Flexibility and Its Effects on Sports Injury and Performance

Summary

Flexibility measures can be static [end of ROM (range of motion)], dynamic-passive (stiffness/compliance) or dynamic-active (muscle contracted, stiffness/compliance). Dynamic measures of flexibility are less dependent on patient discomfort and are more objective. Acute and chronic changes in flexibility are likely to occur with stretching exercises, but it is difficult to distinguish between changes in stretch tolerance as opposed to changes in muscle stiffness. How flexibility is measured impacts these findings. There is no scientifically based prescription for flexibility training and no conclusive statements can be made about the relationship of flexibility to athletic injury.

The literature reports opposing findings from different samples, frequently does not distinguish between strain, sprain and overuse injury, and rarely uses the proper denominator of exposure.There is basic scientific evidence to suggest that active warm-up may be protective against muscle strain injury but clinical research is equivocal on this point. Typically, specific flexibility patterns are associated with specific sports and even positions within sports. The relationship of flexibility to athletic performance is likely to be sport-dependent. Decreased flexibility has been associated with increased in-line running and walking economy. Increased stiffness may be associated with increased isometric and concentric force generation, and muscle energy storage may be best manifested by closely matching muscle stiffness to the frequency of movement in stretch-shorten type contractions.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    The American Orthopaedic Society for Sports Medicine. Flexibility. Chicago: The American Orthopaedic Society for Sports Medicine, 1988

    Google Scholar 

  2. 2.

    Litsky AS, Spector M. Biomaterials. In: Simon SR, editor. Orthopaedic basic science. Chicago: The American Orthopaedic Society for Sports Medicine, 1994: 447–86

    Google Scholar 

  3. 3.

    Kippers V, Parker AW. Toe-touch test: a measure of its validity. Phys Ther 1987 Nov; 67(11): 1680–4

    PubMed  CAS  Google Scholar 

  4. 4.

    Jackson AW, Baker AA. The relationship of the sit and reach test to criterion measures of hamstring and back flexibility in young females. Res Q Exerc Sport 1986; 57: 183–6

    Google Scholar 

  5. 5.

    Broer MR, Galles NRG. Importance of relationship between various body measurements in performance of the toe-touch test. Res Q 1958; 29: 253–63

    Google Scholar 

  6. 6.

    Nicholas JA. Injuries to knee ligaments: relationship to looseness and tightness in football players. JAMA 1970 Jun; 212(13): 2236–9

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Gleim GW. The profiling of professional football players. Clin Sports Med 1984 Jan; 3(1): 185–97

    PubMed  CAS  Google Scholar 

  8. 8.

    Gleim GW, Stachenfeld NS, Nicholas JA. The influence of flexibility on the economy of walking and jogging. J Orthop Res 1990 Aug; 8: 814–23

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Gadjosik RL. Passive compliance and length of clinically short hamstring muscles of healthy men. Clin Biomech 1991 Jun; 6: 239–44

    Article  Google Scholar 

  10. 10.

    Gadjosik RL, Giuliani CA, Bohanon RW. Passive compliance and length of the hamstring muscles of healthy men and women. Clin Biomech 1990 May; 5: 23–9

    Article  Google Scholar 

  11. 11.

    McHugh MP, Kremenic IJ, Fox MB, et al. The relationship of linear stiffness of human muscle to maximum joint range of motion. Med Sci Sports Exerc 1996 May; 28(5 Suppl.): S77

    Google Scholar 

  12. 12.

    Cavagna GA. Elastic bounce of the body. J Appl Physiol 1970; 29: 279–82

    PubMed  CAS  Google Scholar 

  13. 13.

    Wilson GJ, Wood GA, Elliott BC. The relationship between stiffness of the musculature and static flexibility: an alternative explanation for the occurrence of muscular injury. Int J Sports Med 1991 Apr; 12(4): 403–7

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    McHugh MP, Magnusson SP, Gleim GW, et al. Viscoelastic stress relaxation in human skeletal muscle. Med Sci Sports Exerc 1992 Dec; 24: 1375–82

    PubMed  CAS  Google Scholar 

  15. 15.

    Magnusson SP, Simonsen EB, Aagaard P, et al. Biomechanical responses to repeated stretches in human skeletal muscle in vivo. Am J Sports Med 1996; 24(5): 622–8

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Safran MR, Garrett WE, Seaber AV, et al. The role of warmup in muscular injury prevention. Am J Sports Med 1988 Feb; 16: 123–9

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Liemohn W. Flexibility/range of motion. In: Durstin JL, King AC, Painter PL, et al. ACSM resource manual for guidelines for exercise testing and prescription. 2nd ed. Philadelphia (PA): Lea and Febiger, 1993: 327–36

    Google Scholar 

  18. 18.

    De Vries HA. Evaluation of static stretching procedures for improvement of flexibility. Res Q 1962; 33(2): 222–9

    Google Scholar 

  19. 19.

    Etnyre BR, Lee EJ. Chronic and acute flexibility of men and women using three different stretching techniques. Res Q Exerc Sci 1988; 59(3): 222–8

    Google Scholar 

  20. 20.

    Hardy L. Improving active range of hip flexion. Res Q Exerc Sci 1985; 56(2): 111–4

    Google Scholar 

  21. 21.

    Tanigawa MC. Comparison of the hold-relax procedure and passive mobilisation on increasing muscle length. Phys Ther 1972; 52(7): 725–35

    PubMed  CAS  Google Scholar 

  22. 22.

    Hutton RS. Neuromuscular basis of stretching exercises. In: Komi PV, editor. Strength and power in sport. London: Black-well Scientific Publications, 1992: 29–38

    Google Scholar 

  23. 23.

    Toft E, Espersen GT, Kalund S, et al. Passive tension of the ankle before and after stretching. Am J Sports Med 1989 Apr; 17: 489–94

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Halbertsma JPK, Goeken LNH. Stretching exercises: effect of passive extensibility and stiffness in short hamstrings of healthy subjects. Arch Phys Med Rehabil 1994 Sep; 75: 976–81

    PubMed  CAS  Google Scholar 

  25. 25.

    Magnusson SP, Simonsen EB, Aagaard P, et al. A mechanism for altered flexibility in human skeletal muscle. J Physiol. In press

  26. 26.

    Klinge K, Magnusson SP, Simonsen EB, et al. The effect of strength and flexibility on skeletal muscle EMG activity, stiffness and viscoelastic stress relaxation response. Am J Sports Med. In press

  27. 27.

    Lapier TK, Burton HW, Almon RF. Alterations in intramuscular connective tissue after limb casting affect contraction-induced muscle injury. J Appl Physiol 1995; 78: 1065–9

    PubMed  CAS  Google Scholar 

  28. 28.

    Gillette PD, Fell RD. Passive tension in rat hindlimb during suspension unloading and recovery: muscle/joint contributions. J Appl Physiol 1996; 81(2): 724–30

    PubMed  CAS  Google Scholar 

  29. 29.

    McHugh MP, Magnusson SP, Gleim GW, et al. Across-sectional study of age-related musculoskeletal and physiological changes in soccer players. Med Exerc Nutr Health 1993; 2: 261–8

    Google Scholar 

  30. 30.

    Haywood KM, Williams K. Age, gender and flexibility differences in tennis serving among experienced older adults. J Aging Phys Activity 1995; 3(1): 54–66

    Google Scholar 

  31. 31.

    Girouard CK, Hurley BF. Does strength training inhibit gains in range of motion from flexibility training in older adults. Med Sci Sports Exerc 1995 Oct; 27(10): 1444–9

    PubMed  CAS  Google Scholar 

  32. 32.

    Worrell TW, Perrin DH, Gansneder B, et al. Comparison of isokinetic strength and flexibility measures between hamstring injured and non-injured athletes. J Orthop Sports Phys Ther 1991; 13: 118–25

    PubMed  CAS  Google Scholar 

  33. 33.

    Worell TW, Perrin DH. Hamstring muscle injury: the influence of strength, flexibility, warm-up, and fatigue. J Orthop Sports Phys Ther 1992; 16: 12–8

    Google Scholar 

  34. 34.

    Smith CA. The warm-up procedure: to stretch or not to stretch. A brief review. J Orthop Sports Phys Ther 1994; 19(1): 12–7

    PubMed  CAS  Google Scholar 

  35. 35.

    Sutton G. Hamstrung by hamstring strains: a review of the literature. J Orthop Sports Phys Ther 1984; 5(4): 184–95

    PubMed  CAS  Google Scholar 

  36. 36.

    Ekstrand J, Gillquist J, Liljedahl S-O. Prevention of soccer injuries. Am J Sports Med 1983; 11(3): 116–24

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    van Mechelen W, Jlobil H, Kemper HCG, et al. Prevention of running injuries by warm-up, cool-down, and stretching exercises. Am J Sports Med 1993; 21(5): 711–9

    PubMed  Article  Google Scholar 

  38. 38.

    Ekstrand J, Gillquist J. The avoidability of soccer injuries. Int J Sports Med 1983; 4(2): 124–8

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Liemohn W. Factors related to hamstring strains. J Sports Med Phys Fitness 1978; 18(1): 71–6

    PubMed  CAS  Google Scholar 

  40. 40.

    Kirby RL, Simms FC, Symington VJ, et al. Flexibility and musculoskeletal symptomatology in female gymnasts and age-matched controls. Am J Sports Med 1981; 9(3): 160–4

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Ekstrand J, Gillquist J. The frequency of muscle tightness and injuries in soccer players. Am J Sports Med 1982; 19(2): 75–8

    Article  Google Scholar 

  42. 42.

    Clement DB, Taunton JE, Smart GW. Achilles tendinitis and peritendinitis: aetiology and treatment. Am J Sports Med 1984; 12(3): 179–84

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Jacobs SJ, Berson BL. Injuries to runners: a study of entrants to a 10,000 meter race. Am J Sports Med 1986; 14(2): 151–5

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Reid DC, Burnham RS, Saboe LA, et al. Lower extremity flexibility patterns in classical ballet dancers and their correlation to lateral hip and knee injuries. Am J Sports Med 1987; 15(4): 347–52

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Giladi M, Milgrom C, Stein M, et al. External rotation of the hip. A predictor of risk for stress fractures. Clin Orthop 1987; 216: 131–4

    PubMed  Google Scholar 

  46. 46.

    Weber M, Baumann JU. Muscle contractures of football players — relationship with knee complaints and the effect of stretching exercises. Schweiz Z Sportmed 1988; 36: 175–8

    PubMed  CAS  Google Scholar 

  47. 47.

    Knapik JJ, Bauman CL, Jones BH, et al. Preseason strength and flexibility imbalances associated with athletic injuries in female collegiate athletes. Am J Sports Med 1991; 19(1): 76–81

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Jones BH, Cowan DN, Tomlinson JP, et al. Epidemiology of injuries associated with physical training among young men in the army. Med Sci Sports Exerc 1993; 25(2): 197–203

    PubMed  CAS  Google Scholar 

  49. 49.

    Hennessy L, Watson AWS. Flexibility and posture assessment in relation to hamstring injury. Br J Sports Med 1993; 27(4): 243–6

    Article  Google Scholar 

  50. 50.

    Maffulli N, King JB, Helms P. Training in elite young athletes (the training of young athletes (TOYA) study): injuries, flexibility and isometric strength. Br J Sports Med 1994; 28(2): 123–36

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Krivickas LS, Feinberg JH. Lower extremity injuries in college athletes: relation between ligamentous laxity and lower extremity muscle tightness. Arch Phys Med Rehabil 1996; 77: 1139–43

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Wiesler ER, Hunter DM, Martin DF, et al. Ankle flexibility and injury patterns in dancers. Am J Sports Med 1996; 24(6): 754–7

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Garrett WE, Safran MR, Seaber AV, et al. Biomechanical comparison of stimulated and nonstimulated skeletal muscle pulled to failure. Am J Sports Med 1987 May; 15: 448–54

    PubMed  Article  Google Scholar 

  54. 54.

    Hasselman CT, Best TM, Seaber AV, et al. A threshold and continuum of injury during active stretch of rabbit skeletal muscle. Am J Sports Med 1995 Jan; 23: 65–73

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Kovanen V, Suominen H. Effects of aging and life-long endurance training on the passive mechanical properties of rat skeletal muscle. Compr Gerentol 1988; 2: 18–23

    CAS  Google Scholar 

  56. 56.

    Mair SD, Seaber AV, Glisson RR, et al. The role of fatigue in susceptibility to acute muscle strain injury. Am J Sports Med 1996 Feb; 24: 137–43

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Nikolaou PK, MacDonald BL, Glisson RL, et al. Biomechanical and histological evaluation of muscle after controlled strain injury. Am J Sports Med 1987; 15: 9–14

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Noonan TJ, Best TM, Seaber AV, et al. Thermal effects on skeletal muscle tensile behaviour [Andrish JT; discussion]. Am J Sports Med 1993; 21(4): 517–22

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Noonan TJ, Best TM, Seaber AV, et al. Identification of a threshold for skeletal muscle injury. Am J Sports Med 1994; 22(4): 257–61

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Safran MR, Garrett WE, Seaber AV, et al. The role of warmup in muscular injury prevention. Am J Sports Med 1988; 16(2): 123–9

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Strickler T, Malone T, Garrett WE. The effects of passive warming on muscle injury. Am J Sports Med 1990; 18(2): 141–5

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Taylor DC, Dalton JD, Seaber AV, et al. Experimental muscle strain injury: early functional and structural deficits and the increased risk for reinjury. Am J Sports Med 1993; 21(2): 190–4

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Anderson B, Burke ER. Scientific, medical and practical aspects of stretching. In: DiNubile NA, editor. The exercise prescription. Clin Sports Med 1989; 10: 63–86

    Google Scholar 

  64. 64.

    Worrell TW. Factors associated with hamstring injuries: an approach to treatment and preventative measures. Sports Med 1994 May; 17: 338–45

    PubMed  Article  CAS  Google Scholar 

  65. 65.

    Garrett WE, Califf JC, Bassett FH. Histochemical correlates of hamstring injuries. Am J Sports Med 1984; 12(2): 98–103

    PubMed  Article  Google Scholar 

  66. 66.

    Garrett WE, Rich R, Nikolaou PK, et al. Computed tomography of hamstring muscle strains. Med Sci Sports Exerc 1989; 21: 506–14

    PubMed  Google Scholar 

  67. 67.

    Speer KP, Lohnes J, Garrett WE. Radiographic imaging of muscle strain injury. Am J Sports Med 1993; 21(1): 89–96

    PubMed  Article  CAS  Google Scholar 

  68. 68.

    Seward H, Orchard J, Hazard H, et al. Football injuries in Australia at the elite level. Med J Aust 1993; 159: 298–301

    PubMed  CAS  Google Scholar 

  69. 69.

    Jonhagen S, Nemeth G, Eriksson E. Hamstring injuries in sprinters: the role of concentric and eccentric hamstring strength and flexibility. Am J Sports Med 1994; 22(2): 262–6

    PubMed  Article  CAS  Google Scholar 

  70. 70.

    Oberg B, Ekstrand J, Moller M, et al. Muscle strength and flexibility in different positions of soccer players. Int J Sports Med 1984; 5: 213–6

    PubMed  Article  CAS  Google Scholar 

  71. 71.

    Mangine RE, Noyes FR, Mullen MP, et al. A physiological profile of the elite soccer athlete. J Orthop Sports Phys Ther 1990; 12(4): 147–52

    PubMed  CAS  Google Scholar 

  72. 72.

    Sprague HA. Relationship of certain physical measurements to swimming speed. Res Q 1976 Dec; 47(4): 810–4

    PubMed  CAS  Google Scholar 

  73. 73.

    Magnusson SP, Gleim GW, Nicholas JA. Shoulder weakness in professional baseball pitchers. Med Sci Sports Exerc 1994; 26(1): 5–9

    PubMed  CAS  Google Scholar 

  74. 74.

    Thys H, Cavagna GA, Margaria R. The role played by elasticity in an exercise involving movements of small amplitude. Pflugers Arch 1975; 354: 281–6

    PubMed  Article  CAS  Google Scholar 

  75. 75.

    Shorten MR. Muscle elasticity and human performance. Med Sport Sci 1987; 25: 1–18

    Google Scholar 

  76. 76.

    Komi PV. Stretch-shortening cycle. In: Komi PV, editor. Strength and power in sport. London: Blackwell Scientific Publications, 1992: 169–79

    Google Scholar 

  77. 77.

    Bobbert MF, Gerritsen KGM, Litjens CA, et al. Why is countermovement jump height greater than squat jump height? Med Sci Sports Exerc 1996 Nov; 28: 1402–12

    PubMed  Article  CAS  Google Scholar 

  78. 78.

    Komi PV, Bosco C. Utilisation of stored elastic energy in leg extensor muscles by men and women. Med Sci Sports Exerc 1978; 10(4): 261–5

    CAS  Google Scholar 

  79. 79.

    Lian O, Engebretsen L, Ovrebo RV, et al. Characteristics of the leg extensors in male volleyball players with jumpers knee. Am J Sports Med 1996 May–Jun; 24(3): 380–5

    PubMed  Article  CAS  Google Scholar 

  80. 80.

    Wilson GJ, Wood GA, Elliot BC. Optimal stiffness of the series elastic component in a stretch-shorten cycle activity. J Appl Physiol 1991; 70: 825–33

    PubMed  CAS  Google Scholar 

  81. 81.

    Wilson GJ, Elliott BC, Wood GA. Stretch-shorten cycle performance enhancement through flexibility training. Med Sci Sports Med 1992 Jan; 24: 116–23

    CAS  Google Scholar 

  82. 82.

    Wilson GJ, Murphy AJ, Pryor JF. Musculotendinous stiffness: its relationship to eccentric, isometric and concentric performance. J Appl Physiol 1994; 76(6): 2714–9

    PubMed  CAS  Google Scholar 

  83. 83.

    Toft E, Sinkjaer T, Rasmussen A. Stretch reflex variation in the relaxed and the pre-activated quadriceps muscle of normal humans. Acta Neurol Scand 1991; 84: 311–5

    PubMed  Article  CAS  Google Scholar 

  84. 84.

    devries HA. The ‘looseness’ factor in speed and O2 consumption of an anaerobic 100-yard dash. Res Q 1963; 34(4): 305–13

    Google Scholar 

  85. 85.

    Farley CT, McMahon TA. Energetics of walking and running: insights from simulated reduced-gravity experiments. J Appl Physiol 1992; 73(6): 2709–12

    PubMed  CAS  Google Scholar 

  86. 86.

    McMahon TA, Valiant G, Frederick EC. Groucho running. J Appl Physiol 1987; 62(6): 2326–37

    PubMed  CAS  Google Scholar 

  87. 87.

    Craib MW, Mitchell VA, Fields KB, et al. The association between flexibility and running economy in sub-elite male distance runners. Med Sci Sports Exerc 1996; 28(6): 737–43

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dr Gilbert W. Gleim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gleim, G.W., McHugh, M.P. Flexibility and Its Effects on Sports Injury and Performance. Sports Med 24, 289–299 (1997). https://doi.org/10.2165/00007256-199724050-00001

Download citation

Keywords

  • Adis International Limited
  • Soccer Player
  • Hamstring Injury
  • Passive Stiffness
  • Static Flexibility