Skip to main content

Advertisement

Log in

Effects of Exercise on Blood Coagulation, Fibrinolysis and Platelet Aggregation

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

Disturbances of the haemostatic balance may result in thrombosis or bleeding tendency. There have been abundant reports on the effects of exercise on blood haemostasis, but the results reported have been conflicting and difficult to interpret. This review outlines and critically evaluates the relevant literature on the effects of short term exercise and physical training on the 3 systems of blood haemostasis i.e. blood coagulation, fibrinolysis and platelet aggregation.

Short term exercise is usually associated with a significant shortening of activated partial thromboplastin time (APTT) and a marked increase in factor VIII (FVIII). The rise in FVIII is directly related to exercise intensity and the individuals’ training status. Exercise also induces a significant increase in blood fibrinolysis which is dependent on exercise intensity, duration and training condition. The rise in blood fibrinolysis is mainly due to an increase in tissue-type plasminogen activator (t-PA) and a decrease in its main inhibitor plasminogen activator inhibitor (PAI-1) which are released from the endothelial cells of the vessel wall.

Platelet count increases in exercise and this is probably due to a fresh release of platelets from the spleen, bone marrow and lungs. Studies on the effects of exercise on platelet aggregation and markers of platelet activation have produced conflicting results, and the exact effects of exercise remain as yet undetermined. It is suggested that short term exercise activates blood coagulation and enhances blood fibrinolysis and the delicate balance between clot formation and clot dissolution is maintained in normal populations. No valid conclusion could be reached regarding the actual effects of physical training on blood coagulation, fibrinolysis and platelet aggregation. This is undoubtedly due to variations in training programmes employed, populations studied, and the analytical methods used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hamsten A. The hemostatic system and coronary heart disease. Thromb Res 1993; 70: 1–38

    PubMed  CAS  Google Scholar 

  2. Salomaa V, Rasi V, Pekkanen J, et al. Haemostatic factors and prevalent coronary heart disease; the FINRISK haemostasis study. Eur Heart J 1994; 15: 1293–9

    PubMed  CAS  Google Scholar 

  3. Kienast J. Coagulation and fibrinolysis: from plasma to vessel wall. Cerebrovasc Dis 1995; 5: 89–92

    Google Scholar 

  4. El-Sayed MS, Rattu AJM. Changes in lipid profile variables in response to submaximal and maximal exercise in trained cyclists. Eur J Appl Physiol 1996; 73: 88–92

    CAS  Google Scholar 

  5. El-Sayed MS, Lin X, Rattu AJM. Blood coagulation and fibrinolysis at rest and in response to maximal exercise before and after a physical conditioning programme. Blood Coagul Fibrinolysis 1996; 6: 747–52

    Google Scholar 

  6. Furie B, Furie BC. Molecular and cellular biology of blood coagulation. N Engl J Med 1992; 800–6

    Google Scholar 

  7. Esnouf MP. Biochemistry of blood coagulation. Br Med Bull 1977; 33: 213–8

    PubMed  CAS  Google Scholar 

  8. El-Sayed MS. Studies on the fibrinolytic response to exercise and venous occlusion in man [PhD thesis]. Salford: Salford University, 1983

    Google Scholar 

  9. Booth NA. The natural inhibitors of fibrinolysis. In: Bloom AL, Forbes CD, editors. Haemostasis and thrombosis. Edinburgh: Churchill Livingstone, 1994; 699–717

    Google Scholar 

  10. Shaper AG, Wannamethee G. Physical activity and ischaemic heart disease in middle-aged British men. Br Heart J 1991; 384–9

    Google Scholar 

  11. Ferguson EW, Bernier LL, Banta GR, et al. Effects of exercise and conditioning on clotting and fibrinolytic activity in men. J Appl Physiol 1987; 62: 1416–21

    PubMed  CAS  Google Scholar 

  12. Arai M, Yorifuji H, Ikematsu S, et al. Influences of strenuous exercise on blood coagulation and fibrinolytic system. Thromb Res 1990; 57: 465–71

    PubMed  CAS  Google Scholar 

  13. Hansen JB, Wilsgard L, Olsen JO, et al. Formation and persistence of procoagulant and fibrinolytic activities in circulation after strenuous physical exercise. Thromb Haemos 1990; 64: 385–9

    CAS  Google Scholar 

  14. Hyers TM, Martin BJ, Pratt DS, et al. Enhanced thrombin and plasmin activity with exercise in man. J Appl Physiol 1980; 48: 821–5

    PubMed  CAS  Google Scholar 

  15. Handa K, Terao Y, Mori T, et al. Different coagulability and fibrinolytic activity during exercise depending on exercise intensities. Thromb Res 1992; 66: 613–6

    PubMed  CAS  Google Scholar 

  16. Bartsch P, Welsch B, Albert M, et al. Balanced activation of coagulation and fibrinolysis after a 2-h triathlon. Med Sci Sports Exerc 1995; 27: 1465–70

    PubMed  CAS  Google Scholar 

  17. Bartsch P, Haeberli A, Straub PW. Blood coagulation after long distance running: antithrombin III prevents fibrin formation. Thromb Haemos 1990; 63: 430–4

    CAS  Google Scholar 

  18. Herren T, Bartsch P, Haeberli A, et al. Increased thrombin-anti-thrombin III complexes after 1 h of physical exercise. J Appl Physiol 1992; 73: 2499–504

    PubMed  CAS  Google Scholar 

  19. Molz AB, Heyduck B, Lill H, et al. The effect of different exercise intensities on the fibrinolytic system. Eur J Appl Physiol 1993; 67: 298–304

    CAS  Google Scholar 

  20. Rocker L, Taenzer M, Drygas WK, et al. Effect of prolonged physical exercise on the fibrinolytic system. Eur J Appl Physiol 1990; 60: 478–81

    CAS  Google Scholar 

  21. Davis GL, Abildgaard CT, Bernauer EM, et al. Fibrinolytic and hemostatic changes during and after maximal exercise in males. J Appl Physiol 1976; 40: 287–92

    PubMed  CAS  Google Scholar 

  22. Wheeler ME, Davis GL, Gillespie WJ, et al. Physiological changes in hemostasis associate with acute exercise. J Appl Physiol 1986; 60: 986–90

    PubMed  CAS  Google Scholar 

  23. Andrew M, Carter C, O’Brodovich H, et al. Increases in factor VIII complex and fibrinolytic activity are dependent on exercise intensity. J Appl Physiol 1986; 60: 1917–22

    PubMed  CAS  Google Scholar 

  24. El-Sayed MS. Fibrinolytic and hemostatic parameter response after resistance exercise. Med Sci Sports Exerc 1993; 25: 597–602

    PubMed  CAS  Google Scholar 

  25. Hoyer LW, Trabold NC. The effect of thrombin on human factor VIII: cleavage of the factor VIII procoagulant protein during activation. J Lab Clin Med 1981; 97: 50–64

    PubMed  CAS  Google Scholar 

  26. Egeberg O. The effect of exercise on the blood clotting system. Scand J Clin Lab Invest 1963; 15: 8–13

    Google Scholar 

  27. Ferguson EW, Barr CF, Bemier LL. Fibrinogenolysis and fibrinolysis with strenuous exercise. J Appl Physiol 1979; 47: 1157–61

    PubMed  CAS  Google Scholar 

  28. El-Sayed MS, Davies B. A physical conditioning program does not alter fibrinogen concentration in young healthy subjects. Med Sci Sports Exerc 1995; 27: 485–9

    PubMed  CAS  Google Scholar 

  29. De Paz JA, Lasierra J, Villa JG, et al. Changes in the fibrinolytic system associated with physical conditioning. Eur J Appl Physiol 1992; 65: 388–93

    Google Scholar 

  30. Rankinen T, Vaisanen S, Penttila I, et al. Acute dynamic exercise increases fibrinolytic activity. Thromb Haemos 1995; 73: 281–6

    CAS  Google Scholar 

  31. Watts EJ. Haemostatic changes in long-distance runners and their relevance to the prevention of ischaemic heart disease. Blood Coagul Fibrinolysis 1991; 2: 221–5

    PubMed  CAS  Google Scholar 

  32. Collen D, Semeraro N, Tricot JP, et al. Turnover of fibrinogen, plasminogen and prothrombin during exercise in man. J Appl Physiol 1977; 42: 865–73

    PubMed  CAS  Google Scholar 

  33. Speiser W, Langer W, Pschaick A, et al. Increased blood fibrinolytic activity after physical exercise: comparative study in individuals with different sporting activities and in patients after myocardial infarction taking part in a rehabilitation sports program. Thromb Res 1988; 51: 543–55

    PubMed  CAS  Google Scholar 

  34. Ponjee GAE, Janssen GME, van Wersch WJ. Prolonged endurance exercise and blood coagulation: a 9 month prospective study. Blood Coagul Fibrinolysis 1993; 4: 21–5

    PubMed  CAS  Google Scholar 

  35. Loon BJ, Briet E, Heere L, et al. Fibrinolytic system during long-distance running in IDDM patients and in health subjects. Diabetes Care 1992; 15: 991–6

    PubMed  Google Scholar 

  36. Suzuki T, Yamauchi K, Yamada Y, et al. Blood coagulability and fibrinolytic activity before and after physical training during the recovery phase of acute myocardial infarction. Clin Cardiol 1992; 15: 358–64

    PubMed  CAS  Google Scholar 

  37. Jootar S, Chaisiripoomkere W, Thaikla O, et al. Effect of running exercise on haematological changes, hematopoietic cells (CFU-GM) and fibrinolytic system in humans. J Med Assc Thai 1992; 75: 94–8

    CAS  Google Scholar 

  38. Martin DG, Ferguson EW, Wigutoff S, et al. Blood viscosity responses to maximal exercise in endurance trained and sedentary female subjects. J Appl Physiol 1985; 59: 348–53

    PubMed  CAS  Google Scholar 

  39. Bounameaux H, Righetti A, Moerloose PD, et al. Effects of exercise test on plasma markers of an activation of coagulation and/or fibrinolysis in patients with symptomatic or silent myocardial ischaemia. Thromb Res 1992; 65: 27–32

    PubMed  CAS  Google Scholar 

  40. Prisco D, Paniccia R, Guarnaccia V, et al. Thrombin generation after physical exercise. Thromb Res 1993; 69: 159–64

    PubMed  CAS  Google Scholar 

  41. Dufaux B, Order U, Liesen H. Effect of a short maximal physical exercise on coagulation, fibrinolysis, and complement system. Int J Sports Med 1991; 12 Suppl.: S38–S42

    PubMed  Google Scholar 

  42. Rocker L, Drygas WK, Heyduck B. Blood platelet activation and increase in thrombin activity following a marathon race. Eur J Appl Physiol 1986; 55: 374–80

    CAS  Google Scholar 

  43. Mandalaki T, Dessypris A, Louizou C, et al. Marathon run I: effects on coagulation, fibrinolysis, platelet aggregation and serum Cortisol levels. Thromb Haemos 1980; 43: 49–52

    CAS  Google Scholar 

  44. Huisveld lA, Hospers AJH, Bernink MJE, et al. Oral contraceptives and fibrinolysis among female cyclists before and after exercise. J Appl Physiol 1982; 53: 330–4

    PubMed  CAS  Google Scholar 

  45. Hunter J. A treatise on blood, inflamation and gunshot wounds. London: C. Nicholl, 1794

    Google Scholar 

  46. Biggs R, Macfarlane RG, Pilling J. Observartions on fibrinolysis: experimental activity produced by exercise or adrenaline. Lancet 1947; I: 402–5

    Google Scholar 

  47. Small M, Tweddel AC, Rankin AC, et al. Blood coagulation and platelet function following maximal exercise: effects of Betaadrenoreceptor blockade. Haemostasis 1984; 14: 262–8

    PubMed  CAS  Google Scholar 

  48. Bartsch P, Schmidt EK, Straub PW. Fibrinopeptide A after strenuous exercise at high altitude. J Appl Physiol 1982; 53: 40–3

    PubMed  CAS  Google Scholar 

  49. Gough SCL, Whitworth S, Rice PJS, et al. The effect of exercise and heart rate on fibrinolytic activity. Blood Coagul Fibrinolysis 1992; 3: 179–82

    PubMed  CAS  Google Scholar 

  50. Szymanski LM, Pate RR. Effect of exercise intensity, duration, and time of day on fibrinolytic activity in physically active men. Med Sci Sports Exerc 1994; 26: 1102–8

    PubMed  CAS  Google Scholar 

  51. Vind J, Gleerup G, Nielsen PT, et al. The impact of static work on fibrinolysis and platelet function. Thromb Res 1993; 72: 441–6

    PubMed  CAS  Google Scholar 

  52. Dooijewaard G, Boer AD, Turion PNC, et al. Physical exercise induces enhancement of urokinase-type plasminogen activator (u-PA) levels in plasma. Thromb Haemos 1991; 65: 82–6

    CAS  Google Scholar 

  53. Van den Burg PJM, Dooijewaard G, Van Vliet M, et al. Differences in u-PA and t-PA increase during acute exercise: relation with exercise parameters. Thromb Haemos 1994; 71: 236–9

    Google Scholar 

  54. El-Sayed MS, Davies B. Effect of two formulaions of beta blocker on fibrinolytic response to maximum exercise. Med Sci Sports Exerc 1989; 21: 369–73

    PubMed  CAS  Google Scholar 

  55. El-Sayed MS. Extrinsic plasminogen activator response to exercise after a single dose of propanolol. Med Sci Sports Exerc 1992; 24: 327–32

    PubMed  CAS  Google Scholar 

  56. El-Sayed MS. Exercise intensity-related responses of fibrinolytic activity and vasopressin in man. Med Sci Sports Exerc 1990; 22: 494–500

    PubMed  CAS  Google Scholar 

  57. Schneider SH, Kim HC, Khachadurian AK, et al. Impaired fibrinolytic response to exercise in type II diabetes: effects of exercise and physical training. Metabolism 1988; 37: 924–9

    PubMed  CAS  Google Scholar 

  58. Jansson JH, Johansson B, Boman K, et al. Hypofibrinolysis in patients with hypertension and elevated cholesterol. J Intern Med 1991; 229: 309–16

    PubMed  CAS  Google Scholar 

  59. Hansen JB, Svensson B, Zhang CL, et al. Basal plasma concentration of tissue plasminogen activator (t-PA) and the adaptation to strenuous exercise in familial hypercholesterolaemia (FH). Blood Coagul Fibrinolysis 1994; 5: 781–7

    PubMed  CAS  Google Scholar 

  60. Rydzewski A, Sakata K, Kobayashi A, et al. Changes in plasminogen activator inhibitor 1 and tissue-type plasminogen activator during exercise in patients with coronary artery disease. Haemostasis 1990; 20: 305–12

    PubMed  CAS  Google Scholar 

  61. Levin EG. Latent tissue plasminogen activator produced by human endothelial cells in culture: evidence for an enzyme-inhibitor complex. Proc Natl Acad Sci USA 1983; 80: 6804–8

    PubMed  CAS  Google Scholar 

  62. De Paz JA, Villa JG, Vilades E, et al. Effects of oral contraceptives on fibrinolytic response to exercise. Med Sci Sports Exerc 1995; 27: 961–6

    PubMed  Google Scholar 

  63. Stegnar M, Peternel P, Chen JP. Acute hypoxemia does not increase blood fibrinolytic activity in man. Thromb Res 1987; 45: 333–43

    PubMed  CAS  Google Scholar 

  64. Szymanski LM, Pate RR, Durstine JL. Effects of maximal exercise and venous occlusion on fibrinolytic activity in physically active and inactive men. J Appl Physiol 1994; 77: 2305–10

    PubMed  CAS  Google Scholar 

  65. Drygas WK. Changes in blood platelet function, coagulation, and fibrinolytic activity in response to moderate, exhaustive, and prolonged exercise. Int J Sports Med 1988; 9: 67–72

    PubMed  CAS  Google Scholar 

  66. Dufaux B, Order U, Hollmann W. Can physical exercise induce an effective fibrinolysis? Thromb Res 1984; 36: 37–43

    PubMed  CAS  Google Scholar 

  67. Karp JE, Bell WR. Fibrinogen-fibrin degradation products and fibrinolysis following exercise in humans. Am J Physiol 1974; 227: 1212–5

    PubMed  CAS  Google Scholar 

  68. Marsh NA, Gaffney PJ. Exercise-induced fibrinolysis — fact or fiction? Thromb Haemost 1982; 48: 201–3

    PubMed  CAS  Google Scholar 

  69. Mehta J, Mehta P. Comparison of platelet function during exercise in normal subjects and coronary artery disease patients: potential role of platelet activation in myocardial ischemia. Am Heart J 1982; 103: 49–53

    PubMed  CAS  Google Scholar 

  70. Le vine SP, Suarez AJ, Sorenson RR, et al. Platelet factor 4 release during exercise in patients with coronary artery disease. Am J Hematol 1984; 17: 117–27

    PubMed  CAS  Google Scholar 

  71. Chicharro JL, Sanchez O, Bandres F, et al. Platelet aggregability in relation to the anaerobic threshold. Thromb Res 1994; 75: 251–7

    PubMed  CAS  Google Scholar 

  72. Gleeson M, Blannin AK, Sewell DA, et al. Short-term changes in the blood leucocyte and platelet count following different durations of high-intensity treadmill running. J Sports Sci 1995; 13: 115–23

    PubMed  CAS  Google Scholar 

  73. Banfi G, Marinelli M, Roi GS, et al. Platelet indices in athletes performing a race in altitude environment J Clin Lab Anal 1995; 9: 34–6

    PubMed  CAS  Google Scholar 

  74. Schmidt KG, Rasmussen JW. Are young platelets released in excess from the spleen in response to short-term physical exercise? Scand J Haematol 1984; 32: 207–14

    PubMed  CAS  Google Scholar 

  75. Bourey RE, Santoro SA. Interactions of exercise, coagulation, platelets, and fibrinolysis — a brief review. Med Sci Sports Exerc 1988; 20: 439–46

    PubMed  CAS  Google Scholar 

  76. Wang JS, Jen CJ, Kung HC, et al. Different effects of strenuous exercise and moderate exercise on platelet function in men. Circulation 1994; 90: 2877–85

    PubMed  CAS  Google Scholar 

  77. Prentice CRM, Hassanein AA, McNicol GP, et al. Studies on blood coagulation, fibrinolysis, and platelet function following exercise in normal and splenectomized people. Br J Haematol 1972; 23: 541–52

    PubMed  CAS  Google Scholar 

  78. Warlow CP, Ogston D. Effect of exercise on platelet count, adhesion, and aggregation. Acta Haematol 1974; 52: 47–52

    PubMed  CAS  Google Scholar 

  79. Ohri VC, Chatterji JC, Das BK, et al. Effect of submaximal exercise on hematocrit, platelet count, platelet aggregation and blood fibrinogen levels. J Sports Med 1983; 23: 127–30

    CAS  Google Scholar 

  80. Hendra TJ, Oughton J, Smith OCT, et al. Exercise-induced changes in platelet aggregation: a comparison of whole blood and platelet rich plasma techniques. Thromb Res 1988; 52: 443–51

    PubMed  CAS  Google Scholar 

  81. Naesh O, Hindberg I, Trap-Jensen J, et al. Post-exercise platelet activation-aggregation and release in relation to dynamic exercise. Clin Physiol 1990; 10: 221–30

    PubMed  CAS  Google Scholar 

  82. Piret A, Niset G, Depiesse E, et al. Increased platelet aggregability and prostacyclin biosynthesis induced by physical exercise. Thromb Res 1990; 57: 685–95

    PubMed  CAS  Google Scholar 

  83. Beisiegel B, Treese N, Hafner G, et al. Increase in endogenous fibrinolysis and platelet activity during exercise in young volunteers. Agents Actions Suppl 1992; 37: 183–9

    PubMed  CAS  Google Scholar 

  84. Trovati M, Anfossi G, Facis RD. Moderate exercise increases platelet function in type I diabetic patients without severe angiopathy and in good control. Diabetes Care 1992; 15Suppl. 4: 1742–6

    PubMed  CAS  Google Scholar 

  85. Gleerup G, Winther K. The effect of ageing on platelet function and fibrinolytic activity. Angiology 1995; 46: 715–8

    PubMed  CAS  Google Scholar 

  86. Kaplan KL, Owen J. Radioimmunoassays of platelet alpha-granule proteins. In: Harker LA, Zimmerman TS, editors. Measurements of platelet function. Edinburgh: Churchill Livingstone, 1983: 115–25

    Google Scholar 

  87. Levine SP. Secreted platelet proteins as markers for pathological disorders. In: Phillips DR, Shuman MA, editors. Biochemistry of platelets. Orlando (FL): Academic Press, 1986: 378–415

    Google Scholar 

  88. Todd MK, Goldfarb AH, Kauffman RD, et al. Combined effects of age and exercise on thromboxane B2 and platelet activation. J Appl Physiol 1994; 76: 1548–52

    PubMed  CAS  Google Scholar 

  89. Stratton JR, Malpass TW, Ritchie JL, et al. Studies of platelet factor 4 and beta thromboglobulin release during exercise: lack of relationship to myocardial ischemia. Circulation 1982; 66: 33–43

    PubMed  CAS  Google Scholar 

  90. Schernthaner G, Mulhauser I, Bohm H, et al. Exercise induces in vivo platelet activation in patients with coronary artery disease and in healthy individuals. Haemostasis 1983; 13: 351–7

    PubMed  CAS  Google Scholar 

  91. Pan Yi-zhi, Wu Bai-ming, Hong Xiao-su, et al. The clinical significance of platelet activation during exercise-induced myocardial ischemia. Zhong Hua Nei Ke Zha Zhi 1994; 33: 106–8

    CAS  Google Scholar 

  92. Chen Ming-Fong, Hsu Hsiu-Ching, Lee Yuan-Teh. Effects of acute exercise on the changes of lipid profiles and peroxides, prostanoids, and platelet activation in hypercholesterolemic patients before and after treatment. Prostaglandins 1994; 48: 157–74

    PubMed  CAS  Google Scholar 

  93. Gleerup G, Vind J, Winther K. Platelet function and fibrinolytic activity during rest and exercise in borderline hypertensive patients. Eur J Clin Invest 1995; 25: 266–70

    PubMed  CAS  Google Scholar 

  94. Knudsen JB, Brodthagen U, Gormsen J, et al. Platelet function and fibrinolytic activity following distance running. Scand J Hematol 1982; 29: 425–30

    CAS  Google Scholar 

  95. Strauss WE, Cella G, Parisi AF, et al. Serial studies of platelet factor 4 and beta thromboglobulin during exercise in patients with coronary artery disease. Am Heart J 1985; 110: 293–9

    PubMed  CAS  Google Scholar 

  96. Haber P, Silberbauer K, Sinzinger H. Quantitative Untersuchungen (ber reversible thrombozytenaggregate bei belastung. Schweiz Med Wochenschr 1980; 100: 1488–91

    Google Scholar 

  97. Tofler GH, Brezinski DA, Schafer AI, et al. Concurrent morning increase in platelet aggregability and the risk of myocardial infarction and sudden cardiac death. N Engl J Med 1987; 316: 1514–8

    PubMed  CAS  Google Scholar 

  98. Brezinski DA, Tolfer GH, Muller JE, et al. Morning increase in platelet aggregability association with assumption and the upright posture. Circulation 1988; 78: 35–40

    PubMed  CAS  Google Scholar 

  99. Koivisto VA, Jantunen M, Sane T, et al. Stimulation of prostacyclin synthesis by physical exercise in type I diabetes. Diabetes Care 1989; 12: 609–14

    PubMed  CAS  Google Scholar 

  100. Mourits-Anderson T, Jensen IW, Nohr Jensen P, et al. Plasma-6-keto PGP lα, thromboxane B2 and PGF2 in type 1 (insulin dependent) diabetic patients during exercise. Diabetologia 1987; 30: 460–3

    Google Scholar 

  101. Trovati M, Anfossi G, De Facis R, et al. Moderate exercise increases platelet function in type 1 diabetic patients without severe angiopathy and in good control. Diabetes Care 1992; 14Suppl. 4: 1742–6

    Google Scholar 

  102. Kestin AS, Patricia A, Barnard MR, et al. Effect of strenuous exercise on platelet activation state and reactivity. Circulation 1993; 88: 1502–11

    PubMed  CAS  Google Scholar 

  103. Bag B, Gleerup G, Bak AM, et al. Effect of supine exercise on platelet aggregation and fibrinolytic activity. Clin Physiol 1994; 14: 181–6

    Google Scholar 

  104. Buczynski A, Kedziora J, Tkaczewski W, et al. Effect of sub-maximal physical exercise on antioxidative protection of human blood platelets. Int J Sports Med 1991; 12: 52–4

    PubMed  CAS  Google Scholar 

  105. Loscalzo J, Vaughan DE. Tissue plasminogen activator promotes platelet disaggregation in plasma. J Clin Invest 1987; 79: 1749–55

    PubMed  CAS  Google Scholar 

  106. Siscovic DS, Weiss NS, Fletcher RH, et al. The incidence of primary cardiac arrest during vigorous exercise. N Engl J Med 1984; 311: 874–7

    Google Scholar 

  107. Korsan-Bengsten K, Wilhelmsen L, Tibblin G. Blood coagulation and fibrinolysis in relation to degree of physical activity during work and leisure time. Acta Med Scand 1973; 193: 73–7

    Google Scholar 

  108. Rankinen T, Rauramaa R, Vaisanen S, et al. Blood coagulation and fibrinolytic factors are unchanged by aerobic exercise or fat modified diet. Fibrinolysis 1994; 8: 48–53

    Google Scholar 

  109. Boman K, Hellsten G, Bruce A, et al. Endurance physical activity, diet and fibrinolysis. Atherosclerosis 1994; 106: 65–74

    PubMed  CAS  Google Scholar 

  110. Yarnel JWG, Baker IA, Sweetpar PM, et al. Fibrinogen, viscosity, and white blood cell count are major risk factors for ischaemic heart disease: the Caerphilly and Spedwell Collaborative Studies. Circulation 1991; 83: 836–44

    Google Scholar 

  111. Ogston CM, Ogston D. Plasma fibrinogen levels in healthy and ischaemic heart disease. J Clin Pathol 1986; 19: 352–6

    Google Scholar 

  112. Lowe GDO, Drummond MM, Lorimer AR et al. Relation between extent of coronary artery disease and blood viscosity. BMJ 1980; 280: 673–4

    PubMed  CAS  Google Scholar 

  113. Morris JN, Clayton DG, Everitt MG, et al. Exercise in leisure time: coronary attack and death rates. Br Heart J 1990; 63: 325–34

    PubMed  CAS  Google Scholar 

  114. Menon IS, Burke F, Dewar HA. Effect of strenuous and graded exercise on fibrinolytic activity. Lancet 1967; I: 700–3

    Google Scholar 

  115. Moxley RT, Brakman P, Astrup T. Resting levels of fibrinolysis in blood in inactive and exercising men. J Appl Physiol 1970; 28: 549–52

    PubMed  CAS  Google Scholar 

  116. Stratton JR, Chandler WL, Schwartz RS, et al. Effects of physical conditioning on fibrinolytic variables and fibrinogen in young and old healthy adults. Circulation 1991; 83: 1692–7

    PubMed  CAS  Google Scholar 

  117. Williams RS, Logue EE, Lewis JL, et al. Physical conditioning augments the fibrinolytic response to venous occlusion in healthy adults. N Engl J Med 1980; 302: 987–91

    PubMed  CAS  Google Scholar 

  118. Gris JC, Schved JF, Feugeas O, et al. Impact of smoking, physical training and weight reduction on FVIII, PAI-1 and haemostatic markers in sedentary men. Thromb Res 1990; 64: 516–20

    CAS  Google Scholar 

  119. De Geus EJC, Kluft C, De Bart ACW, et al. Effects of exercise training on plasminogen activator inhibitor activity. Med Sci Sports Exerc 1992; 24: 1210–9

    PubMed  Google Scholar 

  120. Estelles A, Aznar J, Tormo G, et al. Influence of a rehabilitation sports programme on the fibrinolytic activity of patients after myocardial infarction. Thromb Res 1989; 55: 203–12

    PubMed  CAS  Google Scholar 

  121. Hornsby WG, Boggess KA, Lyons TJ, et al. Hemostatic alterations with exercise conditioning in NIDDM. Diabetes Care 1990; 13: 87–92

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Sayed, M.S. Effects of Exercise on Blood Coagulation, Fibrinolysis and Platelet Aggregation. Sports Med 22, 282–298 (1996). https://doi.org/10.2165/00007256-199622050-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199622050-00002

Keywords

Navigation