Carbohydrate-Loading and Exercise Performance

An Update

Summary

This review suggests that there is little or no effect of elevating pre-exercise muscle glycogen contents above normal resting values on a single exhaustive bout of high-intensity exercise lasting less than 5 minutes. Nor is there any benefit of increasing starting muscle glycogen content on moderate-intensity running or cycling lasting 60 to 90 minutes. In such exercise substantial quantities of glycogen remain in the working muscles at the end of exercise. However, elevated starting muscle glycogen content will postpone fatigue by ≈20% in endurance events lasting more than 90 minutes. During this type of exercise, exhaustion usually coincides with critically low (25 mmol/kg wet weight) muscle glycogen contents, suggesting the supply of energy from glycogen utilisation cannot be replaced by an increased oxidation of blood glucose. Glycogen supercompensation may also improve endurance performance in which a set distance is covered as quickly as possible. In such exercise, high carbohydrate diets have been reported to improve performance by 2 to 3%.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Christensen EH, Hansen O. Arbeitsfähigkeit und Errichtung. Skandinavische Archiv für Physiologie 1939; 8: 160–71

    Article  Google Scholar 

  2. 2.

    Bergstrom J, Hultman E. Muscle glycogen synthesis after exercise: An enhancing factor localised to the muscle cells in man. Nature 1966; 210: 309–10

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Bergstrom J, Hermansen L, Hultman E, et al. Diet, muscle glycogen and physical performance. Acta Physiol Scand 1967; 71: 140–50

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Ahlborg B, Bergstrom J, Brohult J, et al. Human muscle glycogen content and capacity for prolonged exercise after different diets [in Swedish]. Foersvarsmedicin 1967; 85-99

  5. 5.

    Hermanssen L, Hultman E, Saltin B. Muscle glycogen during prolonged severe exercise. Acta Physiol Scand 1967; 129-39

  6. 6.

    Sherman WM, Costill DL, Fink WJ et al. The effect of exercise and diet manipulation on muscle glycogen and its subsequent use during performance. Int J Sports Med 1981; 2: 114–8

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Bergstrom J, Hultman E, Roch-Norlund AE. Muscle glycogen synthase in normal subjects: basal values, effect of glycogen depletion by exercise and of a carbohydrate-rich diet following exercise. Scand J Clin Lab Invest 1972; 29: 231–6

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Costill DL, Sherman WM, Fink WJ et al. The role of dietary carbohydrates in muscle glycogen resynthesis after strenuous running. Am J Clin Nutr 1981; 34: 1831–6

    PubMed  CAS  Google Scholar 

  9. 9.

    Madsen K, Pedersen PK, Rose P, et al. Carbohydrate super-compensation and muscle glycogen utilization during exhaustive running in highly trained athletes. Eur J Appl Physiol 1990; 61: 467–72

    Article  CAS  Google Scholar 

  10. 10.

    Olsson KE, Saltin B. Variations in total body water with muscle glycogen changes in man following exercise. Acta Physiol Scand 1970; 80: 11–8

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Sherman WM, Plyley MJ, Sharp RL, et al. Muscle glycogen storage and its relationship with water. Int J Sports Med 1982; 3: 22–4

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Hawley JA, Palmer G, Noakes TD, et al. Effect of carbohydrate supplementation on muscle glycogen content and subsequent utilisation during 1 hr cycle time trial. Eur J Appl Physiol 1997; 75(5): 407–12

    Article  CAS  Google Scholar 

  13. 13.

    Lamb DR, Snyder AC, Baur TS. Muscle glycogen loading with a liquid carbohydrate supplement. Int J Sport Nutr 1991; 1: 52–60

    PubMed  CAS  Google Scholar 

  14. 14.

    Rauch LH, Rodger I, Wilson GR, et al. The effects of carbohydrate loading on muscle glycogen content and cycling performance. Int J Sport Nutr 1995; 5: 25–36

    PubMed  CAS  Google Scholar 

  15. 15.

    Roedde S, MacDougall JD, Sutton JR, et al. Supercompensation of muscle glycogen in trained and untrained subjects. Can J Appl Sports Sci 1986; 11: 42–6

    CAS  Google Scholar 

  16. 16.

    Tremblay A, Sevigny J, Jobin M, et al. Diet and muscle glycogen in vastus lateralis of runners for the marathon. J Can Dietetic Assoc 1980; 41: 128–35

    Google Scholar 

  17. 17.

    Tarnopolsky MA, Atkinson SA, Phillips SM, et al. Carbohydrate loading and metabolism during exercise in men and women. J Appl Physiol 1995; 78: 1360–8

    PubMed  CAS  Google Scholar 

  18. 18.

    McLellan TM, Cheung SS, Jacobs I. Variability of time to exhaustion during submaximal exercise. Can J Appl Physiol 1995; 20: 39–51

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Jeukendrup A, Saris WHM, Brouns F, et al. A new validated endurance performance test. Med Sci Sports Exerc 1996; 28: 266–70

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Palmer GS, Dennis SC, Noakes TD, et al. Assessment of the reproducibility of performance testing on an air-braked cycle ergometer. Int J Sports Med 1996; 4: 293–8

    Article  Google Scholar 

  21. 21.

    Gollnick PD. Selective glycogen depletion pattern in human muscle fibers after exercise of varying intensity and at varying pedalling rates. J Physiol 1974; 241: 45–57

    PubMed  CAS  Google Scholar 

  22. 22.

    Saltin B, Karlsson J. Muscle glycogen utilization after work of different intensities. In Pernow B, Saltin B, editors. Muscle metabolism during exercise. New York: Plenum Press, 1971: 289–300

    Google Scholar 

  23. 23.

    Cheetham ME, Boobis LH, Brooks S, et al. Human muscle metabolism during sprint running. J Appl Physiol 1986; 61: 54–60

    PubMed  CAS  Google Scholar 

  24. 24.

    Sahlin K. Intracellular pH and energy metabolism in skeletal muscle. Acta Physiol Scand 1978; Suppl. 455

  25. 25.

    Astrand PO, Hallback I, Hedman R, et al. Blood lactates after prolonged severe exercise. J Appl Physiol 1963; 18: 619–22

    CAS  Google Scholar 

  26. 26.

    Heigenhauser GJF, Sutton JR, Jones NL. Effect of glycogen depletion on the ventilatory response to exercise. J Appl Physiol 1983; 54: 470–4

    PubMed  CAS  Google Scholar 

  27. 27.

    Bosch AN, Dennis SC, Noakes TD. Influence of carbohydrate loading on fuel substrate turnover and oxidation during prolonged exercise. J Appl Physiol 1993; 74: 1921–7

    PubMed  CAS  Google Scholar 

  28. 28.

    Gollnick PD. Energy metabolism and prolonged exercise. In: Lamb DR, Murray R, editors. Perspectives in exercise science and sports medicine. Volume 1: prolonged exercise. Indianapolis: Benchmark Press Inc., 1988: 1–42

    Google Scholar 

  29. 29.

    Hawley JA, Hopkins WG. Aerobic glycolytic and aerobic lipolytic power systems. A new paradigm with implications for endurance and ultraendurance events. Sports Med 1995; 19(4): 240–50

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Edwards HT, Margaria R, Dill DB. Metabolic rate, blood sugar and the utilization of carbohydrate. Am J Physiol 1934; 108: 203–9

    CAS  Google Scholar 

  31. 31.

    Van den berghe K, Hespel P, Vanden Eynde B, et al. No effect of glycogen level on glycogen metabolism during high intensity exercise. Med Sci Sports Exerc 1995; 27: 1278–83

    Google Scholar 

  32. 32.

    Maughan RJ, Poole DC. The effects of a glycogen-loading regimen on the capacity to perform anaerobic exercise. Eur J Appl Physiol 1981; 46: 211–9

    Article  CAS  Google Scholar 

  33. 33.

    Greenhaff PL, Gleeson M, Maughan RJ. The effects of dietary manipulation on blood acid-base status and performance of high intensity exercise. Eur J Appl Physiol 1987; 56: 331–7

    Article  CAS  Google Scholar 

  34. 34.

    Greenhaff PL, Gleeson M, Whiting PH, et al. Dietary composition and acid-base status: limiting factors in the performance of maximal exercise in man? Eur J Appl Physiol 1987; 56: 444–50

    Article  CAS  Google Scholar 

  35. 35.

    Greenhaff PL, Gleeson M, Maughan RJ. Diet-induced acidosis and the performance of high intensity exercise in man. Eur J Appl Physiol 1988; 57: 583–90

    Article  CAS  Google Scholar 

  36. 36.

    Hawley JA, Dennis SC, Lindsay FH, et al. Nutritional practices of athletes: are they sub-optimal? J Sports Sci 1995; 13: S63–74

    Article  Google Scholar 

  37. 37.

    Pizza FX, Flynn MG, Duscha BD, et al. A carbohydrate loading regimen improves high intensity, short duration exercise performance. Int J Sport Nutr 1995; 5: 110–6

    PubMed  CAS  Google Scholar 

  38. 38.

    Sutton JR, Jones NL, Toews CJ. Effect of pH on muscle glycolysis during exercise. Clin Sci 1981; 61: 331–8

    PubMed  CAS  Google Scholar 

  39. 39.

    Galbo H, Holst J, Christensen NJ. The effect of different diets and of insulin on the hormonal response to prolonged exercise. Acta Physiol Scand 1967; 107: 19–32

    Article  Google Scholar 

  40. 40.

    Brewer J, Williams C, Patton A. The influence of high carbohydrate diets on endurance running performance. Eur J Appl Physiol 1988; 57: 698–706

    Article  CAS  Google Scholar 

  41. 41.

    Karlsson J, Saltin B. Diet, muscle glycogen, and endurance performance. J Appl Physiol 1971; 31: 203–6

    PubMed  CAS  Google Scholar 

  42. 42.

    Williams C, Brewer J, Walker M. The effect of a high carbohydrate diet on running performance during a 30-km treadmill time trial. Eur J Appl Physiol 1992; 65: 18–24

    Article  CAS  Google Scholar 

  43. 43.

    Widrick JJ, Costill DL, Fink WJ, et al. Carbohydrate feedings and exercise performance: effect of initial muscle glycogen concentration. J Appl Physiol 1993; 74: 2998–3005

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to John A. Hawley PhD.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hawley, J.A., Schabort, E.J., Noakes, T.D. et al. Carbohydrate-Loading and Exercise Performance. Sports Med. 24, 73–81 (1997). https://doi.org/10.2165/00007256-199724020-00001

Download citation

Keywords

  • HCHO
  • Muscle Glycogen
  • Prolonged Exercise
  • High Intensity Exercise
  • Muscle Glycogen Content