Caffeine and Exercise

Metabolism, Endurance and Performance

Abstract

Caffeine is a common substance in the diets of most athletes and it is now appearing in many new products, including energy drinks, sport gels, alcoholic beverages and diet aids. It can be a powerful ergogenic aid at levels that are considerably lower than the acceptable limit of the International Olympic Committee and could be beneficial in training and in competition. Caffeine does not improve maximal oxygen capacity directly, but could permit the athlete to train at a greater power output and/or to train longer. It has also ben shown to increase speed and/or power output in simulated race conditions. These effects have been found in activities that last as little as 60 seconds or as long as 2 hours. There is less information about the effects of caffeine on strength; however, recent work suggests no effect on maximal ability, but enhanced endurance or resistance to fatigue. There is no evidence that caffeine ingestion before exercise leads to dehydration, ion imbalance, or any other adverse effects.

The ingestion of caffeine as coffee appears to be ineffective compared to doping with pure caffeine. Related compounds such as theophylline are also potent ergogenic aids. Caffeine may act synergistically with other drugs including ephedrine and anti-inflammatory agents. It appears that male and female athletes have similar caffeine pharmacokinetics, i.e., for a given dose of caffeine, the time course and absolute plasma concentrations of caffeine and its metabolites are the same. In addition, exercise or dehydration does not affect caffeine pharmacokinetics. The limited information available suggests that caffeine non-users and users respond similarly and that withdrawal from caffeine may not be important. The mechanism(s) by which caffeine elicits its ergogenic effects are unknown, but the popular theory that it enhances fat oxidation and spares muscle glycogen has very little support and is an incomplete explanation at best. Caffeine may work, in part, by creating a more favourable intracellular ionic environment in active muscle. This could facilitate force production by each motor unit.

This is a preview of subscription content, log in to check access.

Table I
Table II
Table IV
Table III
Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Graham TE, Rush JWE, Van Soeren MH. Caffeine and exercise: metabolism and performance. Can J Appl Physiol 1994; 19: 111–38

    PubMed  CAS  Article  Google Scholar 

  2. 2.

    Graham TE, McLean C. Gender differences in the metabolic responses to caffeine. In: Tarnopolsky M, editor. Gender differences in metabolism: practical and nutritional implications. Boca Raton: CRC Press, 1999: 301–27

    Google Scholar 

  3. 3.

    Nehlig A, Debry G. Caffeine and sports activity: a review. Int J Sports Med 1994; 15: 215–23

    PubMed  CAS  Article  Google Scholar 

  4. 4.

    Tarnopolsky MA. Caffeine and endurance performance. Sports Med 1994; 18: 109–25

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    Conlee RK. Amphetamine, caffeine, and cocaine. In: Lamb DR, Williams MH, editors. Ergogenics: enhancement of performance in exercise and sport. Ann Arbor: Wm. C. Brown, 1991: 285–330

    Google Scholar 

  6. 6.

    Graham TE. The possible actions of methylxanthines on various tissues. In: Reilly T, Orme M, editors. The clinical pharmacology of sport and exercise. Amsterdam: Elsevier Science BV, 1997: 257–70

    Google Scholar 

  7. 7.

    Spriet LL. Caffeine and performance. Int J Sport Nutr 2000; 5: S84-S99

    Google Scholar 

  8. 8.

    Apgar JL, Tarka JSM. Methylxanthine composition and consumption patterns of cocoa and chocolate products. In: Spiller GA, editor. Caffeine. Boca Raton: CRC Press, 1998: 163–92

    Google Scholar 

  9. 9.

    Lundsberg LS. Caffeine consumption. In: Spiller GA, editor. Caffeine. Boca Raton: CRC Press, 1998: 199–224

    Google Scholar 

  10. 10.

    Harland BF. Caffeine and nutrition. Nutrition 2000; 16: 522–6

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    Perkins R, Williams MH. Effect of caffeine upon maximal muscular endurance of females. Med Sci Sports 1975; 7: 221–4

    PubMed  CAS  Google Scholar 

  12. 12.

    Weiss B, Laties VG. Enhancement of human performance by caffeine and the amphetamines. Pharmacol Rev 1962; 14: 1–36

    PubMed  CAS  Google Scholar 

  13. 13.

    Data on file. The National School Survey on Drugs and Sport. Ottawa (ON): Canadian Centre of Drug-free Sport (Canadian Centre Ethics in Sport), 1993: 1–77

  14. 14.

    Palmer TM, Stiles GL. Review: neurotransmitter receptors VII: Adenosine receptors. Neuropharmacology 1995; 34: 683–94

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Shryock JC, Belardinelli L. Adenosine and adenosine receptors in the cardiovascular system: biochemistry, physiology, and pharmacology. Am J Cardiol 1997; 79: 2–10

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    Ralevic V, Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev 1998; 50: 413–80

    PubMed  CAS  Google Scholar 

  17. 17.

    Fredholm BB. Adenosine, adenosine receptors and the actions of caffeine. Pharmacol Toxicol 1995; 76: 93–101

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    Fredholm BB, Battig K, Holmen J, et al. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Physiol Rev 1999; 51 (1): 83–133

    CAS  Google Scholar 

  19. 19.

    Dewey KG, Romero-Abal ME, Quan de Serrano J, et al. Effects of discontinuing coffee intake on iron status of iron-deficient Guatemalan toddlers: a randomized intervention. Am J Clin Nutr 1997; 66: 168–76

    PubMed  CAS  Google Scholar 

  20. 20.

    Spiller AM. The chemical components of coffee. In: Spiller GA, editor. Caffeine. Boca Raton: CRC Press, 1998: 97–161

    Google Scholar 

  21. 21.

    Trice I, Haymes EM. Effects of caffeine ingestion on exercise-induced changes during high-intensity, intermittent exercise. Int J Sport Nutr 1995; 5: 37–44

    PubMed  CAS  Google Scholar 

  22. 22.

    Costill DL, Dalsky GP, Fink WJ. Effects of caffeine ingestion on metabolism and exercise performance. Med Sci Sports 1978; 10: 155–8

    PubMed  CAS  Google Scholar 

  23. 23.

    Wiles JD, Bird SR, Hopkins J, et al. Effect of caffeinated coffee on running speed, respiratory factors, blood lactate and perceived exertion during 1500-m treadmill running. Br J Sports Med 1992; 26: 116–20

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    Casal DC, Leon AS. Failure of caffeine to affect substrate utilization during prolonged running. Med Sci Sports Exerc 1985; 17: 174–9

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    Butts NK, Crowell D. Effect of caffeine ingestion on cardiorespiratory endurance in men and women. Res Q Exerc Sport 1985; 56: 301–5

    Google Scholar 

  26. 26.

    Graham TE, Hibbert E, Sathasivam P. The metabolic and exercise endurance effects of coffee and caffeine ingestion. J Appl Physiol 1998; 85: 883–9

    PubMed  CAS  Google Scholar 

  27. 27.

    Raguso CA, Coggan AR, Sidossis LS, et al. Effect of theophylline on substrate metabolism during exercise. Metabolism 1996; 45 (9): 1153–60

    PubMed  CAS  Article  Google Scholar 

  28. 28.

    Marsh GD, McFadden RG, Nicholson RL, et al. Theophylline delays skeletal muscle fatigue during progressive exercise. Am Rev Respir Dis 1993; 147: 876–9

    PubMed  CAS  Google Scholar 

  29. 29.

    Greer F, Friars D, Graham TE. Comparison of caffeine and theophylline ingestion: exercise metabolism and endurance. J Appl Physiol 2000; 89: 1837–44

    PubMed  CAS  Google Scholar 

  30. 30.

    Wemple RD, Lamb DR, McKeever KH. Caffeine vs caffeine free sports drinks: effects on urine production at rest and during prolonged exercise. Int J Sports Med 1997; 18: 40–6

    PubMed  CAS  Article  Google Scholar 

  31. 31.

    Kovacs EMR, Stegen JHCH, Brouns F. Effect of caffeinated drinks on substrate metabolism, caffeine excretion, and performance. J Appl Physiol 1998; 85: 709–15

    PubMed  CAS  Google Scholar 

  32. 32.

    Sasaki H, Maeda H, Usui S, et al. Effect of sucrose and caffeine ingestion on performance of prolonged strenuous running. Int J Sports Med 1987; 8: 261–5

    PubMed  CAS  Article  Google Scholar 

  33. 33.

    Wells CL, Schrader TA, Stern JR, et al. Physiological responses to a 20-mile run under three fluid replacement treatments. Med Sci Sports Exerc 1985; 17: 364–9

    PubMed  CAS  Google Scholar 

  34. 34.

    Erickson MA, Schwarzkopf RJ, McKenzie RD. Effects of caffeine, fructose, and glucose ingestion on muscle glycogen utilization during exercise. Med Sci Sports Exerc 1987; 19: 579–83

    PubMed  CAS  Google Scholar 

  35. 35.

    Gaesser GA, Rich RG. Influence of caffeine on blood lactate response during incremental exercise. Int J Sports Med 1985; 6: 207–11

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Vandenberghe K, Gillis N, Van Leemputte M, et al. Caffeine counteracts the ergogenic action of muscle creatine loading. J Appl Physiol 1996; 80: 452–7

    PubMed  CAS  Google Scholar 

  37. 37.

    Sawynok J, Yaksh TL. Caffeine as an analgesic adjuvant: a review of pharmacology and mechanisms of action. Pharmacol Rev 1993; 45: 43–85

    PubMed  CAS  Google Scholar 

  38. 38.

    Dulloo AG, Miller DS. Ephedrine, caffeine and aspirin: ‘over the-cover’ drugs that interact to stimulate thermogenesis in the obese. Nutrition 1989; 5: 7–9

    PubMed  CAS  Google Scholar 

  39. 39.

    Dulloo AG, Miller DS. Aspirin as a promoter of ephedrine induced thermogenesis: potential use in the treatment of obesity. Am J Clin Nutr 1987; 45: 564–9

    PubMed  CAS  Google Scholar 

  40. 40.

    Bell DG, Jacobs I, Zamecnik J. Effects of caffeine, ephedrine and their combination on time to exhaustion during high intensity exercise. Eur J Appl Physiol 1998; 77: 427–33

    CAS  Article  Google Scholar 

  41. 41.

    Weir J, Noakes TD, Myburgh K, et al. A high carbohydrate diet negates the metabolic effects of caffeine during exercise. Med Sci Sports Exerc 1987; 19: 100–5

    PubMed  CAS  Google Scholar 

  42. 42.

    Ivy JL, Costill DL, Fink WJ, et al. Influence of caffeine and carbohydrate feedings on endurance performance. Med Sci Sports 1979; 11: 6–11

    PubMed  CAS  Google Scholar 

  43. 43.

    Cohen BS, Nelson AG, Prevost MC, et al. Effects of caffeine ingestion on endurance racing in heat and humidity. Eur J Appl Physiol 1996; 73: 358–63

    CAS  Article  Google Scholar 

  44. 44.

    Berglund B, Hemmingsson P. Effects of caffeine ingestion on exercise performance at low and high altitudes in cross-country skiing. Int J Sports Med 1982; 3: 234–6

    PubMed  CAS  Article  Google Scholar 

  45. 45.

    MacIntosh BR, Wright BM. Caffeine ingestion and performance of a 1500 meter swim. Can J Appl Physiol 1995; 20: 168–77

    PubMed  CAS  Article  Google Scholar 

  46. 46.

    Bruce CR, Anderson ME, Fraser SF, et al. Enhancement of 2000-m rowing performance after caffeine ingestion. Med Sci Sports Exerc 2000; 32: 1958–63

    PubMed  CAS  Article  Google Scholar 

  47. 47.

    Collomp K, Ahmaidi S, Chatard JC, et al. Benefits of caffeine ingestion on sprint performance in trained and untrained swimmers. Eur J Appl Physiol 1992; 64: 377–80

    CAS  Article  Google Scholar 

  48. 48.

    Collomp K, Ahmaidi S, Audran M, et al. Effects of caffeine ingestion on performance and anaerobic metabolism during the Wingate test. Int J Sports Med 1991; 12: 439–43

    PubMed  CAS  Article  Google Scholar 

  49. 49.

    Greer F, McLean C, Graham TE. Caffeine, performance and metabolism during repeated Wingate exercise tests. J Appl Physiol 1998; 85: 1502–8

    PubMed  CAS  Google Scholar 

  50. 50.

    Anselme F, Collomp K, Mercier B, et al. Caffeine increases maximal anaerobic power and blood lactate concentration. Eur J Appl Physiol 1992; 65: 188–91

    CAS  Article  Google Scholar 

  51. 51.

    Cadarette BS, Levine L, Berube CL, et al. Effects of varied dosages of caffeine on endurance exercise to fatigue. In: Knuttgen HG, Vogel JA, Poortmans J, editors. Biochemistry of exercise. 13th ed. Champaign (IL): Human Kinetics, 1982: 871–6 (International series of sport sciences)

    Google Scholar 

  52. 52.

    Pasman WJ, van Baak MA, Jeukendrup AE, et al. The effect of different dosages of caffeine on endurance performance time. Int J Sports Med 1995; 16: 225–30

    PubMed  CAS  Article  Google Scholar 

  53. 53.

    Graham TE, Spriet LL. Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. J Appl Physiol 1995; 78: 867–74

    PubMed  CAS  Google Scholar 

  54. 54.

    Sasaki H, Takaoka I, Ishiko T. Effects of sucrose or caffeine ingestion on running performance and biochemical responses to endurance running. Int J Sports Med 1987; 8: 203–7

    PubMed  CAS  Article  Google Scholar 

  55. 55.

    Graham TE, Spriet LL. Performance and metabolic responses to a high caffeine dose during prolonged exercise. J Appl Physiol 1991; 71: 2292–8

    PubMed  CAS  Google Scholar 

  56. 56.

    Fredholm BB. Adenosine actions and adenosine receptors after 1 week treatment with caffeine. Acta Physiol Scand 1982; 115: 283–6

    PubMed  CAS  Article  Google Scholar 

  57. 57.

    Zhang Y, Wells JN. The effects of chronic caffeine administration on peripheral adenosine receptors. J Pharmacol Exp Ther 1990; 254 (3): 757–63

    PubMed  CAS  Google Scholar 

  58. 58.

    Dodd SL, Brooks E, Powers SK, et al. The effects of caffeine on graded exercise performance in caffeine naive versus habituated subjects. Eur J Appl Physiol 1991; 62: 424–9

    CAS  Article  Google Scholar 

  59. 59.

    Van Soeren MH, Sathasivam P, Spriet LL, et al. Caffeine metabolism and epinephrine responses during exercise in users and nonusers. J Appl Physiol 1993; 75: 805–12

    PubMed  Google Scholar 

  60. 60.

    Bangsbo J, Jacobsen K, Nordberg N, et al. Acute and habitual caffeine ingestion and metabolic responses to steady-state exercise. J Appl Physiol 1992; 72: 1297–303

    PubMed  CAS  Article  Google Scholar 

  61. 61.

    Tarnopolsky MA, Cupido C. Caffeine potentiates low frequency skeletal muscle force in habitual and nonhabitual caffeine consumers. J Appl Physiol 2000; 89: 1719–24

    PubMed  CAS  Google Scholar 

  62. 62.

    Hetzler RK, Warhaftig-Glynn N, Thompson DL, et al. Effects of acute caffeine withdrawal on habituated male runners. J Appl Physiol 1994; 76: 1043–8

    PubMed  CAS  Google Scholar 

  63. 63.

    Van Soeren MH, Graham TE. Effect of caffeine on metabolism, exercise endurance, and catecholamine responses after withdrawal. J Appl Physiol 1998; 85 (1493): 1501

    Google Scholar 

  64. 64.

    Strain EC, Griffins RR. Caffeine use disorders. In: Tasman A, Kay J, Lieberman JA, editors. Psychiatry. Vol. 1. Philadelphia (PA): W.B. Saunders Co., 1997: 779–94

    Google Scholar 

  65. 65.

    Somani SM, Kamimori GH. The effects of exercise on absorption, distribution, metabolism, excretion, and pharmacokinetics of drugs. In: Somani SM, editor. Pharmacology in exercise and sports. Boca Raton: CRC Press, 1996: 1–38

    Google Scholar 

  66. 66.

    Arnaud MJ. Metabolism of caffeine and other components of coffee. In: Garattini S, editor. Caffeine, coffee, and health. New York (NY): Raven Press, 1993: 43–96

    Google Scholar 

  67. 67.

    Lane JD, Steege JF, Rupp SL, et al. Menstrual cycle effects on caffeine elimination in the human female. Eur J Clin Pharmacol 1992; 43: 543–6

    PubMed  CAS  Article  Google Scholar 

  68. 68.

    Collomp K, Anselme F, Audran M, et al. Effects of moderate exercise on the pharmacokinetics of caffeine. Eur J Clin Pharmacol 1991; 40: 279–82

    PubMed  CAS  Article  Google Scholar 

  69. 69.

    Kalow W. Pharmacogenetic variability in brain and muscle. J Pharm Pharmacol 1994; 46: 425–32

    PubMed  CAS  Google Scholar 

  70. 70.

    Mitsumoto H, DeBoer GE, Bunge G, et al. Fiber-type specific caffeine sensitivities in normal human skinned muscle fibers. Anesthesiology 1990; 72: 50–4

    PubMed  CAS  Article  Google Scholar 

  71. 71.

    Carey GB. Cellular adaptations in fat tissue of exercise trained miniature swine: role of excess energy intake. J Appl Physiol 2000; 88: 881–7

    PubMed  CAS  Google Scholar 

  72. 72.

    Carey GB, Sidmore KA. Exercise attenuates the anti-lipolytic effect of adenosine in adipocytes isolated form miniature swine. Int J Obes 1994; 18: 155–60

    CAS  Google Scholar 

  73. 73.

    Mauriege P, Prud’homme D, Lemieux S, et al. Regional differences in adipose tissue lipolysis from lean and obese women: existence of postreceptor alterations. Am J Physiol 1995; 269 (2 Pt 1): E341-E350

    Google Scholar 

  74. 74.

    LeBlanc J, Jobin M, Cote J, et al. Enhanced metabolic response to caffeine in exercise-trained human subjects. J Appl Physiol 1985; 59: 832–7

    PubMed  CAS  Google Scholar 

  75. 75.

    Spriet LL, MacLean DA, Dyck DJ, et al. Caffeine ingestion and muscle metabolism during prolonged exercise in humans. Am J Physiol 1992; 262 (6 Pt 1): E891-E898

    Google Scholar 

  76. 76.

    Mohr T, van Soeren M, Graham TE, et al. Caffeine ingestion and metabolic responses of tetraplegic humans during electrical cycling. J Appl Physiol 1998; 85: 979–85

    PubMed  CAS  Google Scholar 

  77. 77.

    Falk B, Burnstein R, Rosenblum J, et al. Effects of caffeine ingestion on body fluid balance and thermoregulation during exercise. Can J Physiol Pharmacol 1990; 68: 889–92

    PubMed  CAS  Article  Google Scholar 

  78. 78.

    Gemmill CL. The effects of caffeine and theobromine derivatives on muscle glycolysis. J Pharmacol Exp 1947; 91: 292–7

    CAS  Google Scholar 

  79. 79.

    Haldi J, Bachmann G, Ensor C, et al. The effect of various amounts of caffeine on the gaseous exchange and the respiratory quotient in man. J Nutr 1941; 21: 307–20

    CAS  Google Scholar 

  80. 80.

    Asmussen E, Boje O. The effect of alcohol and some drugs on the capacity for work. Acta Physiol Scand 1948; 15: 109–13

    PubMed  CAS  Article  Google Scholar 

  81. 81.

    Collomp K, Caillaud C, Audran M, et al. Influence de la prise aigue ou chronique de cafeine sur la performance et les catecholamines au cours d’un exercice maximal. C R Seances Soc Biol Fil 1990; 184 (1): 87–92

    PubMed  CAS  Google Scholar 

  82. 82.

    Jackman M, Wendling P, Friars D, et al. Metabolic, catecholamine, and endurance responses to caffeine during intense exercise. J Appl Physiol 1996; 81: 1658–63

    PubMed  CAS  Google Scholar 

  83. 83.

    Powers SK, Byrd RJ, Tulley R, et al. Effects of caffeine ingestion on metabolism and performance during graded exercise. Eur J Appl Physiol 1983; 50: 301–7

    CAS  Article  Google Scholar 

  84. 84.

    Flinn S, Gregory J, McNaughton LR, et al. Caffeine ingestion prior to incremental cycling to exhaustion in recreational cyclists. Int J Sports Med 1990; 11: 188–93

    PubMed  CAS  Article  Google Scholar 

  85. 85.

    Eke-Okoro ST. The H-reflex studied in the presence of alcohol, aspirin, caffeine, force and fatigue. Electromyogr Clin Neurophysiol 1982; 22: 579–89

    PubMed  CAS  Google Scholar 

  86. 86.

    Jacobson BH, Weber MD, Claypool L, et al. Effect of caffeine on maximal strength and power in elite male athletes. Br J Sports Med 1992; 26: 276–80

    PubMed  CAS  Article  Google Scholar 

  87. 87.

    Supinski GS, Deal Jr EC, Kelsen SG. The effects of caffeine and theophylline on diaphragm contractility. Am Rev Respir Disord 1984; 130: 429–33

    CAS  Google Scholar 

  88. 88.

    Lopes JM, Aubier M, Jardim J, et al. Effect of caffeine on skeletal muscle function before and after fatigue. J Appl Physiol 1983; 54: 1303–5

    PubMed  CAS  Google Scholar 

  89. 89.

    Kalmar JM, Cafarelli E. Effects of caffeine on neuromuscular fatigue. J Appl Physiol 1999; 87: 801–8

    PubMed  CAS  Google Scholar 

  90. 90.

    Tarnopolsky MA, Atkinson SA, MacDougall JD, et al. Physiological responses to caffeine during endurance running in habitual caffeine users. Med Sci Sports Exerc 1989; 21: 418–24

    PubMed  CAS  Google Scholar 

  91. 91.

    Engels H-J, Haymes EM. Effects of caffeine ingestion on metabolic responses to prolonged walking in sedentary males. Int J Sport Nutr 1992; 2: 386–96

    PubMed  CAS  Google Scholar 

  92. 92.

    Robertson D, Frolich JC, Carr RK, et al. Effects of caffeine on plasma renin activity, catecholamines and blood pressure. N Engl J Med 1978; 298: 181–6

    PubMed  CAS  Article  Google Scholar 

  93. 93.

    Hughes JR, Higgins ST, Bickel WK, et al. Caffeine self administration, withdrawal, and adverse effects among coffee drinkers. Arch Gen Psychiatry 1991; 48: 611–7

    PubMed  CAS  Article  Google Scholar 

  94. 94.

    Ammon HPT. Biochemical mechanism of caffeine tolerance. Arch Pharm (Weinheim) 1991; 324 (5): 261–7

    CAS  Article  Google Scholar 

  95. 95.

    Evans SM, Griffiths RR. Caffeine withdrawal: a parametric analysis of caffeine dosing conditions. J Pharmacol Exp Ther 1999; 289: 285–94

    PubMed  CAS  Google Scholar 

  96. 96.

    Essig D, Costill DL, Van Handel PJ. Effects of caffeine ingestion on utilization of muscle glycogen and lipid during leg ergometer cycling. Int J Sports Med 1980; 1: 86–90

    CAS  Article  Google Scholar 

  97. 97.

    Graham TE, Helge JW, MacLean DA, et al. Caffeine ingestion does not alter carbohydrate or fat metabolism in human skeletal muscle during exercise. J Physiol (London) 2000; 529: 837–47

    CAS  Article  Google Scholar 

  98. 98.

    van Soeren M, Mohr T, Kjaer M, et al. Acute effects of caffeine ingestion at rest in humans with impaired epinephrine responses. J Appl Physiol 1996; 80: 999–1005

    PubMed  Google Scholar 

  99. 99.

    Chesley A, Howlett RA, Heigenhauser JF, et al. Regulation of muscle glycogenolytic flux during intense aerobic exercise after caffeine ingestion. Am J Physiol 1998; 275 (2 Pt 2): R596-R603

    Google Scholar 

  100. 100.

    Laurent D, Scheider KE, Prusaczyk WK, et al. Effects of caffeine on muscle glycogen utilization and the neuroendocrine axis during exercise. J Clin Endocrinol Metab 2000; 85: 2170–5

    PubMed  CAS  Article  Google Scholar 

  101. 101.

    Vergauwen L, Richter EA, Hespel P. Adenosine exerts a glycogen-sparing action in contracting rat skeletal muscle. AmJ Physiol 1997; 272 (5 Pt 1): E762-E768

    Google Scholar 

  102. 102.

    Anderson DE, Hickey MS. Effects of caffeine on the metabolic and catecholamine responses to exercise in 5 and 28 degrees C. Med Sci Sports Exerc 1994; 26: 453–8

    PubMed  CAS  Google Scholar 

  103. 103.

    Chesley A, Hultman E, Spriet LL. Effects of epinephrine infusion on muscle glycogenolysis during intense aerobic exercise. Am J Physiol (1 Pt 1) 1995; 268: E127-E134

    Google Scholar 

  104. 104.

    van Baak MA, Saris WHM. The effect of caffeine on endurance performance after nonselective β-adrenergic blockade. Med Sci Sports Exerc 2000; 32 (2): 499–503

    PubMed  Article  Google Scholar 

  105. 105.

    Daniels JW, Mole PA, Shaffrath JD, et al. Effects of caffeine on blood pressure, heart rate, and forearm blood flow during dynamic leg exercise. J Appl Physiol 1998; 85: 154–9

    PubMed  CAS  Google Scholar 

  106. 106.

    Lindinger MI, Sjogaard G. Potassium regulation during exercise and recovery. Sports Med 1991; 11 (6): 382–401

    PubMed  CAS  Article  Google Scholar 

  107. 107.

    Sjogaard G. Exercise-induced muscle fatigue: the significance of potassium. Acta Physiol Scand 1990; 140: 1–63

    Article  Google Scholar 

  108. 108.

    Sjogaard G. Muscle fatigue. Med Sport Sci 1987; 26: 98–109

    Google Scholar 

  109. 109.

    Lindinger MI, Graham TE, Spriet LL. Caffeine attenuates the exercise-induced increase in plasma [K+] in humans. J Appl Physiol 1993; 74: 1149–55

    PubMed  CAS  Google Scholar 

  110. 110.

    Lindinger MI, Willmets RG, Hawke TJ. Stimulation of Na+, K+-pump activity in skeletal muscle by methylxanthines: evidence and proposed mechanisms. Acta Physiol Scand 1996; 156: 347–53

    PubMed  CAS  Article  Google Scholar 

  111. 111.

    Benowitz NL. Clinical pharmacology of caffeine. Annu Rev Med 1990; 41: 277–88

    PubMed  CAS  Article  Google Scholar 

  112. 112.

    Battig K, Welzl H. Psychopharmacological profile of caffeine. In: Garattini S, editor. Caffeine, coffee, and health. New York (NY): Raven Press, 1993: 213–54

    Google Scholar 

  113. 113.

    van der Stelt O, Snel J. Effects of caffeine on human information processing: a cognitive-energetic approach. In: Garattini S, editor. Caffeine, coffee, and health. New York (NY): Raven Press, 1993: 291–316

    Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the vital support of his co-authors in the various publications cited from his work, and the outstanding technical support of Ms Premila Sathasivam. His work has been supported by Natural Science and Engineering Research Council (NSERC) of Canada, by Sport Canada, and by Gatorade Sport Science Institute.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dr Terry E. Graham.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Graham, T.E. Caffeine and Exercise. Sports Med 31, 785–807 (2001). https://doi.org/10.2165/00007256-200131110-00002

Download citation

Keywords

  • Caffeine
  • Theophylline
  • Adenosine Receptor
  • Muscle Glycogen
  • Caffeine Ingestion