-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200232150-00002

Keywords

Navigation