Strategies to Enhance Fat Utilisation During Exercise

Summary

Compared with the limited capacity of the human body to store carbohydrate (CHO), endogenous fat depots are large and represent a vast source of fuel for exercise. However, fatty acid (FA) oxidation is limited, especially during intense exercise, and CHO remains the major fuel for oxidative metabolism. In the search for strategies to improve athletic performance, recent interest has focused on several nutritional procedures which may theoretically promote FA oxidation, attenuate the rate of muscle glycogen depletion and improve exercise capacity. In some individuals the ingestion of caffeine improves endurance capacity, but L-carnitine supplementation has no effect on either rates of FA oxidation, muscle glycogen utilisation or performance. Likewise, the ingestion of small amounts of medium-chain triglyceride (MCT) has no major effect on either fat metabolism or exercise performance. On the other hand, in endurance-trained individuals, substrate utilisation during submaximal [60% of peak oxygen uptake (VO2peak)] exercise can be altered substantially by the ingestion of a high fat (60 to 70% of energy intake), low CHO (15 to 20% of energy intake) diet for 7 to 10 days. Adaptation to such a diet, however, does not appear to alter the rate of working muscle glycogen utilisation during prolonged, moderate intensity exercise, nor consistently improve performance. At present, there is insufficient scientific evidence to recommend that athletes either ingest fat, in the form of MCTs, during exercise, or ‘fat-adapt’ in the weeks prior to a major endurance event to improve athletic performance.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Holloszy JO. Utilization of fatty acids during exercise. In: Taylor AW, Gollnick PD, Green HJ, et al., editors. Biochemistry of exercise VII. Champaign (IL): Human Kinetics Publishers, 1990: 319–27

    Google Scholar 

  2. 2.

    Bjorkman O. Fuel utilization during exercise. In: Bjorkman O, editor. Biochemical aspects of physical exercise. Amsterdam: Elsevier, 1986: 245–60

    Google Scholar 

  3. 3.

    Hoppeler H, Luthi P, Claassen H, et al. The ultrastructure of the normal human skeletal muscle: a morphometric analysis on untrained men, women and well-trained orienteers. Pflugers Arch 1973; 344: 217–32

    PubMed  CAS  Article  Google Scholar 

  4. 4.

    Vusse van der GJ, Reneman RS. Lipid metabolism in muscle. In: Rowell LB, Shepherd JT, editors. Handbook of physiology. New York: Oxford Press, 1996: 952–94

    Google Scholar 

  5. 5.

    Spector AA, Fletcher JE, Ashbrook JD. Analysis of long-chain free fatty acid binding to bovine serum albumin by determination of stepwise equilibrium constants. Biochemistry 1971; 10: 3229–33

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    Camps L, Reina M, Lobera M, et al. Lipoprotein lipase: cellular origin and functional distribution. Am J Physiol 1990; 258: C673–81

    PubMed  CAS  Google Scholar 

  7. 7.

    Groot PHE, Oerlemans MC, Scheek LM. Triglyceridase and phospholipase A1 activities of rat heart lipoprotein lipase: influence of apolipoprotein C-II and C-III. Biochim Biophys Acta 1979; 530: 91–8

    Google Scholar 

  8. 8.

    Kiens B, Lithell H. Lipoprotein metabolism influenced by training- induced changes in human skeletal muscle. J Clin Invest 1989; 83: 558–64

    PubMed  CAS  Article  Google Scholar 

  9. 9.

    Kiens B, Lithell H, Mikines KJ, et al. Effects of insulin and exercise on muscle lipoprotein lipase: activity in man and its relation to insulin action. J Clin Invest 1989; 84: 1124–9

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Gorski J, Stankiewicz-Choroszucha B. The effect of hormones on lipoprotein lipase activity in skeletal muscles of the rat. Horm Metab Res 1982; 14: 189–91

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    Lithell H, Boberg J. Determination of lipoprotein-lipase activity in human skeletal muscle tissue. Biochim Biophys Acta 1978; 528: 55–68

    Google Scholar 

  12. 12.

    Braun JE, Severson A, Severson DL. Regulation of the synthesis, processing and translocation of lipoprotein lipase. Biochem J 1992; 287: 337–47

    PubMed  CAS  Google Scholar 

  13. 13.

    Heaf DJ, Kaijser L, Eklund B, et al. Differences in heparinreleased lipolytic activity in the superficial and deep veins of the human forearm. Eur J Clin Invest 1977; 7: 195–9

    PubMed  CAS  Article  Google Scholar 

  14. 14.

    Terjung RL, Mackie BG, Dudley GA et al. Influence of exercise on chylomicron triacylglycerol metabolism: plasma turnover and muscle uptake. Med Sci Sports Exerc 1983; 15: 340–7

    PubMed  CAS  Google Scholar 

  15. 15.

    Vusse van der GJ, Glatz JFC, Stam HCG, et al. Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev 1992; 72: 881–940

    PubMed  Google Scholar 

  16. 16.

    Havel RJ, Pernow B, Jones NL. Uptake and release of free fatty acids and other metabolites in the legs of exercising men. J Appl Physiol 1967; 23: 90–9

    PubMed  CAS  Google Scholar 

  17. 17.

    Romijn JA, Coyle EF, Sidossis LS, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol 1993; 265: E380–91

    PubMed  CAS  Google Scholar 

  18. 18.

    Gollnick PD, Saltin B. Fuel for muscular exercise: role of fat. In: Exercise, nutrition and energy metabolism. New York: Macmillan, 1988: 71–88

    Google Scholar 

  19. 19.

    Armstrong DT, Steele R, Altszuler N, et al. Regulation of plasma free fatty acid turnover. Am J Physiol. 1961; 201: 9–15

    PubMed  CAS  Google Scholar 

  20. 20.

    Hagenfeldt L, Wahren J. Metabolism of free fatty acids and ketone bodies in skeletal muscle. In: Muscle metabolism during exercise. New York: Plenum Press, 1971: 153–63

    Google Scholar 

  21. 21.

    Vusse van der GJ, Roemen THM. Gradient of fatty acids from blood plasma to skeletal muscle in dogs. J Appl Physiol 1995; 78: 1839–43

    PubMed  Google Scholar 

  22. 22.

    Groot PHE, Scholte HR, Hylsmann WC. Fatty acid activation: specificity, localization and function. In: Advances in lipid research. New York: Academic Press, 1976: 75–119

    Google Scholar 

  23. 23.

    Linssen MCJG, Vork MM, De Jong YF, et al. Fatty acid oxidation capacity and fatty acid-binding protein content of different cell types isolated from rat heart. Mol Cell Biochem 1990; 89: 19–26

    Google Scholar 

  24. 24.

    Harmon CM, Luce P, Abumrad NA. Labelling of an 88 kDa adipocyte membrane protein by sulpho-N-succinimidyl longchain fatty acids: inhibition of fatty acid transport. Biochem Soc Trans 1992; 20: 811–3

    PubMed  CAS  Google Scholar 

  25. 25.

    Vork MM, Glatz JFC, van der Vusse GJ. On the mechanism of long chain fatty acid transport in cardiomyocytes as facilitated by cytoplasmic fatty acid-binding protein. J Theor Biol 1993; 160: 207–22

    PubMed  CAS  Article  Google Scholar 

  26. 26.

    Froberg SO, Hultman E, Nilsson LH. Effect of noradrenaline on triglyceride and glycogen concentrations in liver and muscle from man. Metabolism 1975; 24: 119–25

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Abumrad NA, Tepperman HM, Tepperman J. Control of endogenous triglyceride breakdown in the mouse diaphragm. J Lipid Res 1980; 21: 149–55

    PubMed  CAS  Google Scholar 

  28. 28.

    Barclay JK, Stainsby WN. Intramuscular lipid store utilization by contracting dog skeletal muscle in situ. Am J Physiol 1972; 223: 115–9

    PubMed  CAS  Google Scholar 

  29. 29.

    Cote C, White TP, Faulkner JA. Intramuscular depletion and fatigability of soleus grafts in rats. Can J Physiol Pharmacol 1988; 66: 829–32

    PubMed  CAS  Article  Google Scholar 

  30. 30.

    Froberg SO. Metabolism of lipids in blood and tissues during exercise. Biochem Exerc Med Sport 1969; 3: 100–13

    Google Scholar 

  31. 31.

    Spriet LL, Heigenhauser GJF, Jones NL. Endogenous triacylglycerol utilization by rat skeletal muscle during tetanic stimulation. J Appl Physiol 1986; 60: 410–5

    PubMed  CAS  Google Scholar 

  32. 32.

    Gorski J. Muscle triglyceride metabolism during exercise. Can J Physiol Pharmacol 1992; 70: 123–31

    PubMed  CAS  Article  Google Scholar 

  33. 33.

    Essen B, Hagenfeldt L, Kaijser L. Utilization of blood-borne and intramuscular substrates during continuous and intermittent exercise in man. J Physiol 1977; 265: 489–506

    PubMed  CAS  Google Scholar 

  34. 34.

    Essen B. Intramuscular substrate utilization during prolonged exercise. In: Milvy P, editors. The marathon: physiological, medical, epidemiological, and psychological studies. New York: The New York Academy of Sciences, 1977: 30–44

    Google Scholar 

  35. 35.

    Howald H, Hoppeler H, Claassen H, et al. Influences of endurance training on the ultrastructural composition of the different muscle fiber types in humans. Pflugers Arch 1985; 403: 369–76

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Morgan TE, Short FA, Cobb LA. Effect of long-term exercise on skeletal muscle lipid composition. Am J Physiol 1969; 216: 82–6

    PubMed  CAS  Google Scholar 

  37. 37.

    Saltin B, Kiens B, Savard G. A quantitative approach to the evaluation of skeletal muscle substrate utilization in prolonged exercise. In: Bjorkman O, editor. Biochemical aspects of physical exercise. Amsterdam: Elsevier, 1986: 235–44

    Google Scholar 

  38. 38.

    Abernethy PJ, Thayer R, Taylor AW. Acute and chronic responses of skeletal muscle to endurance and sprint exercise. Sports Med 1990; 10: 365–89

    PubMed  CAS  Article  Google Scholar 

  39. 39.

    Gollnick PD. Metabolism of substrates: energy substrate metabolism during exercise and as modified by training. Fed Proc 1985; 44: 353–7

    PubMed  CAS  Google Scholar 

  40. 40.

    Terjung RL, Kaciuba-Uscilko H. Lipid metabolism during exercise: influence of training. Diabetes Metab Rev 1986; 2: 35–51

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    Wendling PS, Peters SJ, Heigenhauser GJF, et al. Epinephrine infusion does not enhance net muscle glycogenolysis during prolonged aerobic exercise. Can J Appl Physiol 1996; 21: 271–84

    PubMed  CAS  Article  Google Scholar 

  42. 42.

    McDermott JC, Elder GCB, Bonen A. Adrenal hormones enhance glycogenolysis in nonexercising muscle during exercise. J Appl Physiol 1987; 63: 1275–83

    PubMed  CAS  Google Scholar 

  43. 43.

    McDermott JC, Elder GCB, Bonen A. Non-exercising muscle metabolism during exercise. Pflugers Arch 1991; 418: 301–7

    PubMed  CAS  Article  Google Scholar 

  44. 44.

    Mazzeo RS, Marshall P. Influence of plasma catecholamines on the lactate threshold during graded exercise. J Appl Physiol 1989; 67: 1319–22

    PubMed  CAS  Google Scholar 

  45. 45.

    Bonen A, Ness GW, Belcastro AN, et al. Mild exercise impedes glycogen repletion in muscle. J Appl Physiol 1985; 58: 1622–9

    PubMed  CAS  Google Scholar 

  46. 46.

    Ahlborg G, Felig P. Lactate and glucose exchange across the forearm, legs, and splanchnic bed during and after prolonged leg exercise. J Clin Invest 1982; 69: 45–54

    PubMed  CAS  Article  Google Scholar 

  47. 47.

    Ahlborg G, Wahren J, Felig P. Splanchnic and peripheral glucose and lactate metabolism during and after prolonged arm exercise. J Clin Invest 1986; 77: 690–9

    PubMed  CAS  Article  Google Scholar 

  48. 48.

    McGilvery JD, Stark MJ, Foster DW. The use of fuels for muscular work. In: Metabolic adaptation to prolonged physical exercise. Basel: Birkhauser Verlag, 1975: 12–30

    Google Scholar 

  49. 49.

    Hultman E, Harris RC. Carbohydrate metabolism. In: Poortmans JR, editor. Principles of exercise biochemistry. Basel: Karger, 1988: 78–119

    Google Scholar 

  50. 50.

    Brady PS, Ramsay RR, Brady LJ. Regulation of the long-chain carnitine acyltransferases. FASEB J 1993; 7: 1039–44

    PubMed  CAS  Google Scholar 

  51. 51.

    McGarry JD, Mills SE, Long CS, et al. Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase I in animal and human tissues. Biochem J 1983; 214: 21–8

    PubMed  CAS  Google Scholar 

  52. 52.

    Saggerson D, Ghadiminejad I, Awan M. Regulation of mitochondrial carnitine palmitoyltransferase from liver and extrahepatic tissues. Adv Enzyme Regul 1992; 32: 285–306

    PubMed  CAS  Article  Google Scholar 

  53. 53.

    Winder WW, Arogyasami J, Barton RJ, et al. Muscle malonyl-CoA decreases during exercise. J Appl Physiol 1989; 67: 2230–3

    PubMed  CAS  Google Scholar 

  54. 54.

    Lithell H, Orlander J, Schele R, et al. Changes in lipoprotein-lipase activity and lipid stores in human skeletal muscle with prolonged heavy exercise. Acta Physiol Scand 1979; 107: 257–61

    PubMed  CAS  Article  Google Scholar 

  55. 55.

    Newsholme EA. Basic aspects of metabolic regulation and their application to provision of energy in exercise. In: Principles of exercise biochemistry. Basel: Karger, 1988: 40–77

    Google Scholar 

  56. 56.

    Newsholme EA. Application of knowledge of metabolic integration to the problem of metabolic limitations in sprints, middle distance and marathon running. Principles of exercise biochemistry. Basel: Karger, 1988: 194–211

    Google Scholar 

  57. 57.

    Brouns F. The effect of athletic training and dietary factors on the modulation of muscle glycogen. In: Reilly T, Orne M, editors. The clinical pharmacology of sport and exercise. Amsterdam: Elsevier, 1997: 181–93

    Google Scholar 

  58. 58.

    Gollnick PD, Saltin B. Significance of skeletal muscle oxidative enzyme enhancement with endurance training. Clin Physiol 1982; 2: 1–12

    PubMed  CAS  Article  Google Scholar 

  59. 59.

    Gollnick PD, Ianuzzo CD, King DW. Ultrastructural and enzyme changes in muscles with exercise. In: Saltin B. Advances in experimental medicine and biology. New York: Plenum Press, 1971: 69–86

    Google Scholar 

  60. 60.

    Hoppeler H, Howald H, Concley K, et al. Endurance training in humans: aerobic capacity and structure of skeletal muscle. J Appl Physiol 1985; 59: 320–7

    PubMed  CAS  Google Scholar 

  61. 61.

    Morgan TE, Cobb LA, Short FA, et al. Effects of long-term exercise on human muscle mitochondria. In: Advances in experimental medicine and biology. New York: Plenum Press, 1971: 87–95

    Google Scholar 

  62. 62.

    Baldwin KM, Klinkerfuss GH, Terjung RL, et al. Respiratory capacity of white, red, and intermediate muscle: adaptive response to exercise. Am J Physiol 1972; 222: 373–8

    PubMed  CAS  Google Scholar 

  63. 63.

    Kiens B, Essen-Gustavsson B, Christensen NJ, et al. Skeletal muscle substrate utilization during submaximal exercise in man: effect of endurance training. J Physiol 1993; 469: 459–78

    PubMed  CAS  Google Scholar 

  64. 64.

    Saltin B, Astrand PO. Free fatty acids and exercise. Am J Clin Nutr 1993; 57: 752S–8S

    PubMed  CAS  Google Scholar 

  65. 65.

    Nikkila EA, Taskinen R, Rehunen S, et al. Lipoprotein lipase activity in adipose tissue and skeletal muscle of runners: relation to serum lipoproteins. Metabolism 1978; 27: 1661–71

    PubMed  CAS  Article  Google Scholar 

  66. 66.

    Martin III WH, Dalsky GP, Hurley BF, et al. Effect of endurance training on plasma free fatty acid turnover and oxidation during exercise. Am J Physiol 1993; 265: E708–14

    PubMed  CAS  Google Scholar 

  67. 67.

    Jansson E, Kaijser L. Substrate utilization and enzymes in skeletal muscle of extremely endurance-trained men. J Appl Physiol 1987; 62: 999–1005

    PubMed  CAS  Google Scholar 

  68. 68.

    Leijten PAA, Breeman van C. The effects of caffeine on the noradrenaline-sensitive calcium store in rabbit aorta. J Physiol Lond 1984; 357: 327–39

    PubMed  CAS  Google Scholar 

  69. 69.

    Collomp K, Ahmaidi S, Audran M, et al. Effects of caffeine ingestion on performance and anaerobic metabolism during the Wingate test. Int J Sports Med 1991; 12: 439–43

    PubMed  CAS  Article  Google Scholar 

  70. 70.

    Graham TE, Spriet LL. Performance and metabolic responses to a high caffeine dose during prolonged exercise. J Appl Physiol 1991; 71: 2292–8

    PubMed  CAS  Google Scholar 

  71. 71.

    Graham TE, Spriet LL. Metabolic, catecholamine and exercise performance responses to varying doses of caffeine. J Appl Physiol 1995; 78: 867–74

    PubMed  CAS  Google Scholar 

  72. 72.

    Collomp K, Caillaud C, Audran M, et al. Influence de la prise aiguë ou chronique de cafeine sur la performance et les cate- cholamines au cours d’un exercice maximal. C R Seances Soc Biol Fil 1990; 184: 87–92

    PubMed  CAS  Google Scholar 

  73. 73.

    Berkowitz BA, Spector S. Effect of caffeine and theophylline on peripheral catacholamines. Eur J Pharmacol 1971; 13: 193–6

    PubMed  CAS  Article  Google Scholar 

  74. 74.

    Spriet LL, MacLean DA, Dyck DJ, et al. Caffeine ingestion and muscle metabolism during prolonged exercise in humans. Am J Physiol 1992; 262: E891–8

    PubMed  CAS  Google Scholar 

  75. 75.

    Beavo JA, Rogers NL, Crofford OB, et al. Effects of xanthine derivatives on lipolysis and on adenosine 3′,5′-monophosphate phosphodiesterase activity. Mol Pharmacol 1970; 6: 597–603

    PubMed  CAS  Google Scholar 

  76. 76.

    Fredholm BB. Are methylxanthine effects due to antagonism of endogenous adenosine? Trends Pharmacol Sci 1980; 1: 129–32

    CAS  Article  Google Scholar 

  77. 77.

    Zhang Y, Wells J. The effects of chronic caffeine administration on peripheral adenosine receptors. J Pharmacol Exp Ther 1990; 254: 757–63

    PubMed  CAS  Google Scholar 

  78. 78.

    Chesley A, Hultman E, Spriet LL. Effects of epinephrine infusion on muscle glycogenolysis during intense aerobic exercise. Am J Physiol 1995; 268: E127–34

    PubMed  CAS  Google Scholar 

  79. 79.

    Powers SK, Byrd RJ, Tulley R, et al. Effects of caffeine ingestion on metabolism and performance during graded exercise. Eur J Appl Physiol 1983; 50: 301–7

    CAS  Article  Google Scholar 

  80. 80.

    Sasaki H, Maeda J, Usui S, et al. Effect of sucrose and caffeine ingestion on performance of prolonged strenuous running. Int J Sports Med 1987; 8: 261–5

    PubMed  CAS  Article  Google Scholar 

  81. 81.

    Bellet S, Kershbaum A, Aspe J. The effect of caffeine on free fatty acids. Arch Intern Med 1965; 116: 750–2

    PubMed  CAS  Article  Google Scholar 

  82. 82.

    Bellet S, Kershbaum A, Finck EM. Response of free fatty acids to coffee and caffeine. Metabolism 1968; 17: 702–7

    PubMed  CAS  Article  Google Scholar 

  83. 83.

    Costill DL, Dalsky GP, Fink WJ. Effects of caffeine ingestion on metabolism and exercise performance. Med Sci Sports 1978; 10: 155–8

    PubMed  CAS  Google Scholar 

  84. 84.

    Ivy JL, Costill DL, Fink WJ, et al. Influence of caffeine and carbohydrate feedings on endurance performance. Med Sci Sports 1979; 11: 6–11

    PubMed  CAS  Google Scholar 

  85. 85.

    Acheson KJ, Campbell IT, Edholm OG, et al. The measurement of daily energy expenditure: an evaluation of some techniques. Am J Clin Nutr 1980; 33: 1155–64

    PubMed  CAS  Google Scholar 

  86. 86.

    Essig D, Costill DL, Handel van PJ. Effects of caffeine ingestion on utilization of muscle glycogen and lipid during leg ergometer cycling. Int J Sports Med 1980; 1: 86–90

    CAS  Article  Google Scholar 

  87. 87.

    Knapik JJ, Jones BH, Toner MM, et al. Influence of caffeine on serum substrate changes during running in trained an untrained individuals. In: Knuttgen HG, Vogel J, Poortmans J, editors. Biochemistry of exercise. Champaign (IL): Human Kinetics Publishers, 1983: 514–9

    Google Scholar 

  88. 88.

    Arogyasami J, Yang HT, Winder WW. Effect of caffeine on glycogenolysis during exercise in endurance trained rats. Med Sci Sports Exerc 1989; 21: 173–7

    PubMed  CAS  Google Scholar 

  89. 89.

    Tarnopolsky MA, Atkinson SA, MacDougall JD. Physiological responses to caffeine during endurance running in habitual caffeine users. Med Sci Sports Exerc 1989; 21: 418–24

    PubMed  CAS  Google Scholar 

  90. 90.

    Dodd SL, Brooks E, Powers SK, et al. The effects of caffeine on graded exercise performance in caffeine naive versus habituated subjects. Eur J Appl Physiol 1991; 62: 424–9

    CAS  Article  Google Scholar 

  91. 91.

    Doubt TJ, Hsieh SS. Additive effects of caffeine and cold water during submaximal leg exercise. Med Sci Sports Exerc 1991; 23: 435–42

    PubMed  CAS  Google Scholar 

  92. 92.

    Galbo H, Holst JJ, Christensen NJ. Glucagon and plasma catecholamine responses to graded and prolonged exercise in man. J Appl Physiol 1975; 38: 70–6

    PubMed  CAS  Google Scholar 

  93. 93.

    Toner MM, Kirkendall DT, Delio DJ, et al. Metabolic and cardiovascular responses to exercise with caffeine. Ergonomics 1982; 25: 1175–83

    PubMed  CAS  Article  Google Scholar 

  94. 94.

    Casal DC, Leon AS. Failure of caffeine to affect substrate utilization during prolonged running. Med Sci Sports Exerc 1985; 17: 174–9

    PubMed  CAS  Article  Google Scholar 

  95. 95.

    Winder WW. Effect of intravenous caffeine on liver glycogenolysis during prolonged exercise. Med Sci Sports Exerc 1986; 18: 192–6

    PubMed  CAS  Google Scholar 

  96. 96.

    Weir J, Noakes TD, Myburgh K, et al. A high carbohydrate diet negates the metabolic effect of caffeine during exercise. Med Sci Sports Exerc 1987; 19: 100–5

    PubMed  CAS  Google Scholar 

  97. 97.

    Bond V, Adams R, Balkissoon B, et al. Effects of caffeine on cardiorespiratory function and glucose metabolism during rest and graded exercise. J Sports Med 1987; 27: 47–52

    CAS  Google Scholar 

  98. 98.

    Falk B, Burstein R, Ashkenazi I, et al. The effect of caffeine ingestion on physical performance after prolonged exercise. Eur J Appl Physiol 1989; 59: 168–73

    CAS  Article  Google Scholar 

  99. 99.

    Titlow LW, Ishee JH, Riggs CE. Failure of caffeine to affect metabolism during 60 min submaximal exercise. J Sports Sci 1991; 9: 15–22

    PubMed  CAS  Article  Google Scholar 

  100. 100.

    Engels H-J, Haymes EM. Effects of caffeine ingestion on metabolic responses to prolonged walking in sedentary males. Int J Sport Nutr 1992; 2: 386–96

    PubMed  CAS  Google Scholar 

  101. 101.

    Costill DL, Coyle E, Dalsky G, et al. Effects of elevated plasma FFA and insulin on muscle glycogen usage during exercise. J Appl Physiol 1977; 43: 695–9

    PubMed  CAS  Google Scholar 

  102. 102.

    Anselme F, Collomp K, Mercier B, et al. Caffeine increases maximal anaerobic power and blood lactate concentration. Eur J Appl Physiol 1992; 65: 188–91

    CAS  Article  Google Scholar 

  103. 103.

    Pasman WJ, Baak van MA, Jeukendrup AE, et al. The effect of different dosages of caffeine on endurance performance time. Int J Sports Med 1995; 16: 225–30

    PubMed  CAS  Article  Google Scholar 

  104. 104.

    MacLean PS, Winder WW. Caffeine decreases malonyl-CoA in isolated perfused scheletal muscle of rats. J Appl Physiol 1995; 78: 1496–501

    PubMed  CAS  Google Scholar 

  105. 105.

    Richter EA, Garetto LP, Goodman MN, et al. Enhanced muscle glucose metabolism after exercise: modulation by local factors. Am J Physiol 1984; 246: E476–82

    PubMed  CAS  Google Scholar 

  106. 106.

    Sonne B, Galbo H. Carbohydrate metabolism during and after exercise in rats: studies with radioglucose. J Appl Physiol 1985; 59: 1627–39

    PubMed  CAS  Google Scholar 

  107. 107.

    Issekutz B. Effect of epinephrine on carbohydrate metabolism in exercising dogs. Metabolism 1985; 34: 457–64

    PubMed  CAS  Article  Google Scholar 

  108. 108.

    Winder WW. Control of hepatic glucose production during exercise. Med Sci Sports Exerc 1985; 17: 2–5

    PubMed  CAS  Google Scholar 

  109. 109.

    Gaesser GA, Rich RG. Influence of caffeine on blood lactate response during incremental exercise. Int J Sports Med 1985; 6: 207–11

    PubMed  CAS  Article  Google Scholar 

  110. 110.

    Hoppel CL, Davis AT. Inter-tissue relationship in the synthesis and distribution of carnitine. Biochem Soc Trans 1986; 14: 673–4

    PubMed  CAS  Google Scholar 

  111. 111.

    Fritz IB. The metabolic consequences of the effects of carnitine on long-chain fatty acid oxidation. In: Gran FC, editor. Cellular compartimentalization and control of fatty acid metabolism. New York: Academic Press, 1968: 39–63

    Google Scholar 

  112. 112.

    Soop M, Bjorkman O, Cederblad G, et al. Influence of carnitine supplementation on muscle substrate and carnitine metabolism during exercise. J Appl Physiol 1988; 64: 2394–9

    PubMed  CAS  Google Scholar 

  113. 113.

    Engel AG, Rebouche CJ. Carnitine metabolism and inborn errors. J Inherit Metab Dis 1984; 7: 38–43

    PubMed  CAS  Article  Google Scholar 

  114. 114.

    Janssen GME, Scholte HR, Vaandrager-Verduin MHM, et al. Muscle carnitine level in endurance training and running a marathon. Int J Sports Med. 1989; 10: S153–5

    PubMed  Article  Google Scholar 

  115. 115.

    Maassen N, Schršder der P, Schneider G. Carnitine does not enhance maximum oxygen uptake and does not increase performance in endurance exercise in the range of one hour [abstract]. Int J Sports Med 1995; 15: 375

    Google Scholar 

  116. 116.

    Vukovich MD, Costill DL, Fink WJ. L-carnitine supplementation: effect on muscle carnitine content and glycogen utilization during exercise [abstract]. Med Sci Sports Exerc 1994; 26: S8

    Google Scholar 

  117. 117.

    Vukovich MD, Costill DL, Fink WJ. Carnitine supplementation: effect on muscle carnitine and glycogen content during exercise. Med Sci Sports Exerc 1994; 26: 1122–9

    PubMed  CAS  Google Scholar 

  118. 118.

    Trappe SW, Costill DL, Goodpaster B, et al. The effects of L-carnitine supplementation on performance during interval swimming. Int J Sports Med 1994; 15: 181–5

    PubMed  CAS  Article  Google Scholar 

  119. 119.

    Bach AC, Babayan VK. Medium-chain triglycerides: an update. Am J Clin Nutr 1982, 36: 950–62

    PubMed  CAS  Google Scholar 

  120. 120.

    Beckers EJ, Jeukendrup AE, Brouns F, et al. Gastric emptying of carbohydrate-medium chain triglyceride suspensions at rest. Int J Sports Med 1992; 13: 581–4

    PubMed  CAS  Article  Google Scholar 

  121. 121.

    Emken EA. Metabolism of dietary stearic acid relative to other fatty acids in human subjects. Am J Clin Nutr 1994; 60 Suppl.: 1023S–8S

    PubMed  CAS  Google Scholar 

  122. 122.

    Ivy JL, Costill DL, Fink WJ, et al. Contribution of medium and long chain triglyceride intake to energy metabolism during prolonged exercise. Int J Sports Med 1980; 1: 15–20

    CAS  Article  Google Scholar 

  123. 123.

    Décombaz J, Arnaud MJ, Milon H, et al. Energy metabolism of medium chain triglycerides versus carbohydrate during exercise. Eur J Appl Physiol 1983; 52: 9–14

    Article  Google Scholar 

  124. 124.

    Satabin P, Portero P, Defer G, et al. Metabolic and hormonal responses to lipid and carbohydrate diets during exercise in man. Med Sci Sports Exerc 1987; 19: 218–23

    PubMed  CAS  Google Scholar 

  125. 125.

    Horowitz JF, Mora-Rodriguez R, Coyle EF. The effect of preexercise medium-chain triglyceride ingestion on muscle glycogen utilization during high intensity exercise. Med Sci Sports Exerc 1995; 27: S203

    Google Scholar 

  126. 126.

    Massicotte D, Peronnet F, Brisson GR, et al. Oxidation of exogenous medium-chain free fatty acids during prolonged exercise: comparison with glucose. J Appl Physiol 1992; 73: 1334–9

    PubMed  CAS  Google Scholar 

  127. 127.

    Jeukendrup AE, Saris WHM, Schrauwen P, et al. Metabolic availability of medium chain triglycerides co-ingested with carbohydrates during prolonged exercise. J Appl Physiol 1995; 79: 756–62

    PubMed  CAS  Google Scholar 

  128. 128.

    Jeukendrup AE, Wagenmakers AJM, Brouns F, et al. Effects of carbohydrate (CHO) and fat supplementation on CHO metabolism during prolonged exercise. Metabolism 1996; 45: 915–21

    PubMed  CAS  Article  Google Scholar 

  129. 129.

    Jeukendrup AE, Saris WHM, Van Diesen R, et al. Effect of endogenous carbohydrate availability on oral medium-chain triglyceride oxidation during prolonged exercise. J Appl Physiol 1996; 80: 949–54

    PubMed  CAS  Google Scholar 

  130. 130.

    Van Zyl CG, Lambert EV, Hawley JA, et al. Effects of mediumchain triglyceride ingestion on carbohydrate metabolism and cycling performance. J Appl Physiol 1996; 80: 2217–25

    PubMed  Google Scholar 

  131. 131.

    Jeukendrup AE, Thielen JJ, Wagenmakers AJM, et al. Effect of MCT and carbohydrate ingestion on substrate utilization and cycling performance. Am J Clin Nutr 1998; 67: 397–404

    PubMed  CAS  Google Scholar 

  132. 132.

    Costill DL, Coyle EF, Dalsky G, et al. Effects of elevated plasma FFA and insulin on muscle glycogen usage during exercise. J Appl Physiol 1977; 43: 695–9

    PubMed  CAS  Google Scholar 

  133. 133.

    Vukovich MD, Costill DL, Hickey MS, et al. Effect of fat emulsion infusion and fat feeding on muscle glycogen utilization during cycle exercise. J Appl Physiol 1993; 75: 1513–8

    PubMed  CAS  Google Scholar 

  134. 134.

    Dyck DJ, Putman CT, Heigenhauser JGF, et al. Regulation of fat-carbohydrate interaction in skeletal muscle during intense aerobic cycling. Am J Physiol 1993; 265: E852–9

    PubMed  CAS  Google Scholar 

  135. 135.

    Ravussin E, Bogardus CK, Scheidegger K, et al. Effect of elevated FFA on carbohydate and lipid oxidation during prolonged exercise in humans. J Appl Physiol 1986; 60: 893–900

    PubMed  CAS  Google Scholar 

  136. 136.

    Dohm GL, Tapscott EB, Barakat HA, et al. Influence of fasting on glycogen depletion in rats during exercise. J Appl Physiol 1983; 55: 830–3

    PubMed  CAS  Google Scholar 

  137. 137.

    Koubi HE, Desplanches D, Gabrielle C, et al. Exercise endurance and fuel utilization: a reevaluation of the effects of fasting. J Appl Physiol 1991; 70: 1337–43

    PubMed  CAS  Article  Google Scholar 

  138. 138.

    Ladu MJ. Regulation of lipoprotein lipase in muscle and adipose tissue during exercise. J Appl Physiol 1991; 71: 404–9

    PubMed  CAS  Google Scholar 

  139. 139.

    Loy SF, Conlee RK, Winder WW, et al. Effect of 24-hour fast on cycling endurance time at two different intensities. J Appl Physiol 1986; 61: 654–9

    PubMed  CAS  Google Scholar 

  140. 140.

    Christensen EH, Hansen O. Zur Methodik der respiratorischen Quotientbestimmung in Ruhe und bei Arbeit. III: Arbeitsfahigkeit und Ernahrung. Scand Arch Physiol 1939; 81: 160–71

    Article  Google Scholar 

  141. 141.

    Bergstrom J, Hermansen L, Hultman E, et al. Diet, muscle glycogen and physical performance. Acta Physiol Scand 1967; 71: 140–50

    PubMed  CAS  Article  Google Scholar 

  142. 142.

    Galbo H, Holst JJ, Christensen NJ. The effect of different diets and of insulin on the hormonal response to prolonged exercise. Acta Physiol Scand 1979; 107: 19–32

    PubMed  CAS  Article  Google Scholar 

  143. 143.

    Johannessen A, Hagen C, Galbo H. Proloactin, growth hormone, thyrotropin, 3,5,3′- triiodothryronine, and thryxine responses to exercise after fat-and carbohydrate-enriched diets. J Clin Endocrin Metab 1981; 52: 56–61

    CAS  Article  Google Scholar 

  144. 144.

    Muoio DM, Leddy JJ, Horvath PJ, et al. Effect of dietary fat on metabolic adjustments to maximal VO2 and endurance in runners. Med Sci Sports Exerc 1994; 26: 81–8

    PubMed  CAS  Google Scholar 

  145. 145.

    Jansson E, Kaijser L. Effect of diet on the utilization of bloodborne and intramuscular substrates during exercise in man. Acta Physiol Scand 1982; 115: 19–30

    PubMed  CAS  Article  Google Scholar 

  146. 146.

    Starling RD, Trappe TA, Parcell AC, et al. Effects of diet on muscle triglyceride and endurance performance. J Appl Physiol 1997; 82: 1185–9

    PubMed  CAS  Google Scholar 

  147. 147.

    Hawley JA, Dennis, Lindsay FH, et al. Nutritional practices of athletes: are they suboptimal? J Sports Sci 1995; 13: S75–S81

    PubMed  Article  Google Scholar 

  148. 148.

    Lambert EV, Speechly DP, Dennis SC, et al. Enhanced endurance in trained cyclists during moderate intensity exercise following 2 weeks adaptation to a high fat diet. Eur J Appl Physiol 1994; 69: 287–93

    CAS  Article  Google Scholar 

  149. 149.

    van Zyl C, Murphy K, Hawley JA, et al. Effects of a high-fat diet prior to carbohydrate loading on metabolism and cycling performance. Eur J Appl Physiol 1998. In press

    Google Scholar 

  150. 150.

    Phinney SD, Bistrian BR, Evans WF. The human metabolic response to chronic ketosis without caloric restriction: preservation of submaximal exercise capacity with reduced carbohydrate oxidation. Metabolism 1983; 32: 769–76

    PubMed  CAS  Article  Google Scholar 

  151. 151.

    Helge JW, Richter EA, Kiens B. Interaction of training and diet on metabolism and endurance during exercise in man. J Physiol 1996; 492: 293–306

    PubMed  CAS  Google Scholar 

  152. 152.

    Pruett EDR. Glucose and insulin during prolonged work stress in men living on different diets. J Appl Physiol 1970; 28: 199–208

    PubMed  CAS  Google Scholar 

  153. 153.

    Conlee RK. Muscle glycogen and exercise endurance: a twentyyear perspective. In: Pandolph KB, editor. Exercise and sport sciences reviews. New York: Macmillan, 1987: 1–28

    Google Scholar 

  154. 154.

    Kronfeld DS. Diet and the performance of racing sled dogs. J Am Vet Med Assoc 1973; 162: 470–3

    PubMed  CAS  Google Scholar 

  155. 155.

    Hawley JA, Hopkins WG. Aerobic glycolytic and aerobic lipolytic power systems: a new paradigm with implications for endurance and ultraendurance events. Sports Med 1995; 19: 240–50

    PubMed  CAS  Article  Google Scholar 

  156. 156.

    Brouns F, van der Vusse L. Limitations in the role of fat as energy source for physical endurance activities. Br J Nutr 1998; 79: 117–28

    PubMed  CAS  Article  Google Scholar 

  157. 157.

    Jeukendrup AE. Fat metabolism during exercise: a review. In: Aspects of carbohydrate and fat metabolism. Haarlem: De Vrieseborch, 1997: 21–71

    Google Scholar 

  158. 158.

    Sarna S, Kaprio J. Life expectancy of former athletes. Sports Med 1994; 17: 149–51

    PubMed  CAS  Article  Google Scholar 

  159. 159.

    Sternfeld B. Cancer and the protective effect of physical activity: the epidemiological evidence. Med Sci Sports Exerc 1992; 24: 195–209

    Google Scholar 

  160. 160.

    Kraegen EW, Clark PW, Jenkins AB, et al. Development of muscle insulin resistance after insulin resistance in high-fatfed rats. Diabetes 1991; 40: 1397–403

    PubMed  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dr John A. Hawley.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hawley, J.A., Brouns, F. & Jeukendrup, A. Strategies to Enhance Fat Utilisation During Exercise. Sports Med. 25, 241–257 (1998). https://doi.org/10.2165/00007256-199825040-00003

Download citation

Keywords

  • Caffeine
  • Adis International Limited
  • Carnitine
  • Muscle Glycogen
  • Caffeine Ingestion