Skip to main content

Advertisement

Log in

Central and Peripheral Adaptations to Physical Training in Patients with End-Stage Renal Disease

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Renal replacement treatment options are life-saving treatments for patients with end-stage renal disease (ESRD). However, prolonged survival in patients with ESRD is associated with various functional and morphological disorders from almost all systems. Anaemia, deconditioning, cardiac dysfunction, impairment of cardiac autonomic control and skeletal muscle weakness and fatigue, primarily because of ‘uraemic’ myopathy and neuropathy, are the main predisposing factors for their poor functional ability.

Physical training is being recommended as a complementary therapeutic modality. There are generally 3 methods of exercise training applied in patients with ESRD: (i) the supervised outpatient programme that is held in a rehabilitation centre; (ii) a home exercise rehabilitation programme; and (iii) exercise rehabilitation programme during the first hours of the haemodialysis treatment in the renal unit. All the available training data show that the application of an exercise training programme in patients with ESRD enhances their physical fitness. This improvement is due to central and mainly peripheral adaptations. Exercise training in these patients increases aerobic capacity, causes favourable left ventricular functional adaptations, reduces blood pressure in patients with hypertension, modifies other coronary risk factors, increases the cardiac vagal activity and suppresses the incidence of cardiac arrhythmias. Moreover, exercise training has beneficial effects on muscle structural and functional abnormalities. These central and peripheral adaptations to exercise training cause an increase in their functional capacity and offer them a chance of a better quality of life. Moreover, exercise training improves exercise tolerance of renal post-transplant patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Fig. 1
Fig. 2
Table III
Fig. 3
Table IV

Similar content being viewed by others

References

  1. Bommer J. Medical complications of the long-term dialysis patient. In: Cameron S, Davison A, Grunfeld J-P, et al., editors. Oxford textbook of clinical nephrology. New York (NY): Oxford University Press, 1992

    Google Scholar 

  2. Johansen KL. Physical functioning and exercise capacity in patients on dialysis. Adv Ren Replace Ther 1999; 6: 141–8

    PubMed  CAS  Google Scholar 

  3. Kutner N, Brogan D, Kutner M. End-stage renal disease treatment modality and patient’s quality of life: longitudinal assessment. Am J Nephrol 1986; 6: 396–402

    Article  PubMed  CAS  Google Scholar 

  4. Daul A, Krause R, Volker K. Sport- und Bewegungs-therapie fur chronisch Nierenkranke. Munchen: Dustri-Verlag Dr Karl Feistle, 1997

    Google Scholar 

  5. Sill V, Lanser KG, Bauditz W. Einfluss der Anamie und der arteriovenosen Fistel auf die korperliche Leistungsfahigkeit der Dauerdialysepatienten. Z Kardiol 1972; 62: 164–175

    Google Scholar 

  6. Mayer G, Thum J, Grat H. Anaemia and reduced exercise capacity in patients on chronic hemodialysis. Clin Sci 1989; 76: 265–8

    PubMed  CAS  Google Scholar 

  7. Kouidi E, Albani M, Natsis K, et al. The effects of exercise training on muscle atrophy in hemodialysis patients. Nephrol Dial Transplant 1998; 13: 685–99

    Article  PubMed  CAS  Google Scholar 

  8. Deligiannis A, Kouidi E, Tourkantonis A. The effects of physical training on heart rate variability in hemodialysis patients. Am J Cardiol 1999; 84: 197–202

    Article  PubMed  CAS  Google Scholar 

  9. Deligiannis A, Kouidi E, Tassoulas E, et al. Cardiac response to physical training in hemodialysis patients: an echocardiographic study at rest and during exercise. Int J Cardiol 1999; 70: 253–66

    Article  PubMed  CAS  Google Scholar 

  10. Barnea N, Drory Y, Iaina A, et al. Exercise tolerance in patients on chronic hemodialysis. Isr J Med Sci 1980; 16: 17–21

    PubMed  CAS  Google Scholar 

  11. Painter P, Messer-Rahak D, Hanson P, et al. Exercise capacity in hemodialysis, CAPD, and renal transplant patients. Nephron 1986; 42: 47–51

    Article  PubMed  CAS  Google Scholar 

  12. Painter P. End-stage renal disease. In: Skinner JS, editor. Exercise testing and exercise prescription for special cases. 2nd ed. Philadelphia (PA): Lea and Febiger, 1993: 351–62

    Google Scholar 

  13. Moore G, Brinker K, Stray-Gundersen J, et al. Determinants of VȮ2peak in patients with end-stage renal disease: on and off dialysis. Med Sci Sports Exerc 1993; 25: 18–23

    Article  PubMed  CAS  Google Scholar 

  14. Mayer G, Thum J, Cada E. Working capacity is increased following recombinant human erythropoietin treatment. Kidney Int 1988; 34: 525–8

    Article  PubMed  CAS  Google Scholar 

  15. Rosenlof K, Gronhagen-Riska C, Sovijarvi A, et al. Beneficial effects of erythropoietin on haematological parameters, aerobic capacity, and body fluid composition in patients on haemodialysis. J Int Med 1989; 226: 311–7

    Article  CAS  Google Scholar 

  16. Robertson H, Haley N, Guthrie M, et al. Recombinant erythropoietin improves exercise capacity in anemic hemodialysis patients. Am J Kidney Dis 1990; 15: 325–32

    PubMed  CAS  Google Scholar 

  17. Painter PL. The importance of exercise training in rehabilitation of patients with end-stage renal disease. Am J Kidney Dis 1994; 24 Suppl. 1: S2-S9

    Google Scholar 

  18. Horber FF, Sheidegger JR, Gunig BE, et al. Evidence that prednisone- induced myopathy is reversed by physical training. J Clin Endocrinol Metab 1985; 61: 83–8

    Article  PubMed  CAS  Google Scholar 

  19. Kempeneers G, Noakes TD, Van Zyl-Smit R, et al. Skeletal muscle limits the exercise tolerance of renal transplant recipients: effects of a graded exercise training program. Am J Kidney Dis 1990; 16: 57–65

    PubMed  CAS  Google Scholar 

  20. Kavanagh T, Myers MG, Baigrie RS, et al. Quality of life and cardiorespiratory function in chronic heart failure: effects of 12 months aerobic training. Heart 1996; 76: 42–9

    Article  PubMed  CAS  Google Scholar 

  21. Coats A, Adamopoulos S, Radaelli A, et al. Controlled trial of physical training in chronic heart failure. Circulation 1992; 95: 2119–31

    Article  Google Scholar 

  22. Jones N, Berman L, Bartkiewicz P, et al. Chronic obstructive respiratory disorders. In: Skinner JS, editor. Exercise testing and exercise prescription for special cases. 2nd ed. Philadelphia (PA): Lea and Febiger, 1993: 229–40

    Google Scholar 

  23. Kouidi E, Iacovides A, Iordanidis P, et al. Exercise renal rehabilitation program (ERRP): psychosocial effects. Nephron 1997; 77 (2): 152–8

    Article  PubMed  CAS  Google Scholar 

  24. Harter HR, Goldberg AP. Endurance exercise training: metabolic and psychological effects in chronic hemodialysis patients. Med Clin N Am 1985; 69: 159–75

    PubMed  CAS  Google Scholar 

  25. Akiba T, Matsui N, Shinohara S, et al. Effects of recombinant human erythropoietin and exercise training on exercise capacity in hemodialysis patients. Artif Organs 1995; 19: 1262–8

    Article  PubMed  CAS  Google Scholar 

  26. Mercher TH, Naish PF, Gleeson NP, et al. Development of a walking test for the assessment of functional capacity in nonanaemic maintenance dialysis patients. Nephrol Dial Transplant 1998; 13: 2023–6

    Article  Google Scholar 

  27. Shalom R, Blumenthal JA, Williams SR, et al. Feasibility and benefits of exercise training in patients on maintenance dialysis. Kidney Int 1984; 25: 958–63

    Article  PubMed  CAS  Google Scholar 

  28. Brawner C, Hakim M, Schairer J. End-stage renal disease. Clin Exerc Physiol 1999; 1: 13–6

    Google Scholar 

  29. Daul A, Volker K, Alberty A, et al. Dialyse-Sportgruppe: eine Moglichkeit zur Verbesserung der korperlichen Leistungsfahigkeit und der Psycho-sozialen Rehabilitation chronischer Dialysepatienten. Nieren Hochdruckkr 1990; 19: 279–86

    Google Scholar 

  30. Goldberg AP, Hagberg JM, Delmez JA, et al. Metabolic effects of exercise training in hemodialysis patients. Kidney Int 1980; 18: 754–61

    Article  PubMed  CAS  Google Scholar 

  31. Hagberg JM, Goldberg AP, Ehsani A, et al. Exercise training improves hypertension in hemodialysis patients. Am J Nephrol 1983; 3: 209–12

    Article  PubMed  CAS  Google Scholar 

  32. Zabetakis P, Gleim G, Pasternack F, et al. Long-duration submaximal exercise conditioning in hemodialysis patients. Clin Nephrol 1982; 18: 17–22

    PubMed  CAS  Google Scholar 

  33. Goldberg AP, Geltman EM, Gavin III JR, et al. Exercise training reduces coronary risk and effectively rehabilitates hemodialysis patients. Nephron 1986; 42: 311–6

    Article  PubMed  CAS  Google Scholar 

  34. Painter P, Nelson-Worel J, Hill M, et al. Effects of exercise training during hemodialysis. Nephron 1986; 43: 87–92

    Article  PubMed  CAS  Google Scholar 

  35. Moore G, Parsons D, Stray-Gundersen J, et al. Uremic myopathy limits aerobic capacity in hemodialysis patients. Am J Kidney Dis 1993; 22: 277–87

    PubMed  CAS  Google Scholar 

  36. Kouidi E, Vassiliou S, Grekas D, et al. Cardiorespiratory adaptations to long-termphysical training in dialysis patients. Proceedings of XXXVII European Dialysis and Transplant Association - European Renal Association Congress; 2000 Sep 17–20; Nice, 306

  37. Lennon D, Shrago E, Madden M, et al. Carnitine status, plasma lipid profiles, and exercise capacity of dialysis patients: effects of a submaximal exercise program. Metabolism 1986; 35: 728–35

    Article  PubMed  CAS  Google Scholar 

  38. Diesel W, Noakes TD, Swanepoel C, et al. Isokinetic muscle strength predicts maximum exercise tolerance in renal patients on chronic hemodialysis. Am J Kidney Dis 1990; 16: 109–14

    PubMed  CAS  Google Scholar 

  39. Clyne N, Ekholm J, Jogestrand T, et al. Effects of exercise training in predialytic uremic patients. Nephron 1991; 59: 84–9

    Article  PubMed  CAS  Google Scholar 

  40. Boyce M, Robergs R, Avasthi P, et al. Exercise training by individuals with predialysis renal failure: cardiorespiratory endurance, hypertension, and renal function. Am J Kidney Dis 1997; 30: 180–92

    Article  PubMed  CAS  Google Scholar 

  41. Miller T, Squires R, Gau G. Graded exercise testing and training after renal transplantation: a preliminary study. Mayo Clin Proc 1987; 62: 773–7

    Article  PubMed  CAS  Google Scholar 

  42. Williams A, Stephens R, McKnight T, et al. Factors affecting adherence of end-stage renal disease patients to an exercise programme. Br J Sports Med 1991; 25: 90–3

    Article  PubMed  CAS  Google Scholar 

  43. Lundin AP, Stein RA, Frank F, et al. Cardiovascular status in long-term hemodialysis patients: an exercise and echocardiographic study. Nephron 1981; 28: 234–7

    Article  Google Scholar 

  44. Kenny A, Sutters M, Evans D, et al. Effects of hemodialysis on coronary blood flow. Am J Cardiol 1994; 74: 291–4

    Article  PubMed  CAS  Google Scholar 

  45. Deligiannis A, Paschalidou E, Sakellariou G, et al. Changes in left ventricular anatomy during haemodialysis, continuous ambulatory peritoneal dialysis and after renal transplantation. Proc Eur Dial Transplant Assoc Eur Ren Assoc; 1984; 21: 185–9

    Google Scholar 

  46. Clyne N, Lins LE, Pehrsson SK. Occurrence and significance of heart disease in uremia. Scand J Urol Nephrol 1986; 20: 307–11

    Article  PubMed  CAS  Google Scholar 

  47. London G, Fabiani F, Marchais S, et al. Uremic cardiomyopathy: an inadequate LV hypertrophy. Kidney Int 1987; 31: 973–80

    Article  PubMed  CAS  Google Scholar 

  48. Cohen MV, Diaz P, Scheuer J. Echocardiographic assessment of left ventricular function in patients with chronic uremia. Clin Nephrol 1979; 12: 156–62

    PubMed  CAS  Google Scholar 

  49. D’Cruz IA, Bhatt GR, Cohen HC, et al. Echocardiographic detection of cardiac involvement in patients with chronic renal failure. Arch Intern Med 1979; 138: 720–4

    Google Scholar 

  50. Miach PJ, Dawborn JK, Louis WJ, et al. Left ventricular function in uremia: echocardiographic assessment in patients on maintenance dialysis. Clin Nephrol 1981; 15: 259–63

    PubMed  CAS  Google Scholar 

  51. Drueke T, Le Pailleur C, Sigal-Saglier M, et al. Left ventricular function in hemodialyzed patients with cardiomegaly. Nephron 1981; 28: 80–7

    Article  PubMed  CAS  Google Scholar 

  52. Lewis BS, Milne FJ, Goldberg B. Left ventricular function in chronic renal failure. Br Heart J 1976; 38: 1229–39

    Article  PubMed  CAS  Google Scholar 

  53. Vertes V, Cangiano J, Berman L, et al. Hypertension in end-stage renal disease: mechanisms and treatment. N Engl J Med 1969; 280: 978–81

    Article  PubMed  CAS  Google Scholar 

  54. Brunzell J, Albers J, Haas L, et al. Prevalence of serum lipid abnormalities in hemodialysis. Metabolism 1977; 26: 903–10

    Article  PubMed  CAS  Google Scholar 

  55. Linder A, Charra B, Sherrard D, et al. Accelerated atherosclerosis in prolonged maintenance hemodialysis. N Engl J Med 1974; 290: 697–701

    Article  Google Scholar 

  56. Painter P, Steward AI, Carey S. Physical functioning: definitions, measurements, and expectations. Adv Ren Replace Ther 1999; 6:110–23

    PubMed  CAS  Google Scholar 

  57. Apstein CS, Libonati JR, Varma N, et al. Exercise, diastolic function and dysfunction. In: Balady G, Pina I, editors. Exercise and heart failure. Armonk (NY): Futura Publishing Company Inc., 1997

    Google Scholar 

  58. Burgess ML, Buggy J, Price RL. Exercise - and hypertension-induced collagen changes and related to left ventricular function in rat hearts. Am J Physiol 1996; 270 (1 Pt 2): H151-H159

    Google Scholar 

  59. Scheuer J, Malhotra A, Hirsch G. Physiologic cardiac hypertrophy corrects contractile protein abnormalities associated with pathologic hypertrophy in rats. J Clin Invest 1982; 70: 1300–6

    Article  PubMed  CAS  Google Scholar 

  60. DiBello V, Santoro G, Talarico L. Left ventricular function during exercise in athletes and in sedentary men. Med Sci Sports Exerc 1996; 28: 190–6

    CAS  Google Scholar 

  61. Sullivan MJ, Higginbotham MB, Cobb FR. Exercise training in patients with severe left ventricular dysfunction: hemodynamic and metabolic effects. Circulation 1988; 78: 506–18

    Article  PubMed  CAS  Google Scholar 

  62. Rockel A, Henneman H, Sternagel-Haase A, et al. Uraemic sympathetic neuropathy after haemodialysis and transplantation. Eur J Clin Invest 1979; 9: 23–37

    Article  PubMed  CAS  Google Scholar 

  63. Kersh E, Kronfield S, Unger A, et al. Autonomic insufficiency in uremia as a cause of hemodialysis-induced hypotension. N Engl J Med 1974; 290: 650–3

    Article  PubMed  CAS  Google Scholar 

  64. Ewing DJ, Winney R. Autonomic function in patients with chronic renal failure on intermittent haemodialysis. Nephron 1975; 15: 424–9

    Article  PubMed  CAS  Google Scholar 

  65. Campese V, Romoff M, Levitan D, et al. Mechanisms of autonomic nervous system dysfunction in uremia. Kidney Int 1981; 20: 246–53

    Article  PubMed  CAS  Google Scholar 

  66. Cripps T, Malik M, Farrell T, et al. Prognostic value of reduced heart rate variability after myocardial infarction: clinical evaluation of a new analysis method. Br Heart J 1991; 65: 14–9

    Article  PubMed  CAS  Google Scholar 

  67. Task force of the European Society of Cardiology and The North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur Heart J 1996; 17: 354–81

    Article  Google Scholar 

  68. O’Brien IA, McFadden JP, Corrall RJ. The influence of autonomic neuropathy on mortality in insulin-dependent diabetes. Q J Med 1991; 79: 495–502

    PubMed  Google Scholar 

  69. Rathmann W, Ziegler D, Jahnke M, et al. Mortality in diabetic patients with cardiovascular autonomic neuropathy. Diabet Med 1993; 10: 820–4

    Article  PubMed  CAS  Google Scholar 

  70. Akselrod S, Lishner M, Oz O, et al. Spectral analysis in fluctuations in heart rate: an objective evaluation of autonomic nervous control in chronic renal failure. Nephron 1987; 45: 202–6

    Article  Google Scholar 

  71. Cloarec-Blanchard L, Girard A, Houhou S, et al. Spectral analysis of short-term blood pressure and heart rate variability in uremic patients. Kidney Int 1992; 37 Suppl.: 14–8

    Google Scholar 

  72. De Lima J, Lopes H, Grupi C, et al. Blood pressure influences the occurrence of complex ventricular arrhythmias in hemodialysis patients. Hypertension 1995; 26: 1200–3

    Article  PubMed  Google Scholar 

  73. Owen W, Madore F, Brenner B. An observational study of cardiovascular characteristics of long-term end-stage renal disease survivors. Am J Kidney Dis 1996; 28: 931–6

    Article  PubMed  CAS  Google Scholar 

  74. Thomson BJ, McAreavey D, Neilson J, et al. Heart rate variability and cardiac arrhythmias in patients with chronic renal failure. Clin Auton Res 1991; 1: 131–3

    Article  PubMed  CAS  Google Scholar 

  75. Hathaway D, Cashion A, Milstead E, et al. Autonomic dysregulation in patients awaiting kidney transplantation. Am J Kidney Dis 1998; 32: 221–9

    Article  PubMed  CAS  Google Scholar 

  76. Yildiz A, Sever M, Demirel S, et al. Improvement of uremic autonomic dysfunction after renal transplantation. Nephron 1998; 80: 57–60

    Article  PubMed  CAS  Google Scholar 

  77. Kettner-Melsheimer A, Weiss M, Huber W. Physical work capacity in chronic renal disease. Int J Artif Organs 1987; 10: 23–30

    PubMed  CAS  Google Scholar 

  78. Gardenas D, Kutner N. The problem of fatigue in dialysis patients. Nephron 1982; 30: 336–40

    Article  Google Scholar 

  79. Laville M, Fourgue D. Muscular function in chronic renal failure. Adv Nephrol 1995; 24: 245–68

    CAS  Google Scholar 

  80. Clyne N, Esbjornsson M, Jansson E, et al. Effects of renal failure on skeletal muscle. Nephron 1993; 63: 395–9

    Article  PubMed  CAS  Google Scholar 

  81. Painter P. Exercise in end stage renal disease. Exerc Sports Sci Rev 1988; 16: 305–39

    Article  CAS  Google Scholar 

  82. Nakao T, Fujiwara S, Isoda K, et al. Impaired lactate production by skeletal muscle with anaerobic exercise in patients with chronic renal failure. Nephron 1982; 31: 111–5

    Article  PubMed  CAS  Google Scholar 

  83. Diesel W, Emms M, Knight BK, et al. Morphologic features of the myopathy associated with chronic renal failure. Am J Kidney Dis 1993; 22 (5): 667–84

    Google Scholar 

  84. Brautbar N. Skeletal myopathy in uremia. Abnormal energy metabolism. Kidney Int 1983; 24 Suppl. 16: S81-S86

    Google Scholar 

  85. Guarnieri G, Toigo G, Situlin R, et al. Muscle biopsy studies in chronically uremic patients: evidence for malnutrition. Kidney Int 1983; 24 Suppl. 16: S187-S193

    Google Scholar 

  86. Thompson CH, Kemp GJ, Taylor DJ, et al. Effect of chronic uremia on skeletal muscle metabolism in man. Nephrol Dial Transplant 1993; 8: 218–22

    PubMed  CAS  Google Scholar 

  87. Moore GE, Bertocci LA, Painter PL. 31P-magnetic resonance spectroscopy assessment of subnormal oxidative metabolism in skeletal muscle of renal failure patients. J Clin Invest 1993; 91: 420–4

    Article  PubMed  CAS  Google Scholar 

  88. Park JS, Kim SB, Park SK, et al. Effect of recombinant human erythropoietin on muscle energy metabolism in patients with end-stage renal disease: a 31P-nuclear magnetic resonance spectroscopic study. Am J Kidney Dis 1993; 21: 612–8

    PubMed  CAS  Google Scholar 

  89. Davenport A, King RF, Ironside JW, et al. The effect of treatment with recombinant human erythropoietin on the histological appearance and glycogen content of skeletal muscle in patients with chronic renal failure treated by regular hospital haemodialysis. Nephron 1993; 64: 89–94

    Article  PubMed  CAS  Google Scholar 

  90. Heidbreder E, Schafferhans K, Heidland A. Disturbances of peripheral and autonomic nervous system in chronic renal failure: effects of hemodialysis and transplantation. Clin Nephrol 1985; 23: 222–8

    PubMed  CAS  Google Scholar 

  91. Raskin N. Neurological aspects of renal failure. In: Aminnof M, editor. Neurology and general medicine. 3rd ed. New York (NY): Churchill Livingstone, 1989: 231–45

    Google Scholar 

  92. Ackil A, Shahani BT, Young RR, et al. Late response and sural conduction studies. Usefulness in patients with chronic renal failure. Arch Neurol 1981; 38: 482–5

    Article  PubMed  CAS  Google Scholar 

  93. Oberley E. Renal rehabilitation: bridging the barriers. Madison (WI): Medical Education Institute Inc., 1994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelia J. Kouidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kouidi, E.J. Central and Peripheral Adaptations to Physical Training in Patients with End-Stage Renal Disease. Sports Med 31, 651–665 (2001). https://doi.org/10.2165/00007256-200131090-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200131090-00002

Keywords

Navigation