Skip to main content
Log in

Wheelchair Propulsion Biomechanics

Implications for Wheelchair Sports

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

The aim of this article is to provide the reader with a state-of-the-art review on biomechanics in hand rim wheelchair propulsion, with special attention to sport-specific implications. Biomechanical studies in wheelchair sports mainly aim at optimising sport performance or preventing sport injuries. The sports performance optimisation question has been approached from an ergonomic, as well as a skill proficiency perspective. Sports medical issues have been addressed in wheelchair sports mainly because of the extremely high prevalence of repetitive strain injuries such as shoulder impingement and carpal tunnel syndrome. Sports performance as well as sports medical reflections are made throughout the review.

Insight in the underlying musculoskeletal mechanisms of hand rim wheelchair propulsion has been achieved through a combination of experimental data collection under realistic conditions, with a more fundamental mathematical modelling approach. Through a synchronised analysis of the movement pattern, force generation pattern and muscular activity pattern, insight has been gained in the hand rim wheelchair propulsion dynamics of people with a disability, varying in level of physical activity and functional potential. The limiting environment of a laboratory, however, has hampered the drawing of sound conclusions. Through mathematical modelling, simulation and optimisation (minimising injury and maximising performance), insight in the underlying musculoskeletal mechanisms during wheelchair propulsion is sought. The surplus value of inverse and forward dynamic simulation of hand rim stroke dynamics is addressed.

Implications for hand rim wheelchair sports are discussed. Wheelchair racing, basketball and rugby were chosen because of the significance and differences in sport-specific movement dynamics. Conclusions can easily be transferred to other wheelchair sports where movement dynamics are fundamental.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Fig. 2
Table II
Fig. 3
Table III
Fig. 4
Fig. 5
Table IV
Fig. 6
Table V

Similar content being viewed by others

References

  1. van der Woude LHV, Maas K, Rozendal RH, et al. Physiological responses during hub crank and hand rim wheelchair propulsion: a pilot study. J Rehabil Sci 1995; 8 (1): 13–9

    Google Scholar 

  2. van der Woude LHV, van Kranen E, Ariëns G, et al. Physical strain and mechanical efficiency in hubcrank and handrim wheelchair propulsion. J Med Eng Technol 1995; 19 (4): 123–31

    Article  PubMed  Google Scholar 

  3. Veeger HEJ, Meershoek LS, van der Woude LHV, et al. Wrist motion in handrim wheelchair propulsion. J Rehabil Res Develop 1998; 35 (3): 305–13

    CAS  Google Scholar 

  4. Patterson P, Draper S. Selected comparisons between experienced and non-experienced individuals during handrim wheelchair propulsion. Biomed Sci Instrum 1997; 33: 477–81

    PubMed  CAS  Google Scholar 

  5. Dallmeijer AJ, van der Woude LHV, Veeger HEJ, et al. Effectiveness of force application in manual wheelchair propulsion in persons with spinal cord injuries. Am J Phys Med Rehabil 1998; 77 (3): 213–21

    Article  PubMed  CAS  Google Scholar 

  6. Brown DD, Knowlton RG, Hamill J, et al. Physiological and biomechanical differences between wheelchair-dependent and able-bodied subjects during wheelchair ergometry. Eur J Appl Phys 1990; 60: 179–82

    Article  CAS  Google Scholar 

  7. Veeger HEJ, Lute EMC, Roeleveld K, et al. Differences in performance between trained and untrained subjects during a 30-s sprint test in a wheelchair ergometer. Eur J Appl Physiol 1992; 64: 158–64

    Article  CAS  Google Scholar 

  8. Robertson RN, Boninger ML, Cooper RA. Pushrim forces and joint kinetics during wheelchair propulsion. Arch Phys Med Rehabil 1996; 77: 856–64

    Article  PubMed  CAS  Google Scholar 

  9. Dallmeijer AJ, van der Woude LHV, Pathuis CS. Adaptations in wheelchair propulsion technique after training in able-bodied subjects. In: van der Woude LHV, Hopman MTE, van Kemenade CH, editors. Biomedical aspects of manual wheelchair propulsion: the state-of-the-art II. Amsterdam: IOS Press, 1999: 224–6

    Google Scholar 

  10. Goosey VL, Campbell IG. Symmetry of the elbow kinematics during racing wheelchair propulsion. Ergonomics 1998; 41 (12): 1810–20

    Article  PubMed  CAS  Google Scholar 

  11. Boninger ML, Cooper RA, Robertson RN, et al. Wrist biomechanics during two speeds of wheelchair propulsion: an analysis using a local coordinate system. Arch Phys Med Rehabil 1997; 78: 364–72

    Article  PubMed  CAS  Google Scholar 

  12. Boninger ML, Cooper RA, Robertson RN, et al. Three-dimensional handrim forces during two speeds of wheelchair propulsion. Am J Phys Med Rehabil 1997; 76 (5): 420–6

    Article  PubMed  CAS  Google Scholar 

  13. Boninger ML, Cooper RA, Shimada SD, et al. Shoulder and elbow motion during two speeds of wheelchair propulsion: a description using a local coordinate system. Spinal Cord 1998; 36: 418–26

    Article  PubMed  CAS  Google Scholar 

  14. Kulig K, Rao SS, Mulroy SJ, et al. Shoulder joint kinetics during the push phase of wheelchair propulsion. Clin Orthop 1998 Sep; (354): 132–43

    Article  PubMed  Google Scholar 

  15. Mulroy SJ, Gronley JK, Newsam CJ, et al. Electromyographic activity of shoulder muscles during wheelchair propulsion by paraplegic persons. Arch Phys Med Rehabil 1996; 77: 187–93

    Article  PubMed  CAS  Google Scholar 

  16. O’Connor TJ, Robertson RN, Cooper RA. Three-dimensional kinematic analysis and physiologic assessment of racing wheelchair propulsion. Adapt Phys Act Q 1998; 15: 1–14

    Google Scholar 

  17. Rodgers MM, Gayle GW, Figoni SF, et al. Biomechanics of wheelchair propulsion during fatigue. Arch Phys Med Rehabil 1994; 75: 85–93

    PubMed  CAS  Google Scholar 

  18. Rudins A, Laskowski ER, Growney ES, et al. Kinematics of the elbow during wheelchair propulsion: a comparison of two wheelchairs and two stroking techniques. Arch Phys Med Rehabil 1997; 78: 1204–10

    Article  PubMed  CAS  Google Scholar 

  19. Shimada SD, Robertson RN, Bonninger ML, et al. Kinematic characterization of wheelchair propulsion. J Rehabil Res Dev 1998; 35 (2): 210–8

    PubMed  CAS  Google Scholar 

  20. Wang YT, Beale D, Moeizadeh M. An electronic device to measure drive and recovery phases during wheelchair propulsion: a technical note. J Rehabil Res Dev 1996; 33 (3): 305–10

    PubMed  CAS  Google Scholar 

  21. Vanlandewijck YC, Spaepen AJ, Lysens RJ. Wheelchair propulsion efficiency: movement pattern adaptations to speed changes. Med Sci Sports Exerc 1994; 26 (11): 1373–81

    PubMed  CAS  Google Scholar 

  22. Spaepen AJ, Vanlandewijck YC, Lysens RJ. Relationship between energy expenditure and muscular activity patterns in handrim wheelchair propulsion. Int J Indust Ergon 1996; 17: 163–73

    Article  Google Scholar 

  23. Niesing RF, Eijskoot F, Kranse R, et al. A computer controlled wheelchair ergometer. Med Biol Eng Comput 1990; 28: 329–38

    Article  PubMed  CAS  Google Scholar 

  24. Cooper RA, Cheda A. Measurement of racing wheelchair propulsion torque. Proceedings of the 12th International Conference of IEEE Engineering in Medicine and Biology Society; 1989; 5: 2311–22

    Google Scholar 

  25. Assato KT, Cooper RA, Robertson RN, et al. Smartwheels: development and testing of a system for measuring manual wheelchair propulsion dynamics. IEEE Trans Biomed Eng 1993; 40: 1320–4

    Article  Google Scholar 

  26. Cooper RA, Boninger ML, VanSickle DP, et al. Instrumentation for measuring wheelchair propulsion dynamics. In: van der Woude LHV, Hopman MTE, van Kemenade CH, editors. Biomedical aspects of manual wheelchair propulsion: the state-of-the-art II. Amsterdam: IOS Press, 1999: 104–14

    Google Scholar 

  27. Veeger HEJ, van der Woude LHV, Rozendal RH. Wheelchair propulsion technique at different speeds. Scan J Rehabil Med 1989; 21: 197–203

    CAS  Google Scholar 

  28. Veeger HEJ, van der Woude LHV, Rozendal RH. Load on the upper extremity in manual wheelchair propulsion. J Electromyogr Kinesiol 1991; 1 (4): 270–80

    Article  PubMed  CAS  Google Scholar 

  29. Bednarczyk JH, Sanderson DJ. Kinematics of wheelchair propulsion in adults and children with spinal cord injury. Arch Phys Med Rehabil 1994; 75: 1327–34

    PubMed  CAS  Google Scholar 

  30. Vanlandewijck YC, Spaepen AJ, Heister M. Maximal exercise responses and manual wheelchair propulsion: cardiorespiratory and movement pattern adaptations to slope and velocity changes. In: Van Coppenolle H, Vanlandewijck Y, Simons J, et al., editors. Proceedings of the First European Conference on Adapted Physical Activity and Sports: a white paper on research and practice; 1994 Dec 18–20: Leuven. Leuven: Acco, 1995: 73–8

    Google Scholar 

  31. Vanlandewijck YC, Daly DJ. Wheelchair propulsion kinematics: movement pattern adaptations to speed changes in elite wheelchair rugby players [abstract]. Proceedings of the Fifth Paralympic Congress; 2000 Oct 11–13; Sydney, 28

  32. Newsam CJ, Rao SS, Mulroy SJ, et al. Three dimensional upper extremity motion during manual wheelchair propulsion in men with different levels of spinal cord injury. Gait Posture 1999; 10: 223–32

    Article  PubMed  CAS  Google Scholar 

  33. van der Woude LHV, Hendrich KMM, Veeger HEJ, et al. Manual wheelchair propulsion: effects of power output on physiology and technique. Med Sci Sports Exerc 1988; 20: 70–8

    Article  PubMed  Google Scholar 

  34. van der Woude LHV, Veeger HEJ, Rozendal RH, et al. Wheelchair racing: effects of rim diameter and speed on physiology and technique. Med Sci Sports Exerc 1988; 20: 492–500

    PubMed  Google Scholar 

  35. van der Woude LHV, Veeger HEJ, Rozendal RH. Propulsion technique in hand rim wheelchair propulsion. J Med Eng Tech 1989; 13: 136–41

    Article  Google Scholar 

  36. Veeger HEJ, van der Woude LHV, Rozendal RH. The effect of rear wheel camber in manual wheelchair propulsion. J Rehabil Res Dev 1989; 26: 37–46

    PubMed  CAS  Google Scholar 

  37. Veeger HEJ, van der Woude LHV, Rozendal RH. Effect of handrim velocity on mechanical efficiency in wheelchair propulsion. Med Sci Sports Exerc 1992; 24 (1): 100–7

    PubMed  CAS  Google Scholar 

  38. Veeger HEJ, van der Woude LHV, Rozendal RH. Within cycle characteristics of the wheelchair push in sprinting on a wheelchair ergometer. Med Sci Sports Exerc 1991; 23 (2): 264–71

    PubMed  CAS  Google Scholar 

  39. Dallmeijer AJ, Kappe YJ, Veeger HEJ, et al. Anaerobic power output and propulsion technique in spinal cord injured subjects during wheelchair ergometry. J Rehabil Res Dev 1994; 31 (2): 120–8

    PubMed  CAS  Google Scholar 

  40. Roeleveld K, Lute E, Veeger HEJ, et al. Power output and technique of wheelchair athletes. Adapt Phys Act Q 1994; 11: 71–85

    Google Scholar 

  41. van der Woude LHV, Bakker WH, Elkhuizen JW, et al. Propulsion technique and anaerobic work capacity in elite wheelchair athletes: cross-sectional analysis. Am J Phys Med Rehabil 1998; 77 (3): 222–34

    Article  PubMed  Google Scholar 

  42. Sanderson DJ, Sommer HJ. Kinematic features of wheelchair propulsion. J Biomech 1985; 18 (6): 423–9

    Article  PubMed  CAS  Google Scholar 

  43. Vanlandewijck YC, Spaepen AJ, Lysens RJ. Wheelchair propulsion: functional ability dependent factors in wheelchair basketball players. Scan J Rehab Med 1994; 25: 37–48

    Google Scholar 

  44. Pearl ML, Harris SL, Lippitt BL, et al. A system for describing positions of the humerus relative to the thorax and its use in presentation of several functionally important arm positions. J Shoulder Elbow Surg 1992; 1: 113–8

    Article  PubMed  CAS  Google Scholar 

  45. van Ingen Schenau GJ. From rotation to translation: constraints in multi-joint movements and the unique action of bi-articular muscles. Hum Movement Sci 1989; 8: 301–37

    Article  Google Scholar 

  46. Vanlandewijck YC, Chappel RJ. Integration and classification issues in competitive sports for athletes with disabilities. Sport Sci Rev 1996; 5 (1): 65–88

    Google Scholar 

  47. Vanlandewijck YC, Spaepen AJ, Lysens RJ. Relationship between the level of physical impairment and sports performance in elite wheelchair basketball players. Adapt Phys Act Q 1995; 12: 139–50

    Google Scholar 

  48. Veeger HEJ, Van der Helm FCT. Biomechanics of manual wheelchair propulsion. In: van der Woude LHV, Hopman MTE, van Kemenade CH, editors. Biomedical aspects of manual wheelchair propulsion: the state-of-the-art II. Amsterdam: IOS Press, 1999: 86–95

    Google Scholar 

  49. Cooper RA, Robertson RN, VanSickle DP, et al. Methods for determining three-dimensional wheelchair pushrim forces and moments: a technical note. J Rehabil Res Dev 1997; 34 (2): 162–70

    PubMed  CAS  Google Scholar 

  50. Boninger ML, Cooper RA, Baldwin MA, et al. Wheelchair pushrim kinetics: body weight and median nerve function. Arch Phys Med Rehabil 1999; 80: 910–5

    Article  PubMed  CAS  Google Scholar 

  51. Veeger HEJ, van der Woude LHV, Rozendal RH. A computerized wheelchair ergometer. Scan J Rehabil Med 1992; 24: 17–23

    CAS  Google Scholar 

  52. Veeger HEJ, van der Woude LHV. Force generation in manual wheelchair propulsion. In: Van Coppenolle H, Vanlandewijck Y, Simons J, et al., editors. Proceedings of the First European Conference on Adapted Physical Activity and Sports: a white paper on research and practice; 1994 Dec 18–20: Leuven. Leuven: Acco, 1995: 89–94

    Google Scholar 

  53. Vanlandewijck YC. Mechanische efficiëntie van de aandrijf — en terugvoerbeweging bij rolstoelpropulsie [doctoral dissertation]. Leuven: Acco, 1992

    Google Scholar 

  54. van der Woude LHV, Veeger HEJ, Rozendal RH, et al. Seat height in handrim wheelchair propulsion. J Rehabil Res Dev 1989; 26 (4): 31–50

    PubMed  Google Scholar 

  55. Hughes CJ, Weimar WH, Sheth PN, et al. Biomechanics of wheelchair propulsion as a function of seat position and user-to-chair interface. Arch Phys Med Rehabil 1992; 73: 263–9

    PubMed  CAS  Google Scholar 

  56. Boninger ML, Baldwin M, Cooper RA, et al. Manual wheelchair pushrim biomechanics and axle position. Arch Phys Med Rehabil 2000; 81: 608–13

    Article  PubMed  CAS  Google Scholar 

  57. Cooper RA. Wheelchair racing sports science: a review. J Rehabil Res Dev 1990; 27 (3): 295–312

    Article  PubMed  CAS  Google Scholar 

  58. Ross SA, Brubaker CE. Electromyographic analysis of selected upper extremity muscles during wheelchair propulsion. Proceedings of the second RESNA conference on rehabilitation engineering; 1984; Ottawa, 7–8

  59. Zajac FE. Muscle coordination of movement: a perspective. J Biomech 1993; 26 Suppl. 1: 109–24

    Article  PubMed  Google Scholar 

  60. Cooper RA. A systems approach to the modelling of racing wheelchair propulsion. J Rehabil Res Dev 1990; 27 (2): 151–62

    Article  PubMed  CAS  Google Scholar 

  61. Hofstad M, Patterson PE. Modelling the propulsion characteristics of a standard wheelchair. J Rehabil Res Dev 1994; 31 (2): 129–37

    PubMed  CAS  Google Scholar 

  62. Van der Helm FCT. Analysis of the kinematic and dynamic behavior of the shoulder mechanism. J Biomech 1994; 27 (5): 527–50

    Article  PubMed  Google Scholar 

  63. Van der Helm FCT. A finite element musculoskeletal model of the shoulder mechanism. J Biomech 1994; 27 (5): 551–69

    Article  PubMed  Google Scholar 

  64. Veeger HEJ, Yu B, An K-N, et al. Parameters for modelling the upper extremity. J Biomech 1997; 30 (6): 647–52

    Article  PubMed  CAS  Google Scholar 

  65. Van der Helm FCT, Veeger HEJ. Quasi-static analysis of muscle forces in the shoulder mechanism during wheelchair propulsion. J Biomech 1996; 29 (1): 39–52

    Article  PubMed  Google Scholar 

  66. Van der Helm FCT, Veeger HEJ. Shoulder modelling in rehabilitation: the power balance during wheelchair propulsion. In: van der Woude LHV, Hopman MTE, van Kemenade CH, editors. Biomedical aspects of manual wheelchair propulsion: the state-of-the-art II. Amsterdam: IOS Press, 1999: 96–103

    Google Scholar 

  67. Rodgers MM, Tummarakota S, Lieh J. Three-dimensional analysis of wheelchair propulsion. J Appl Biomech 1998; 14: 80–92

    Google Scholar 

  68. Zajac FE, Gordon ME. Determining muscle’s force and action in multi-articular movement. Exerc Sport Sci Rev 1989; 17: 187–230

    PubMed  CAS  Google Scholar 

  69. Higgs C. Propulsion of racing wheelchairs. In: Sherrill C, editor. Sport and disabled athletes. 1984 Olympic Scientific Congress Proceedings; Eugene (OR). Champaign (IL): Human Kinetics, 1986: 165–72

    Google Scholar 

  70. Wang YT, Deutsch H, Morse M, et al. Three-dimensional kinematics of wheelchair propulsion across racing speeds. Adapt Phys Act Q 1995; 12: 78–89

    Google Scholar 

  71. Ridgway M, Pope C, Wilkerson J. A kinematic analysis of 800 meter wheelchair-racing techniques. Adapt Phys Act Q 1988; 5: 96–107

    Google Scholar 

  72. Walsh CM, Marchiori GE, Steadward RD. Effect of seat position on maximal linear velocity in wheelchair sprinting. Can J Appl Sport Sci 1986; 11 (4): 186–90

    PubMed  CAS  Google Scholar 

  73. Chow JW, Millikan TA, Carlton LG, et al. Effect of resistance load on biomechanical characteristics of racing wheelchair propulsion over a roller system. J Biomech 2000; 33: 601–8

    Article  PubMed  CAS  Google Scholar 

  74. Hedrick B, Wang YT, Moeinzadeh M, et al. Aerodynamic positioning and performance in wheelchair racing. Adapt Phys Act Q 1990; 7: 41–51

    Google Scholar 

  75. Higgs C. Wheeling in the wind: the effect of wind velocity and direction on the aerodynamic drag of wheelchairs. Adapt Phys Act Q 1992; 9: 74–87

    Google Scholar 

  76. Cooper RA. Rehabilitation engineering applied to mobility and manipulation. Bristol: Institute of Physics Publishing, 1995

    Book  Google Scholar 

  77. Higgs C. Sport performance: technical developments. In: Steadward RD, Nelson ER, Wheeler GD, editors. Vista ’93 — The Outlook, Proceedings of the International Conference on High Performance Sport for Athletes with Disabilities; 1993 May 14–20: Jasper (AB). Edmonton (AB): Rick Hansen Centre; 1993: 169–86

    Google Scholar 

  78. Morse M. Para-backhand pushing technique. Sport ’n Spokes 1999; 25 (3): 52–5

    Google Scholar 

  79. Cooper RA. An exploratory study of racing wheelchair propulsion dynamics. Adapt Phys Act Q 1990; 7: 74–85

    Google Scholar 

  80. Goosey VL, Campbell IG, Fowler NE. Effect of push frequency on the economy of wheelchair racers. Med Sci Sports Exerc 2000; 32 (1): 174–81

    PubMed  CAS  Google Scholar 

  81. Mâsse LC, Lamontagne M, O’Riain MD. Biomechanical analysis of wheelchair propulsion for various seating positions. J Rehabil Res Dev 1992; 29 (3): 12–28

    Article  PubMed  Google Scholar 

  82. Goosey VL, Campbell IG. Pushing economy and propulsion technique of wheelchair racers at three speeds. Adapt Phys Act Q 1998; 15: 36–50

    Google Scholar 

  83. Goosey VL, Fowler NE, Campbell IG. A kinematic analysis of wheelchair propulsion techniques in senior male, senior female and junior male athletes. Adap Phys Act Q 1997; 14: 156–65

    Google Scholar 

  84. Gehlsen GM, Davis RW, Bahamonde R. Intermittent velocity and wheelchair performance characteristics. Adapt Phys Act Q 1990; 7: 219–30

    Google Scholar 

  85. Lees A. Performance characteristics of two wheelchair sprint tests. In: van der Woude LHV, Meijs PJM, van der Grinten BA, et al., editors. Ergonomics of manual wheelchair propulsion: state-of-the-art. Milan: Edizioni pro Juventute, 1991: 13–20

    Google Scholar 

  86. Vanlandewijck YC, Goris M, Van de Vliet P, et al. Sports counselling of wheelchair athletes: optimizing physical potential in wheelchair racing. In: Proceedings of Vista Downunder ’98, International Conference on Athletes with Disabilities; 1998 Nov 1–5: Canberra. Canberra: Australian Institute of Sports, 1998: 85–98

    Google Scholar 

  87. Van Breukelen K. Biomechanica van het roadracen. Lichamelijke Opvoeding 1989; 2: 59–63

    Google Scholar 

  88. Walsh CM. The effect of pushing frequency on speed in wheelchair sprinting. Sport ’n Spokes 1987; 13 (1): 13–5

    Google Scholar 

  89. Yilla AB, La Bar RH, Dangelmaier BS. Setting up a wheelchair for basketball. Sport ’n Spokes 1998; 24 (2): 63–5

    Google Scholar 

  90. Vanlandewijck YC, Daly DJ, Spaepen AJ, et al. Biomechanics in handrim wheelchair propulsion: wheelchair-user interface adjustment for basketball. Educ Phys Train Sport 1999; 4 (33): 50–3

    Google Scholar 

  91. Vanlandewijck YC, Daly DJ, Theisen DM. Field test evaluation of aerobic, anaerobic and wheelchair basketball skill performances. Int J Sports Med 1999; 20: 548–54

    Article  PubMed  CAS  Google Scholar 

  92. Coutts KD. Dynamics of wheelchair basketball. Med Sci Sports Exerc 1992; 24 (2): 231–4

    PubMed  CAS  Google Scholar 

  93. Burke EJ, Auchinachie JA, Hayden R, et al. Energy cost of wheelchair basketball. Physician Sportsmed 1985; 13 (3): 99–105

    Google Scholar 

  94. Schmid A, Huonker M, Stober P, et al. Physical performance and cardiovascular and metabolic adaptation of elite female wheelchair basketball players in wheelchair ergometry and in competition. Am J Phys Med Rehabil 1998; 18: 527–33

    Article  Google Scholar 

  95. Coutts KD. Kinematics of sport wheelchair propulsion. J Rehabil Res Dev 1990; 27 (1): 21–6

    Article  PubMed  CAS  Google Scholar 

  96. Coutts KD. Drag and sprint performance of wheelchair basketball players. J Rehabil Res Dev 1994; 31 (2): 138–43

    PubMed  CAS  Google Scholar 

  97. Tupling SJ, Davis GM, Pierrynowski MR, et al. Arm strength and impulse generation: initiation of wheelchair movement by the physically disabled. Ergonomics 1986; 29 (2): 303–11

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Vanlandewijck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanlandewijck, Y., Theisen, D. & Daly, D. Wheelchair Propulsion Biomechanics. Sports Med 31, 339–367 (2001). https://doi.org/10.2165/00007256-200131050-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200131050-00005

Keywords

Navigation