Skip to main content

Aetiology of Rib Stress Fractures in Rowers

Abstract

Rib stress fractures are a common and significant problem in the rowing population. They occur in approximately 6.1 to 12% of rowers and account for the most time lost from on-water training and competition. This review discusses possible causative factors for rib stress fractures in rowers. Central to the establishment of causative factors is the identification that each rib forms part of a closed ring of bone that is completed anteriorly by the sternum and posteriorly by the thoracic vertebrae. Because of the shared sternum anteriorly each ring of bone is mechanically connected. Subsequently, during rowing individual ribs are not loaded in isolation, rather the rib cage is loaded as a complete unit. Incorporating this functioning as a complete unit a possible mechanism by which different factors contribute to rib stress fracture can be developed. In rowing, muscle factors generate loading of the rib cage. The characteristics of this loading stimulus are influenced by equipment, technique and joint factors. Rib-cage loading generates bone strain in individual ribs with the response of each rib depending upon site-specific skeletal factors. Depending on the characteristics of the bone strain in terms of the magnitude and rate of strain, microdamage may develop. The bone response to this microdamage is reparative remodelling. Whether this response is capable of repairing the damage to prevent progression to a stress fracture is dependent upon training and gender factors. Identification of these factors will generate a better understanding of the aetiology of this injury, which is required for improved prevention and treatment strategies.

This is a preview of subscription content, access via your institution.

Fig. 1
Table I
Table II
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Table III

References

  1. 1.

    Frost H. Presence of microscopic cracks in vivo in bone. Henry Ford Hosp Med Bull 1960; 8: 25–35

    Google Scholar 

  2. 2.

    Jamard B, Constantin A, Cantagrel A, et al. Multiple rib fractures caused by coughing in a young woman without bone loss. Rev Rhum Engl Ed 1999; 66: 237–8

    PubMed  CAS  Google Scholar 

  3. 3.

    Lord MJ, Ha KI, Song KS. Stress fractures of the ribs in golfers. Am J Sports Med 1996; 24: 118–22

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Maffulli N, Pintore E. Stress fracture of the sixth rib in a canoeist. Br J Sports Med 1990; 24 (4): 247

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Orava S, Jaakkola L, Kujala UM. Stress fracture of the seventh rib in a squash player. Scand J Med Sci Sports 1991; 1: 247–8

    Article  Google Scholar 

  6. 6.

    Reid RA, Blanch P. Rib pain in a runner: an unusual presentation of a stress fracture [letter]. Excel 1991; 7: 6

    Google Scholar 

  7. 7.

    Taimela S, Kujala UM, Orava S. Two consecutive rib stress fractures in a female competitive swimmer. Clin J Sport Med 1995; 5: 254–7

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    De Maeseneer M, De May J, Debaere C, et al. Rib fractures induced by coughing: an unusual cause of acute chest pain. Am J Emerg Med 2000; 18: 194–7

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Even-Tov I, Yedwab GA, Persitz E, et al. Stress fracture of ribs in late pregnancy. Int Surg 1979; 64: 85–7

    PubMed  CAS  Google Scholar 

  10. 10.

    Bojanic I, Desnica N. Stress fracture of the sixth rib in an elite athlete. Croat Med J 1998; 39: 458–60

    PubMed  CAS  Google Scholar 

  11. 11.

    Brukner P, Khan K. Stress fracture of the neck of the seventh and eighth ribs: a case report. Clin J Sports Med 1996; 6: 204–6

    Article  CAS  Google Scholar 

  12. 12.

    Christiansen E, Kanstrup I-L. Increased risk of stress fractures of the ribs in elite rowers. Scand J Med Sci Sports 1997; 7: 49–52

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Galilee-Belfer A, Guskiewicz KM. Stress fracture of the eighth rib in a female collegiate rower: a case report. J Athet Train 2000; 35: 445–9

    CAS  Google Scholar 

  14. 14.

    Hickey GJ, Fricker PA, McDonald WA. Injuries to elite rowers over a 10-yr period. Med Sci Sports Exerc 1997; 29: 1567–72

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Holden DL, Jackson DW. Stress fracture of the ribs in female rowers. Am J Sports Med 1985; 13: 342–8

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Karlson KA. Rib stress fractures in elite rowers: a case series and proposed mechanism. Am J Sports Med 1998; 26: 516–9

    PubMed  CAS  Google Scholar 

  17. 17.

    McKenzie DC. Stress fracture of the rib in an elite oarsman. Int J Sports Med 1989; 10: 220–2

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Palierne C, Lacoste A, Souveton D. Aviron de haut niveau et fractures de fatigue de côtes: a propos de 12 cas. J Traumatol Sport 1997; 14: 227–34

    Google Scholar 

  19. 19.

    Wajswelner H, Bennell K, Story I, et al. Muscle action and stress on the ribs in rowing. Phys Ther Sport 2000; 1 (3): 75–84

    Article  Google Scholar 

  20. 20.

    Coburn P, Wajswelner H. A survey of 54 consecutive rowing injuries. National Annual Scientific Conference in Sports Medicine; 1993 Oct 26–31; Melbourne. Melbourne: Australian Sports Medicine Federation, 1993: 85

    Google Scholar 

  21. 21.

    Goldberg B, Pecora C. Stress fractures: a risk of increased training in freshman. Phys Sportsmed 1994; 22: 68–78

    Google Scholar 

  22. 22.

    Reid RA, Fricker P, Kestermann O, et al. A profile of female rowers’ injuries and illnesses at the Australian Institute of Sport. Excel 1989; 5: 17–20

    Google Scholar 

  23. 23.

    Wajswelner H, Mosler A, Coburn P. Musculoskeletal injuries in domestic and international rowing. Australian Conference of Science and Medicine in Sport; 1995 Oct 17–20; Hobart. Hobart: Sports Medicine Australia, 1995: 382

    Google Scholar 

  24. 24.

    Wajswelner H. Muscle action and stress on the ribs in rowing [dissertation]. Melbourne: University of Melbourne, 1999

    Google Scholar 

  25. 25.

    Pelham AW, Carter AGW, Holt LE, et al. Technique and training- induced injuries in rowing. In: Barabas A, Fabian G, editors. Biomechanics in sports XII. Proceedings of the 12th Symposium of International Society of Biomechanics in Sports; 1994 Jul 2–6; Budapest. Budapest: International Society of Biomechanics in Sports and Hungarian University of Physical Education, 1995: 149–52

    Google Scholar 

  26. 26.

    Milgrom C. The role of strain and strain rates in stress fractures. In: Burr DB, Milgrom C, editors. Musculoskeletal fatigue and stress fractures. Bota Raton (FL): CRC Press, 2001: 119–29

    Google Scholar 

  27. 27.

    Yerby SA, Carter DR. Bone fatigue and stress fractures. In: Burr DB, Milgrom C, editors. Musculoskeletal fatigue and stress fractures. Bota Raton (FL): CRC Press, 2001: 85–103

    Google Scholar 

  28. 28.

    Burr DB, Turner CH, Naick P, et al. Does microdamage accumulation affect the mechanical properties of bone? J Biomech 1998; 31: 337–45

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Forwood MR, Parker AW. Microdamage in response to repetitive torsional loading in the rat tibia. Calcif Tissue Int 1989; 45: 47–53

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Schaffler MB, Radin EL, Burr DB. Mechanical and morphological effects of strain rate on fatigue of compact bone. Bone 1989; 10: 207–10

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Donahue SW. The role of muscular force and fatigue in stress fractures. In: Burr DB, Milgrom C, editors. Musculoskeletal fatigue and stress fractures. Bota Raton (FL): CRC Press, 2001: 131–49

    Google Scholar 

  32. 32.

    Hosea TM, Boland AL, McCarthy K, et al. Rowing injuries. Postgrad Adv Sports Med 1989; 3: 1–16

    Google Scholar 

  33. 33.

    Boland AL, Hosea TM. Rowing and sculling and the older athlete. Clin Sports Med 1991; 10: 245–56

    PubMed  CAS  Google Scholar 

  34. 34.

    Boland AL, Hosea TM. Injuries in rowing. In: Renström PAFH, editor. Encyclopaedia of sports medicine. V: clinical practice of sports injury prevention and care. Oxford: Blackwell Scientific Publications, 1994: 624–32

    Google Scholar 

  35. 35.

    Gaffney KM. Avulsion injury of the serratus anterior: a case history. Clin J Sports Med 1997; 7: 134–6

    Article  CAS  Google Scholar 

  36. 36.

    Karlson KA. Rowing injuries: identifying and treating musculoskeletal and non-musculoskeletal conditions. Phys Sportsmed 2000; 28: 40–50

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Strayer III LM. The myth of the intercostal muscle pull. Am Rowing 1990; 22: 42–4

    Google Scholar 

  38. 38.

    Wajswelner H. Treatment of stress fractures of the ribs in elite oarsmen. National Annual Scientific Conference in Sports Medicine; 1991; Canberra (ACT). Canberra (ACT): Australian Sports Medicine Federation, 1991: 256

    Google Scholar 

  39. 39.

    Satou S, Konisi N. The mechanism of fatigue fracture of the ribs. Nippon Seikeigeka Gakkai Zasshi 1991; 65: 708–19

    PubMed  CAS  Google Scholar 

  40. 40.

    Lord MJ. Multiple rib stress fractures. A golfer overdoes it: a case report. Phys Sportsmed 1993; 21: 80–91

    Google Scholar 

  41. 41.

    Wajswelner H. Sequence of chest wall muscle action and relationship to stress on the ribs in rowing. Australian Conference of Science and Medicine in Sport; 1996 Oct 28–31;Canberra (ACT). Canberra (ACT): Sports Medicine Australia, 1996: 440–1

    Google Scholar 

  42. 42.

    Sundaram SH, Feng CC. Finite element analysis in the human thorax. J Biomech 1977; 10: 505–16

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    De Troyer A, Decramer M. Mechanical coupling between the ribs and sternum in the dog. Respir Physiol 1985; 59: 27–34

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Mier A, Brophy C, Estenne M, et al. Action of abdominal muscles on rib cage in humans. J Appl Physiol 1985; 58: 1438–43

    PubMed  CAS  Google Scholar 

  45. 45.

    Rodriguez RJ, Rogriguez RP, Cook SD, et al. Electromyographic analysis of rowing stroke biomechanics. J Sports Med Phys Fitness 1990; 30: 103–8

    PubMed  CAS  Google Scholar 

  46. 46.

    Manning TS, Plowman SA, Drake G, et al. Intra-abdominal pressure and rowing: the effects of inspiring versus expiring during the drive. J Sports Med Phys Fitness 2000; 40: 223–32

    PubMed  CAS  Google Scholar 

  47. 47.

    Nguyen HV, Nguyen H. Anatomical basis of modern thoracotomies: the latissimus dorsi and the ’serratus anterior-rhomboid’ complex. Surg Radiol Anat 1987; 9: 85–93

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Mizrahi J, Verbitsky O, Isakov E. Fatigue-related loading imbalance on the shank in running: a possible factor in stress fractures. Ann Biomed Eng 2000; 28: 463–9

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Scott SH, Winter DA. Internal forces at chronic running injury sites. Med Sci Sports Exerc 1990; 22: 357–69

    PubMed  CAS  Google Scholar 

  50. 50.

    Fyhrie DP, Milgrom C, Hoshaw SJ, et al. Effect of fatiguing exercise on longitudinal bone strain as related to stress fracture in humans. Ann Biomed Eng 1998; 26: 660–5

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Milgrom C, Finestone A, Ekenman I, et al. Tibial strain rate increases following muscular fatigue in both men and women. 45th Annual Meeting of the Orthopaedic Research Society; 1999 Feb 1–4; Anaheim (CA), 234

  52. 52.

    Sharkey NA, Ferris L, Smith TS, et al. Strain and loading of the second metatarsal during heel-lift. J Bone Joint Surg 1995; 77: 1050–7

    PubMed  CAS  Google Scholar 

  53. 53.

    Yoshikawa T, Mori S, Santiesteban AJ, et al. The effects of muscle fatigue on bone strain. J Exp Biol 1994; 188: 217–33

    PubMed  CAS  Google Scholar 

  54. 54.

    Sinha AK, Kaeding CC, Wadley GM. Upper extremity stress fractures in athletes: clinical features of 44 cases. Clin J Sports Med 1999; 9: 199–202

    Article  CAS  Google Scholar 

  55. 55.

    Sterling JC, Calvo RD, Holden SC. An unusual stress fracture in a multiple sport athlete. Med Sci Sports Exerc 1991; 23: 298–303

    PubMed  CAS  Google Scholar 

  56. 56.

    Edgar M. Rowing injury: a physiotherapist’s perspective. Sport Care 1995; 2: 32–5

    Google Scholar 

  57. 57.

    Mosler A, Wajswelner H. The assessment and management of elite rowing injuries. Australian Conference of Science and Medicine in Sport; 1995 Oct 17–20; Hobart. Hobart: Sports Medicine Australia, 1995

    Google Scholar 

  58. 58.

    Wajswelner H. Management of rowers with rib stress fractures. Aust J Physiother 1996; 42: 157–61

    PubMed  Google Scholar 

  59. 59.

    Vinther A, Alkjær T, Christiansen E, et al. EMG analysis during rowing in elite rowers with previous rib stress fractures [abstract]. Med Sci Sports Exerc 2001; 33 Suppl.: S29

    Google Scholar 

  60. 60.

    Vinther A, Alkjær T, Christiansen E, et al. Rib stress fractures in elite rowers: EMG analysis, bone mineral density and isokinetic muscle strength [abstract]. Med Sci Sports Exerc 2002; 34 (5 Suppl.): S179

    Google Scholar 

  61. 61.

    Torres-Moreno R, Tanaka C, Penney KL. Joint excursion, handle velocity, and applied force: a biomechanical analysis of ergometric rowing. Int J Sports Med 2000; 21: 41–4

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    McNair PJ, Prapavessis H, Callender K. Decreasing landing forces: effect of instruction. Br J Sports Med 2000; 34: 293–6

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Mizrahi J, Susak Z. In vivo elastic and damping response of the human leg to impact forces. J Biomech Eng 1982; 104: 63–6

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Seliktar R, Mizrahi J. Partial immobilization of the ankle and talar joints complex and its effect on the ground-foot force characteristics. Eng Med 1984; 13: 5–10

    PubMed  Article  CAS  Google Scholar 

  65. 65.

    Hughes LY. Biomechanical analysis of the foot and ankle for predisposition to developing stress fractures. J Orthop Sports Phys Ther 1985; 7: 96–101

    PubMed  CAS  Google Scholar 

  66. 66.

    Bennell KL, Malcolm SA, Thomas SA, et al. Risk factors for stress fractures in track and field athletes: a twelve-month prospective study. Am J Sports Med 1996; 24: 810–8

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Kaufman KR, Brodine SK, Shaffer RA, et al. The effect of foot structure and range of motion on musculoskeletal overuse injuries. Am J Sports Med 1999; 27: 585–93

    PubMed  CAS  Google Scholar 

  68. 68.

    Andriacchi T, Schultz A, Belytschko T, et al. A model for studies of mechanical interactions between the human spine and rib cage. J Biomech 1974; 7: 497–507

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Macones Jr AJ, Fisher MS, Locke JL. Stress-related rib and vertebral changes. Radiology 1989; 170: 117–9

    PubMed  Google Scholar 

  70. 70.

    Closkey RF, Schultz AB. Rib cage deformities in scoliosis: spine morphology, rib cage stiffness, and tomography imaging. J Orthop Res 1993; 11: 730–7

    PubMed  Article  CAS  Google Scholar 

  71. 71.

    Schultz AB, Benson DR, Hirsch C. Force-deformation properties of human costo-sternal and costo-vertebral articulations. J Biomech 1974; 7: 311–8

    PubMed  Article  CAS  Google Scholar 

  72. 72.

    Roberts S, Chen P. Elastostatic analysis of the human thoracic skeleton. J Biomech 1970; 3: 527–45

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Hooper I. Thoracic spine dysfunction in an elite rower. Sports Med News 1998 Feb: 7

  74. 74.

    74. McCarthy A, Burgess-Limerick R, Hooper I, et al. A possible link between shoulder muscle imbalance and rib injury in rowing athletes. 2000 Pre-Olympic Congress: International Congress on Sport Science, Sports Medicine and Physical Education; 2000 Sep 7–13; Brisbane, 36

  75. 75.

    Green RAR, Wilson DJ. A pilot study using magnetic imaging to determine the pattern of muscle group recruitment by rowers with different levels of experience. Skeletal Radiol 2000; 29: 196–203

    PubMed  Article  CAS  Google Scholar 

  76. 76.

    Secher NH. Physiological and biomechanical analysis of rowing: implications for training. Sports Med 1993; 15: 24–42

    PubMed  Article  CAS  Google Scholar 

  77. 77.

    Roth W, Schwanitz P, Pas P, et al. Force-time characteristics of the rowing stroke and corresponding physiological muscle adaptations. Int J Sports Med 1993; 14 Suppl. 1: S32–4

    Article  Google Scholar 

  78. 78.

    Redgrave A. Rowing injuries: an overview. Sport Care 1995; 2: 28–31

    Google Scholar 

  79. 79.

    Crossley KM, Bennell KL, Wrigley T, et al. Ground reaction forces, bone characteristics, and tibial stress fracture in male runners. Med Sci Sports Exerc 1999; 31: 1088–93

    PubMed  Article  CAS  Google Scholar 

  80. 80.

    Beck TJ, Ruff CB, Mourtada FA, et al. Dual-energy x-ray absorptiometry derived structural geometry for stress fracture prediction in male U.S. Marine Corps recruits. J Bone Miner Res 1996; 11: 645–53

    PubMed  Article  CAS  Google Scholar 

  81. 81.

    Beck TJ, Ruff CB, Shaffer RA, et al. Stress fracture in military recruits: gender differences in muscle and bone susceptibility factors. Bone 2000; 27: 437–44

    PubMed  Article  CAS  Google Scholar 

  82. 82.

    Giladi M, Milgrom C, Simkin A, et al. Stress fractures and tibial bone width: a risk factor. J Bone Joint Surg Br 1987; 69: 326–9

    PubMed  CAS  Google Scholar 

  83. 83.

    Milgrom C, Giladi M, Simkin A, et al. An analysis of the biomechanical mechanism of tibial stress fractures among Israeli infantry recruits: a prospective study. Clin Orthop 1988; 231: 216–21

    PubMed  Google Scholar 

  84. 84.

    Carter DR, Hayes WC. Fatigue life of compact bone. I: effects of stress amplitude, temperature and density. J Biomech 1976; 9: 27–34

    PubMed  Article  CAS  Google Scholar 

  85. 85.

    Brukner P, Bennell K, Matheson G. Stress fractures. Carlton: Blackwell Science, 1999

    Google Scholar 

  86. 86.

    Bennell K, Grimston S. Factors associated with the development of stress fractures in women. In: Burr DB, Milgrom C, editors. Musculoskeletal fatigue and stress fractures. Boca Raton (FL): CRC Press, 2001: 35–54

    Google Scholar 

  87. 87.

    Morris FL, Payne WR, Wark JD. The impact of intense training on endogenous estrogen and progesterone concentrations and bonemineral acquisition in adolescent rowers. Osteoporos Int 1999; 10: 361–8

    PubMed  Article  CAS  Google Scholar 

  88. 88.

    Morris FL, Payne WR, Wark JD. Prospective decrease in progesterone concentrations in female lightweight rowers during the competition season compared with the off season: a controlled study examining weight loss and intensive exercise. Br J Sports Med 1999; 33: 417–22

    PubMed  Article  CAS  Google Scholar 

  89. 89.

    Zanker CL, Swaine IL. Relation between bone turnover, oestradiol, and energy balance in women distance runners. Br J Sports Med 1998; 32: 167–71

    PubMed  Article  CAS  Google Scholar 

  90. 90.

    Zanker CL, Swaine IL. Bone turnover in amenorrhoeic and eumenorrhoeic women distance runners. Scand J Med Sci Sports 1998; 8: 20–6

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors have provided no information on sources of funding or on conflicts of interest directly relevant to the content of this review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stuart J. Warden.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Warden, S.J., Gutschlag, F.R., Wajswelner, H. et al. Aetiology of Rib Stress Fractures in Rowers. Sports Med 32, 819–836 (2002). https://doi.org/10.2165/00007256-200232130-00002

Download citation

Keywords

  • Stress Fracture
  • Bone Strain
  • Bone Material Property
  • Tibial Stress Fracture
  • Serratus Anterior