Skip to main content

Advertisement

Log in

Body Composition of Spinal Cord Injured Adults

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

The prevalence of diseases associated with obesity, such as cardiovascular disease and diabetes mellitus, is higher in the spinal cord injury (SCI) population. Specifically, the mortality rate for cardiovascular disease is 228% higher in the SCI population. In addition, 100% of SCI individuals have osteoporosis in the paralysed extremities. These diseases are related to physical activity level, the level of the spinal cord lesion, and time post injury. Physically active SCI men and women have above-average fat mass (16 to 24% and 24 to 32%, respectively, compared with 15% for able-bodied men and 23% for able-bodied women), while sedentary SCI individuals have ‘at-risk’ levels of body fat (above 25% and 32%, respectively).

The proportions and densities of the 3 main constituents comprising the fat-free body (mineral, protein and water) are altered following SCI. Bone mineral content decreases by 25 to 50%, and the magnitude of reduction is dependent on the level, completeness and duration of SCI. Because of denervation resulting in skeletal muscle atrophy, total body protein reduces by 30%, and total body water relative to body weight decreases by 15% following SCI.

Indirect methods based on 2-component body composition models assume constant proportions and densities of mineral, protein, and water in the fat-free body. As a result, prediction equations based on 2-component models yield invalid estimates of fat and fat-free mass in the SCI population. Therefore, future research needs to directly quantify the proportions and densities of the constituents of the fat-free body in the SCI population relative to age, sex, physical activity level, level of the spinal cord lesion and time post injury, and to develop equations based on multicomponent body composition models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilmore JH. Body composition in sport and exercise: directions for future research. Med Sci Sports Exerc 1983; 15: 21–31

    PubMed  CAS  Google Scholar 

  2. Smith DM, Khairi MR, Norton J, et al. Age and activity effects on the rate of bone mineral loss. J Clin Nutr 1976; 58: 716–21

    CAS  Google Scholar 

  3. US Department of Health and Human Services. Healthy people 2000, national health promotion and disease prevention objectives, DHHS Publication No. 90-50212. Washington, DC: US Government Printing Office, 1990

  4. Cardus D, McTaggart WG. Body composition in spinal cord injury. Arch Phys Med Rehabil 1985; 66: 257–9

    Article  PubMed  CAS  Google Scholar 

  5. Cardus D, McTaggart WG. Body sodium and potassium in men with spinal cord injury. Arch Phys Med Rehabil 1985; 66: 156–9

    Article  PubMed  CAS  Google Scholar 

  6. Hancock DA, Reed GW, Atkinson PJ, et al. Bone and soft tissue changes in paraplegic patients. Paraplegia 1980; 17: 267–71

    Article  Google Scholar 

  7. Olle MM, Pivarnik JM, Klish WJ, et al. Body composition of sedentary and physically active spinal cord injured individuals estimated from total body electrical conductivity. Arch Phys Med Rehabil 1993; 74: 706–10

    Article  PubMed  CAS  Google Scholar 

  8. Rasmann Nuhlicek DN, Spurr GB, Barboriak JJ, et al. Body composition of patients with spinal cord injury. Euro J Clin Nutr 1988; 42: 765–73

    Google Scholar 

  9. Spungen AM, Bauman WA, Wang J, et al. The relationship between total body potassium and resting energy expenditure in individuals with paraplegia. Arch Phys Med Rehabil 1993; 74: 965–8

    PubMed  CAS  Google Scholar 

  10. Bergmann P, Heilporn A, Schoutens A, et al. Longitudinal’study of calcium and bone metabolism in paraplegic patients. Paraplegia 1978; 15: 147–59

    Article  Google Scholar 

  11. Biering-Sorensen F, Bohr H, Schaadt O. Bone mineral content of the lumbar spine and lower extremities years after spinal cord lesion. Paraplegia 1988; 26: 293–301

    Article  PubMed  CAS  Google Scholar 

  12. Claus-Walker J, Halstead LS. Metabolic and endocrine changes in spinal cord injury: IV. Compounded neurologic dysfunctions. Arch Phys Med Rehabil 1982; 63: 632–8

    PubMed  CAS  Google Scholar 

  13. Chaintraine A. Actual concept of osteoporosis in paraplegia. Paraplegia 1978; 16:51–8

    Article  Google Scholar 

  14. Finsen V, Indredavik B, Fougner KJ. Bone mineral and hormone status in paraplegics. Paraplegia 1992; 30: 343–7

    Article  PubMed  CAS  Google Scholar 

  15. Griffiths HF, D’Orsi CJ, Zimmerman RE. Use of 126I photon scanning in the evaluation of bone density in a group of patients with spinal cord injury. Invest Radiol 1972; 7: 107–11

    Article  PubMed  CAS  Google Scholar 

  16. Naftchi NE, Viau AT, Sell GH, et al. Mineral metabolism in spinal cord injury. Arch Phys Med Rehabil 1980; 61: 139–42

    PubMed  CAS  Google Scholar 

  17. Bauman WA, Spungen AM, Raza M, et al. Coronary artery disease: metabolic risk factors and latent disease in individuals with paraplegia. Mt Sinai J Med 1992; 59: 163–8

    PubMed  CAS  Google Scholar 

  18. Chumlea WC, Baumgartner RN, Roche AE Specific resistivity used to estimate fat-free mass from segmental body measures of bioelectrical impedance. Am J Clin Nutr 1988; 48: 7–15

    PubMed  CAS  Google Scholar 

  19. Deurenberg P, Weststrate JA, van der Kooy K. Body composition changes assessed by bioelectrical impedance measurements. Am J Clin Nutr 1989; 49: 401–3

    PubMed  CAS  Google Scholar 

  20. Gray DS, Bray GA, Gemayel N, et al. Effect of obesity on bioelectrical impedance. Am J Clin Nutr 1989; 50: 255–60

    PubMed  CAS  Google Scholar 

  21. Khalad MA, McCutcheon MJ, Reddy S, et al. Electrical impedance in assessing human body composition: the BIA method. Am J Clin Nutr 1988; 47: 789–92

    Google Scholar 

  22. Kushner RF, Schoeller DA. Estimation of total body water by bioelectrical impedance analysis. Am J Clin Nutr 1986; 44: 417–24

    PubMed  CAS  Google Scholar 

  23. Lohman TG. Advances in body composition assessment. In: Current issues in exercise science series, Monograph No. 3. Champaign (H): Human Kinetics Publishers, 1992

    Google Scholar 

  24. Lukaski HC, Johnson PE, Bolonchuk WW, et al. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr 1985; 41: 810–17

    PubMed  CAS  Google Scholar 

  25. Rising R, Swinburn B, Larson K, et al. Body composition in Pima Indians: validation of bioelectrical resistance. Am J Clin Nutr 1991; 53: 594–8

    PubMed  CAS  Google Scholar 

  26. Segal KR, Gutin B, Presta E, et al. Estimation of human body composition by electrical impedance methods: a comparative study. J Appl Physiol 1985; 58: 1565–71

    PubMed  CAS  Google Scholar 

  27. Van Loan MD. Bioelectrical impedance analysis to determine fat-free mass, total body water and body fat. Sports Med 1990; 10(4): 205–17

    Article  PubMed  Google Scholar 

  28. Van Loan MD, Mayclin PL. Bioelectrical impedance analysis: is it a reliable estimator of lean body mass and total body water?. Hum Biol 1987; 59: 299–309

    PubMed  Google Scholar 

  29. Baumgartner RN, Heymsfield SB, Lichtman S, et al. Body composition in elderly people: effect of criterion estimates onpredictive equations. Am J Clin Nutr 1991; 53: 1–9

    Google Scholar 

  30. Wang J, Heymsfield SB, Aulet M, et al. Body fat from body density: underwater weighing vs. dual-photon absorptiometry. Am J Physiol 1989; 256: E829–34

    PubMed  CAS  Google Scholar 

  31. Hubert HB, Fienleib M, McNamara PM, et al. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham study. Circulation 1983; 67: 968–77

    Article  PubMed  CAS  Google Scholar 

  32. Van Itallie TB. Health implications of overweight and obesity in the United States. Med Sci Sports Exerc 1985; 103: 983–8

    Google Scholar 

  33. National Institutes of Health. Health implications of obesity: National Institutes of Health consensus development statement. Ann Intern Med 1985; 103: 1073–7

    Google Scholar 

  34. Di Vivo MJ, Black EJ, Stover SL. Causes of death during the first 12 years after spinal cord injury. Arch Phys Med Rehabil 1993; 74: 248–54

    Google Scholar 

  35. Duckworth WC, Solomon SS, Jallepalli P, et al. Glucose intolerance due to insulin resistance in patients with spinal cord injuries. Diabetes 1980; 29: 906–10

    Article  PubMed  CAS  Google Scholar 

  36. Duckworth WC, Jallepalli P, Sollomon SS. Glucose intolerance in spinal cord injury. Arch Phys Med Rehabil 1983; 64: 107–10

    PubMed  CAS  Google Scholar 

  37. Krum JM, Howes LG, Brown DJ, et al. Risk factors for cardiovascular disease in chronic spinal cord injury patients. Paraplegia 1992; 30: 381–8

    Article  PubMed  CAS  Google Scholar 

  38. Le CT, Price M. Survival from spinal cord injury. J Chronic Dis 1982; 35: 487–92

    Article  PubMed  CAS  Google Scholar 

  39. George CM, Wells CL, Dugan NL. Validity of hydrodensitometry for determination of body composition in spinal injured subjects. Hum Biol 1988; 60: 771–80

    PubMed  CAS  Google Scholar 

  40. Ide M, Ogata H, Kobayashi M, et al. Anthropometric features of wheelchair marathon race competitors with spinal cord injuries. Paraplegia 1994; 32: 174–9

    Article  PubMed  CAS  Google Scholar 

  41. Bulbulian R, Johnson RE, Gruber JJ, et al. Body composition in paraplegic male athletes. Med Sci Sports Exerc 1987; 19: 195–201

    PubMed  CAS  Google Scholar 

  42. Lussier L, Knight J, Bell G, et al. Body composition comparison in two elite female wheelchair athletes. Paraplegia 1983; 21: 16–22

    Article  PubMed  CAS  Google Scholar 

  43. Brenes G, Dearwater MS, Shapera R. High density lipoprotein cholesterol concentrations in physically active and sedentary spinal cord injured patients. Arch Phys Med Rehabil 1986; 67: 445–50

    PubMed  CAS  Google Scholar 

  44. King ML, Freeman M, Pellicone JT, et al. Exertional hypotension in thoracic spinal cord injury: case report. Paraplegia 1992; 30: 261–6

    Article  PubMed  CAS  Google Scholar 

  45. Davis GM. Exercise capacity of individuals with paraplegia. Med Sci Sports Exerc 1993; 25: 423–32

    PubMed  CAS  Google Scholar 

  46. Figoni SF. Exercise responses and quadriplegia. Med Sci Sports Exerc 1993; 25: 433–41

    PubMed  CAS  Google Scholar 

  47. Imai K, Kadowaki T, Aizawa Y, et al. Morbidity rates of complications in persons with spinal cord injury according to the site of injury and with special reference to hypertension. Paraplegia 1994; 32: 246–52

    Article  PubMed  CAS  Google Scholar 

  48. Yekutiel M, Brooks ME, Ohry A, et al. The prevalence of hypertension, ischaemic heart disease and diabetes in traumatic spinal cord injured patients and amputees. Paraplegia 1989; 27: 58–62

    Article  PubMed  CAS  Google Scholar 

  49. Barlascini CO, Schmitt JK, Adler RA. Insulin pump treatment of type I diabetes mellitus in a patient with C6 quadriplegia. Arch Phys Med Rehabil 1989: 70: 58–60

    PubMed  CAS  Google Scholar 

  50. Kaplan PE, Gandhavadi B, Richards L, et al. Calcium balance in paraplegic patients: influence of injury duration and ambu-lation. Arch Phys Med Rehabil 1978; 59: 447–50

    PubMed  CAS  Google Scholar 

  51. Forbes RM, Cooper AR, Mitchell HH. The composition of the adult human body as determined by chemical analysis. J Biol Chem 1953; 203: 259–66

    Google Scholar 

  52. Siri WE. The gross composition of the body. In: Tobias CA, Lawrence JH, editors. Advances in biological and medical physics. New York: Academic Press, 1956: 239–80

    Google Scholar 

  53. Deck-Cote K, Adams WC. Effect of bone density on body composition estimates in young adult black and white women. Med Sci Sports Exerc 1993; 25: 290–6

    Google Scholar 

  54. Hicks VL, Heyward VH, Baumgartner RN, et al. Body composition of Native American women estimated by dual-energy x-ray absorptiometry and hydrodensitometry. In: Ellis KJ, Eastman JD, editors. Human body composition: in vivo methods, models and assessment. New York: Plenum Publishing, 1993: 89–92

    Google Scholar 

  55. Ortiz O, Russell M, Daley TL, et al. Differences in skeletal muscle and bone mineral mass between black and white females and their relevance to estimates of body composition. Am J Clin Nutr 1992; 55: 8–13

    PubMed  CAS  Google Scholar 

  56. Cassar-Pullicino VN, McClelland M, Badwan DA, et al. Sonographic diagnosis of heterotrophic bone formation in spinal injury patients. Paraplegia 1993; 31: 40–50

    Article  PubMed  CAS  Google Scholar 

  57. Moore FD, Boyden CM. The body cell mass and its supporting environments: body composition in health and disease. Philadelphia: WB Saunders, 1993

    Google Scholar 

  58. Cohn SH, Vaswani AN, Yasumura S. Improved models for determination of body fat by in vivo neutron activation. Am J Clin Nutr 1984; 40: 255

    PubMed  CAS  Google Scholar 

  59. Heymsfield SB, Waki M, Kehayias J. Chemical and elemental analysis of humans in vivo using improved body composition models. Am J Physiol 1991; 261: E190

    PubMed  CAS  Google Scholar 

  60. Cardus D, McTaggart WG. Total body water and its distribution in men with spinal cord injury. Arch Phys Med Rehabil 1984; 65: 509–12

    PubMed  CAS  Google Scholar 

  61. Chantraine A, Delwaide PA. Hydroelectrolytic determination in paraplegics. Paraplegia 1976; 14: 138–45

    Article  PubMed  CAS  Google Scholar 

  62. Ditunno JF, Formal CS. Chronic spinal cord injury. N Engl J Med 1994; 330: 550–6

    Article  PubMed  Google Scholar 

  63. Cardus D, McTaggart WG. Electric impedance measurements in quadriplegia. Arch Phys Med Rehabil 1988; 69: 186–7

    PubMed  CAS  Google Scholar 

  64. Lukaski HC. Soft tissue composition and bone mineral status: evaluation by dual-energy x-ray absorptiometry. J Nutr 1993; 123: 438–43

    PubMed  CAS  Google Scholar 

  65. Roubenoff R, Kehayias JJ, Dawson-Hughes B, et al. Use of dual-energy x-ray absorptiometry in body-composition studies: not yet a ‘gold standard’. Am J Clin Nutr 1993; 58:589–91

    PubMed  CAS  Google Scholar 

  66. Friedl KE, DeLuca JP, Marchitelli LJ, et al. Reliability of body fat estimations from a four-component model by using density, body water, and bone mineral measurements. Am J Clin Nutr 1992; 55: 764–70

    PubMed  CAS  Google Scholar 

  67. Going SB, Massett MP, Hall MC, et al. Detection of small changes in body composition by dual-energy x-ray absorptiometry. Am J Clin Nutr 1993; 57: 845–50

    PubMed  CAS  Google Scholar 

  68. Hansen NJ, Lohman TG, Going SB, et al. Prediction of body composition in premenopausal females using dual-energy x-ray absorptiometry. J Appl Physiol 1993; 75: 1637–41

    PubMed  CAS  Google Scholar 

  69. Kohrt WM. Body composition by DXA: tried and true?. Med Sci Sports Exerc 1995; 27: 1349–52

    PubMed  CAS  Google Scholar 

  70. Krebs JM, Schneider VS, Evans H, et al. Energy absorption, lean body mass, and total body fat changes during 5 weeks of continuous bed rest. Aviat Space Environ Med 1990; 61: 314–8

    PubMed  CAS  Google Scholar 

  71. Suzuki Y, Murakami T, Haruna Y, et al. Effects of 10 and 20 days bed rest on leg muscle mass and strength in young subjects. Acta Physiol Scand 1994; 150: 5–18

    Google Scholar 

  72. Brozek J, Keys A. Evaluation of leanness-fatness in man: Norms and interrelationships. Br J Nutr 1951; 5: 194–206

    Article  PubMed  CAS  Google Scholar 

  73. Hayes PA, Sowood PJ, Belyavin A, et al. Subcutaneous fat thickness measured by magnetic resonance imaging, ultrasound, and calipers. Med Sci Sports Exerc 1988; 20: 303–9

    Article  PubMed  CAS  Google Scholar 

  74. Jackson AS. Research design and analysis of data procedures for predicting body density. Med Sci Sports Exerc 1984; 16: 616–20

    PubMed  CAS  Google Scholar 

  75. Jackson AS, Pollock ML. Factor analysis and multivariate scaling of anthropometrie variables for the assessment of body composition. Med Sci Sports Exerc 1976; 8: 196–203

    Article  CAS  Google Scholar 

  76. Lohman TG. Skinfolds and body density and their relation to body fatness: a review. Hum Biol 1981; 53: 181–225

    PubMed  CAS  Google Scholar 

  77. Quatrochi JA, Hicks VL, Heyward VH, et al. Relationship of optical density and skinfold measurements: effects of age and level of body fatness. Res Q Exerc Sport 1992; 63: 402–9

    PubMed  CAS  Google Scholar 

  78. Fortney SM, Hyatt KH, Davis JE, et al. Changes in body fluid compartments during a 28-day bed rest. Aviat Space Environ Med 1991; 62: 97–104

    PubMed  CAS  Google Scholar 

  79. Nishimura Y, Fukuoka H, Kiriyama M, et al. Bone turnover and calcium metabolism during 20 days bed rest in young healthy males and females. Acta Physiol Scand 1994; 150: 27–35

    Article  Google Scholar 

  80. Lukaski HC, Bolonchuk WW. Estimation of body fluid volumes using tetrapolar bioelectrical impedance measurements. Aviat Space Environ Med 1988; 59: 1163–9

    PubMed  CAS  Google Scholar 

  81. Kushner RF. Bioelectrical impedance analysis: A review of principles and applications. J Am Coll Nutr 1992; 11:199–209

    PubMed  CAS  Google Scholar 

  82. Deurenberg P, Küsters CS, Smit HE. Assessment of body composition by bioelectrical impedance in children and young adults is strongly age-dependent. Eur J Clin Nutr 1990; 44: 261–8

    PubMed  CAS  Google Scholar 

  83. Houtkooper LB, Lohman TG, Going SB, et al. Validity of bioelectric impedance for body composition assessment in children. J Appl Physiol 1989; 66: 814–21

    PubMed  CAS  Google Scholar 

  84. Stolarczyk LM, Heyward VH, Hicks VL, et al. Predictive accuracy of bioelectrical impedance in estimating body composition of Native American women. Am J Clin Nutr 1994; 59: 964–70

    PubMed  CAS  Google Scholar 

  85. Baumgartner RN, Chumlea WC, Roche AF. Bioelectric impedance phase angle and body composition. Am J Clin Nutr 1988; 48: 16–23

    PubMed  CAS  Google Scholar 

  86. Hooker SP, Wells CL. Effects of low- and moderate-intensity training in spinal cord-injured persons. Med Sci Sports Exerc 1989; 21: 18–22

    Article  PubMed  CAS  Google Scholar 

  87. Cowell LL, Squires WG, Raven PB. Benefits of aerobic exercise for the paraplegic: a brief review. Med Sci Sports Exerc 1986; 18: 505–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kocina, P. Body Composition of Spinal Cord Injured Adults. Sports Med. 23, 48–60 (1997). https://doi.org/10.2165/00007256-199723010-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199723010-00005

Keywords

Navigation