Skip to main content

Neural Adaptations to Resistance Training

Implications for Movement Control

Abstract

It has long been believed that resistance training is accompanied by changes within the nervous system that play an important role in the development of strength. Many elements of the nervous system exhibit the potential for adaptation in response to resistance training, including supraspinal centres, descending neural tracts, spinal circuitry and the motor end plate connections between motoneurons and muscle fibres. Yet the specific sites of adaptation along the neuraxis have seldom been identified experimentally, and much of the evidence for neural adaptations following resistance training remains indirect. As a consequence of this current lack of knowledge, there exists uncertainty regarding the manner in which resistance training impacts upon the control and execution of functional movements. We aim to demonstrate that resistance training is likely to cause adaptations to many neural elements that are involved in the control of movement, and is therefore likely to affect movement execution during a wide range of tasks.

We review a small number of experiments that provide evidence that resistance training affects the way in which muscles that have been engaged during training are recruited during related movement tasks. The concepts addressed in this article represent an important new approach to research on the effects of resistance training. They are also of considerable practical importance, since most individuals perform resistance training in the expectation that it will enhance their performance in related functional tasks.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Abernethy PJ, Jurimae J, Logan P, et al. Acute and chronic response of skeletal muscle to resistance exercise. Sports Med 1994; 17 (1): 22–38

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Baldwin KM, Haddad F. Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle. J Appl Physiol 2001; 90: 345–57

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Timson BF. Evaluation of animalmodels for the study of exercise induced muscle enlargement. J Appl Physiol 1990; 69: 1935–45

    PubMed  CAS  Google Scholar 

  4. 4.

    Enoka RM. Neural adaptations with chronic physical activity. J Biomech 1997; 30 (5): 447–55

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Enoka RM. Neural strategies in the control of muscle force. Muscle Nerve Suppl 1997; 5: S66-S69

    Article  Google Scholar 

  6. 6.

    Moritani T, deVries HA. Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med 1979; 58 (3): 115–30

    PubMed  CAS  Google Scholar 

  7. 7.

    Sale DG. Neural adaptation to resistance training. Med Sci Sports Exerc 1988; 20 Suppl. 5: S135-S145

    Google Scholar 

  8. 8.

    Carolan B, Carafelli E. Adaptations in coactivation after isometric resistance training. J Appl Physiol 1992; 73 (3): 911–7

    PubMed  CAS  Google Scholar 

  9. 9.

    Hakkinen K, Kallinen M, Izquierdo M, et al. Changes in agonist-antagonist EMG, muscle CSA, and force during strength training in middle-aged and older people. J Appl Physiol 1998; 84 (4): 1341–9

    PubMed  CAS  Google Scholar 

  10. 10.

    Hakkinen K, Alen M, Kallinen M, et al. Neuromuscular adaptation during prolonged strength training, detraining and re-strength-training in middle-aged and elderly people. Eur J Appl Physiol 2000; 83: 51–62

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Abernethy PJ, Jurimae J. Cross-sectional and longitudinal uses of isoinertial, isometric, and isokinetic dynamometry. Med Sci Sports Exerc 1996; 28: 1180–7

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Pearson DR, Costill DL. The effects of constant external resistance exercise and isokinetic training on work-induced hypertrophy. J Appl Sport Sci Res 1988; 2: 39–41

    Google Scholar 

  13. 13.

    Sale DG, Martin JE, Moroz DE. Hypertrophy without increased isometric strength after weight training. Eur J Appl Physiol 1992; 64: 51–5

    Article  CAS  Google Scholar 

  14. 14.

    Cormier SM, Hagman JD, editors. Transfer of learning: contemporary research and applications. New York (NY): Academic Press, 1987

    Google Scholar 

  15. 15.

    Adams JA. Historical review and appraisal of research on the learning, retention, and transfer of human motor skills. Psychol Bull 1987; 101: 41–74

    Article  Google Scholar 

  16. 16.

    Thorndike EL, Woodworth RS. The influence of improvement in one mental function upon the efficiency of other functions. I. Psychol Rev 1901; 8: 247–61

    Google Scholar 

  17. 17.

    Carroll TJ, Barry B, Riek S, et al. Resistance training enhances the stability of sensorimotor coordination. Proc R Soc Lond B Biol Sci 2001; 268: 221–7

    Article  CAS  Google Scholar 

  18. 18.

    Dettmers C, Ridding MC, Stephan KM, et al. Comparison of regional cerebral blood flow with transcranial magnetic stimulation at different forces. J Appl Physiol 1996; 81 (2): 596–603

    PubMed  CAS  Google Scholar 

  19. 19.

    Kinsbourne M, Hicks RE. Mapping functional cerebral space: competition and collaboration in human performance. In: Kinsbourne M, editor. Asymmetrical function of the brain. Cambridge: Cambridge University Press, 1978: 267–73

    Google Scholar 

  20. 20.

    Carson RG. Neuromuscular-skeletal constraints upon the dynamics of perception-action coupling. Exp Brain Res 1996; 110: 99–110

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Carson RG, Riek S. The influence of joint position on the dynamics of perception-action coupling. Exp Brain Res 1998; 121: 103–14

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Cheney PD, Fetz EE, Mewes K. Neural mechanisms underlying corticospinal and rubrospinal control of limb movements. Prog Brain Res 1991; 87: 213–52

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Yue GH, Liu JZ, Siemionow V, et al. Brain activation during human finger extension and flexion movements. Brain Res 2000; 856: 291–300

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Friston KJ, Frith CD, Passingham RE, et al. Motor practice and neurophysiological adaptation in the cerebellum: a positron tomography study. Proc R Soc Lond B Biol Sci 1992; 248: 223–8

    Article  CAS  Google Scholar 

  25. 25.

    Hund-Georgiadis M, von Cramon DY. Motor-learning-related changes in piano players and non-musicians revealed by functional magnetic-resonance signals. Exp Brain Res 1999; 125: 417–25

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    van Mier H, Tempel LW, Perlmutter JS, et al. Changes in brain activity during motor learning measured with PET: effects of hand of performance and practice. J Neurophysiol 1998; 80: 2177–99

    PubMed  Google Scholar 

  27. 27.

    Rioult-Pedotti MS, Friedman D, Donoghue JP. Learning-induced LTP in neocortex. Science 2000; 290: 533–6

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Rioult-Pedotti MS, Friedman D, Hess G, et al. Strengthening of horizontal cortical connections following skill learning. Natl Neurosci 1998; 1: 230–4

    Article  CAS  Google Scholar 

  29. 29.

    Classen J, Liepert J, Wise SP, et al. Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol 1998; 79: 1117–23

    PubMed  CAS  Google Scholar 

  30. 30.

    Cohen LG, Ziemann U, Chen R, et al. Studies of neuroplasticity with transcranial magnetic stimulation. J Clin Neurophysiol 1998; 15 (4): 305–24

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Milner-Brown HS, Stein RB, Lee RG. Synchronization of human motor units: possible roles of exercise and supraspinal reflexes. Electroencephalogr Clin Neurophysiol 1975; 38: 245–54

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Datta AK, Farmer SF, Stephens JA. Central nervous pathways underlying synchronization of human motor unit firing studied during voluntary contractions. J Physiol 1991; 432: 401–25

    PubMed  CAS  Google Scholar 

  33. 33.

    Kirkwood PA, Sears TA. The synaptic connections to intercostal motoneurones as revealed by the average common excitation potential. J Physiol 1978; 275: 103–34

    PubMed  CAS  Google Scholar 

  34. 34.

    Sears TA, Stagg D. Short-term synchronization of intercostal motoneurone activity. J Physiol 1976, 263: 357–81

    PubMed  CAS  Google Scholar 

  35. 35.

    Farmer SF, Ingram DA, Stephens JA. Mirror movements studied in a patient with Klippel-Fiel syndrome. J Physiol 1990; 428: 467–84

    PubMed  CAS  Google Scholar 

  36. 36.

    Farmer SF, Swash M, Ingram DA, et al. Changes in motor unit synchronization following central nervous lesions in man. J Physiol 1993; 463: 83–105

    PubMed  CAS  Google Scholar 

  37. 37.

    Yue G, Fuglevand AJ, Nordstrom MA, et al. Limitations of the surface electromyography technique for estimating motor unit synchronization. Biol Cybern 1995; 73: 223–33

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Semmler JG, Nordstrom MA. Motor unit discharge and force tremor in skill- and strength-trained individuals. Exp Brain Res 1998; 119: 27–38

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Halliday DM, Conway BA, Farmer SF, et al. Load-independent contributions from motor-unit synchronization to human physiological tremor. J Neurophysiol 1999; 82: 664–75

    PubMed  CAS  Google Scholar 

  40. 40.

    Yao W, Fuglevand RJ, Enoka RM. Motor-unit synchronization increases EMG amplitude and decreases force steadiness of simulated contractions. J Neurophysiol 2000; 83: 441–52

    PubMed  CAS  Google Scholar 

  41. 41.

    Bilodeau M, Keen DA, Sweeney PJ, et al. Strength training can improve steadiness in persons with essential tremor. Muscle Nerve 2000; 23: 771–8

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Keen DA, Yue GH, Enoka RM. Training related enhancement in the control of motor output in elderly humans. J Appl Physiol 1994; 77 (6): 2648–58

    PubMed  CAS  Google Scholar 

  43. 43.

    Laidlaw DH, Kornatz KW, Keen DA, et al. Strength training improves the steadiness of slow lengthening contractions performed by old adults. J Appl Physiol 1999; 87: 1786–95

    PubMed  CAS  Google Scholar 

  44. 44.

    Barrata R, Solomonow M, Zhou BH, et al. Muscular coactivation: the role of the antagonist musculature in maintaining knee stability. Am J Sports Med 1988; 16 (2): 113–22

    Article  Google Scholar 

  45. 45.

    Carroll TJ, Abernethy PJ, Logan PA, et al. Resistance training frequency: strength and myosin heavy chain responses to two and three bouts per week. Eur J Appl Physiol 1998; 78: 270–5

    Article  CAS  Google Scholar 

  46. 46.

    Wiemann K, Tidow G. Relative activity of hip and knee extensors in sprinting - implications for training. New Stud Athlet 1995; 10: 29–49

    Google Scholar 

  47. 47.

    Porter R, Lemon R. Corticospinal function and voluntary movement. Oxford: Clarendon Press, 1995

    Book  Google Scholar 

  48. 48.

    McCrea DA. Can sense be made of spinal interneuron circuits? Behav Brain Sci 1992; 15: 633–43

    Google Scholar 

  49. 49.

    McCrea DA. Supraspinal and segmental interactions. Can J Physiol Pharm 1996; 74: 513–57

    Article  CAS  Google Scholar 

  50. 50.

    Baldissera F, Hultoborn H, Illert M. Integration in spinal neuronal systems. I. In: Brookhart JM, Mountcastle VB, Brooks VB, et al., editors. Handbook of physiology: the nervous system II. Baltimore (MD): American Physiological Society, 1981

    Google Scholar 

  51. 51.

    Bertolasi L, Priori A, Tinazzi M, et al. Inhibitory action of forearm flexor muscle afferents on corticospinal outputs to antagonist muscles in humans. J Physiol 1998; 511: 947–56

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Capaday C, Devanne H, Bertrand L, et al. Intracortical connections between motor cortical zones controlling antagonistic muscles in the cat: a combined anatomical and physiological study. Exp Brain Res 1998; 120: 223–32

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Bloedel JR. Functional heterogeneity with structural homogeneity: how does the cerebellum operate? Behav Brain Sci 1992; 15: 666–78

    Article  Google Scholar 

  54. 54.

    Ito M. Mechanisms of motor learning in the cerebellum. Brain Res 2000; 886: 237–45

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Marsden CD, Obeso JA. The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson’s disease. Brain 1994; 117: 877–97

    PubMed  Article  Google Scholar 

  56. 56.

    Rao SM, Mayer AR, Harrington DL. The evolution of brain activation during temporal processing. Nat Neurosci 2001; 4: 317–23

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Jacobs KM, Donoghue JP. Reshaping the cortical motor map by unmasking latent intracortical connections. Science 1991; 251: 944–7

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Jenkins IH, Brooks DJ, Nixon PD, et al. Motor sequence learning: a study with positron emission tomography. J Neurosci 1994; 14 (6): 3775–90

    PubMed  CAS  Google Scholar 

  59. 59.

    Jones TA, Chu CJ, Grande LA, et al. Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. J Neurosci 1999; 19 (22): 10153–63

    PubMed  CAS  Google Scholar 

  60. 60.

    Karni A, Meyer G, Jezzard P, et al. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 1995; 377: 155–8

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Petersen SE, van Mier H, Fiez JA, et al. The effects of practice on the functional anatomy of task performance. Proc Natl Acad Sci U S A 1998; 95: 853–60

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Butefisch CM, Davis BC, Wise SP, et al. Mechanisms of use dependent plasticity in the human motor cortex. Proc Natl Acad Sci U S A 2000; 97: 3661–5

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Martin SJ, Morris RG. Cortical plasticity: it’s all the rage! Curr Biol 2002; 11: R57-R59

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Carroll.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Carroll, T.J., Riek, S. & Carson, R.G. Neural Adaptations to Resistance Training. Sports Med 31, 829–840 (2001). https://doi.org/10.2165/00007256-200131120-00001

Download citation

Keywords

  • Resistance Training
  • Transfer Task
  • Resistance Training Exercise
  • Neural Adaptation
  • Muscle Recruitment