Skip to main content

Altitude Training for Improvements in Sea Level Performance

Is There Scientific Evidence of Benefit?

Summary

Altitude training invokes physiological changes that are very similar to those caused by endurance training. As a result, it has been incorporated in the training regimes of elite athletes in an effort to improve sea level performance. Several training strategies, such as constant altitude exposure, intermittent altitude exposure or ‘live high train low’, have been used in an effort to incur an advantage in sea level performance over just sea level training alone. In spite of the accumulating scientific evidence that altitude training affords no advantage over sea level training, many coaches and athletes believe that it can enhance sea level performance for any athlete, whether endurance or power is the focus in their particular sport. However, altitude training may not be suitable for some athletes depending on their age, fitness level, health, iron status and the energy and technical requirements of their sport. The issue of whether altitude training enhances sea level performance remains a controversial topic.

This is a preview of subscription content, access via your institution.

References

  1. Ratzin Jackson C, Sharkey BJ. Altitude, training and human performance. Sports Med 1988; 6: 279–84

    Article  Google Scholar 

  2. Raynaud J, Douget D, Legros P, et al. Time course of muscular blood metabolites during forearm rhythmic exercise in hyp-oxia. J Appl Physiol 1986; 60: 1203–8

    PubMed  CAS  Google Scholar 

  3. Terrados N, Jansson E, Sylven C, et al. Is hypoxia a stimulus for synthesis of oxidative enzymes and myoglobin? J Appl Physiol 1990; 68(6): 2369–72

    PubMed  CAS  Google Scholar 

  4. Eckardt K, Boutellier U, Kurtz A, et al. Rate of erythropoietin formation in humans in response to acute hypobaric hypoxia. J Appl Physiol 1989; 66(4): 1785–8

    PubMed  CAS  Google Scholar 

  5. Hannon JP, Shields JL, Harris CW. Effects of altitude acclima- tization on blood composition of women. J Appl Physiol 1969; 26: 540–7

    PubMed  CAS  Google Scholar 

  6. Terrados N, Melichna J, Sylven C, et al. Effect of training at simulated altitude on performance and muscle metabolic capacity in competative road cyclists. Eur J Appl Physiol 1988; 57: 203–9

    Article  CAS  Google Scholar 

  7. Dill DB, Adams WC. Maximal oxygen uptake at sea level and at 3090m altitude in high school champion runners. J Appl Physiol 1971; 30(6): 854–9

    PubMed  CAS  Google Scholar 

  8. Faulkner JA, Kollias J, Favour CB, et al. Maximum aerobic capacity and running performance at altitude. J Appl Physiol 1968; 24: 685–91

    PubMed  CAS  Google Scholar 

  9. Buskirk ER, Kollias J, Akers RF, et al. Maximal performance at altitude and on return from altitude in conditioned runners. J Appl Physiol 1967; 23(2): 259–66

    PubMed  CAS  Google Scholar 

  10. Davies CTM, Sargeant AJ. Effects of hypoxic training on normoxic maximal aerobic power. Eur J Appl Physiol 1974; 33: 227–36

    Article  CAS  Google Scholar 

  11. Roskamm H, Landry F, Samek L, et al. Effects of a standardized ergometer training program at three different altitudes. J Appl Physiol 1969; 27(6): 840–7

    PubMed  CAS  Google Scholar 

  12. Smith MH, Sharkey BJ. Altitude training: who benefits? Physician Sports Med 1984; 12(4): 48–62

    Google Scholar 

  13. Welch HG. Effects of hypoxia and hyperoxia. Exerc Sport Sci Rev 1987; 15: 192–221

    Article  Google Scholar 

  14. Burki NK. Effects of acute exposure to high altitude on ventilatory drive and respiratory pattern. J Appl Physiol 1984; 56(4): 1027–31

    PubMed  CAS  Google Scholar 

  15. Hannon JP, Vogel JA. Oxygen transport during early altitude acclimatization: a perspective study. Eur J Appl Physiol 1977; 36: 285–97

    Article  CAS  Google Scholar 

  16. Huang SY, Alexander JK, Grover RF, et al. Increased metabolism contributes to increased resting ventilation at high altitude. Respir Physiol 1984; 57: 377–85

    PubMed  Article  CAS  Google Scholar 

  17. Hansen JR, Stelter GP, Vogel JA. Arterial pyruvate, lactate, pH and PCO2 during work at sea level and high altitude. J Appl Physiol 1967; 24(4): 523–30

    Google Scholar 

  18. Beaver WL, Wasserman K, Whipp BJ. Bicarbonate buffering of lactic acid generated during exercise. J Appl Physiol 1986; 60(2): 472–8

    PubMed  CAS  Google Scholar 

  19. Jung RC, Dill DB, Horton R, et al. Effects of age on plasma aldosterone levels and hemoconcentration at altitude. J Appl Physiol 1971; 31: 593–7

    PubMed  CAS  Google Scholar 

  20. Schoene RB. Control of ventilation in climbers to extreme altitude. J Appl Physiol 1982; 53: 886–90

    PubMed  Article  CAS  Google Scholar 

  21. Schoene RB, Lahiri S, Hackett PH, et al. Relationship of hypoxic ventilatory response to exercise performance on Mount Everest. J Appl Physiol 1984; 56(6): 1478–83

    PubMed  CAS  Google Scholar 

  22. Levine BD, Friedman DB, Engfred K, et al. The effect of normoxic or hypobaric hypoxic endurance training on the hypoxic ventilatory response. Med Sci Sports Exer 1992; 24(7): 769–75

    CAS  Google Scholar 

  23. Berglund B, Hemmingsson P. Effect of reinfusion of autologous blood on exercise performance in cross-country skiers. Int J Sports Med 1987; 8: 231–3

    PubMed  Article  CAS  Google Scholar 

  24. Buick FJ, Gledhill N, Froses AB, et al. Effect of induced erythrocythemia on aerobic work capacity. J Appl Physiol 1980; 48(40): 636–42

    PubMed  CAS  Google Scholar 

  25. Williams MH, Wesseldine S, Somma T, et al. The effect of induced erythrocythemia upon 5-mile treadmill run time. Med Sci Sports Exerc 1981; 13(3): 169–75

    PubMed  CAS  Google Scholar 

  26. Thomson JM, Stone JA, Ginsburg AD, et al. O2 transport during exercise following blood reinfusion. J Appl Physiol 1982; 53: 1213–9

    PubMed  CAS  Google Scholar 

  27. Klausen T, Mohr T, Ghisler U, et al. Maximal oxygen uptake and erythropoietic responses after training at moderate altitude. Eur J Appl Physiol 1991; 62: 376–9

    Article  CAS  Google Scholar 

  28. Berglund B. High-altitude training: aspects of haematological adaptation. Sports Med 1992; 14(5): 289–303

    PubMed  Article  CAS  Google Scholar 

  29. Boutellier U, Deriaz D, di Prampero P, et al. Performance at altitude: effects of acclimatization and hematocrit with reference to training. Int J Sports Med 1990; 2 Suppl. 1: 21–6

    Article  Google Scholar 

  30. Hansen JR, Vogel JA, Stelter GP, et al. Oxygen uptake in man during exhaustive work at sea level and high altitude. J Appl Physiol 1967; 26: 511–22

    Google Scholar 

  31. Mairbaurl H. Red blood cell function in hypoxia at altitude and exercise. Int J Sports Med 1994; 15(2): 51–63

    PubMed  Article  CAS  Google Scholar 

  32. Reynafarje, C. Hematologie changes during rest and physical activity in man at high altitude. In: Weihe WH, editor. The physiological effects of high altitude. New York: Macmillan 1964: 73–85

    Google Scholar 

  33. Reynafarje C. Physiological patterns: hematological aspects. Life at high altitudes. Sci Publ 1966; 140: 32

    Google Scholar 

  34. Fulco CS, Rock PB, Trad L, et al. Maximal cardiorespiratory responses to one and two legged cycling during acute and long-term exposure to 4300m altitude. Eur J Appl Physiol 1988; 57: 761–6

    Article  CAS  Google Scholar 

  35. Squires RW, Buskirk ER. Aerobic capacity during acute exposure to simulated altitude, 914 to 2286 meters. Med Sci Sports Exerc 1982; 14(1): 36–40

    PubMed  Article  CAS  Google Scholar 

  36. Buskirk ER, Kollias J, Picon-Reategui E. Physiology and performance of track athletes at various altitudes in the United States and Peru. In: Goddard RF, editor. The international symposium on the effects of altitude on physical performance. Chicago: The Athletic Institute, 1966

    Google Scholar 

  37. Brandon L, Boileau R. The contribution of selected variables to middle and long distance run performance. J Sports Med Phys Fitness 1987; 27: 157–64

    PubMed  CAS  Google Scholar 

  38. Kumagai S, Tanaka K, Matsuura A, et al. Relationships of the anaerobic threshold with the 5 km, 10 km and 10 mile races. Eur J Appl Physiol 1982; 49: 13–23

    Article  CAS  Google Scholar 

  39. Loftin M, Warren B. Comparison of a simulated 16.1 km time trial, VOVO2max and related factors in cyclists with different vantilator thresholds. Int J Sports Med 1994; 15(8): 498–503

    PubMed  Article  CAS  Google Scholar 

  40. Wolfel EE, Groves BM, Brooks GA, et al. Oxygen transport during steady-state submaximal exercise in chronic hypoxia. J Appl Physiol 1991; 70(3): 1129–36

    PubMed  CAS  Google Scholar 

  41. Grover RF, Weil JV, Reeves JT. Cardiovascular adaptation to exercise at high altitude. Exerc Sport Sci Rev 1986; 14: 269–302

    PubMed  Article  CAS  Google Scholar 

  42. Mizuno M, Juel C, Gro-Rasmussen T, et al. Limb skeletal muscle adaptation in athlets after training at altitude. J Appl Physiol 1990; 68(2): 496–502

    PubMed  CAS  Google Scholar 

  43. Saltin B. Aerobic and anaerobic work capacity at an altitude of 2,250m. In: Goddard RF, editor. The international symposium on the effect of altitude on physical performance. Chicago: The Athletic Institute, 1967: 97–102

    Google Scholar 

  44. Levine BD, Stray-Gunderson J. Altitude training does not improve running performance more than equivalent training near sea level in trained runners. Med Sci Sports Exerc 1992; 24 Suppl. 5: S95

    Google Scholar 

  45. Adams WC, Bernauer EM, Dill DB, et al. Effects of equivalent sea-level and altitude training on VOVO2max and running performance. J Appl Physiol 1975; 39(2): 262–6

    PubMed  CAS  Google Scholar 

  46. Daniels J, Oldridge N. The effects of alternate exposure to altitude and sea level on world-class middle-distance runners. Med Sci Sports Exerc 1970; 2(3): 107–12

    CAS  Google Scholar 

  47. Levine BD, Roach RC, Houston CS. Work and training at altitude. In: Sutton JR, Coates G, Houston CS, editors. Hypoxia and mountain medicine. Vermont: Queen City Printers, 1992: 192–201

    Google Scholar 

  48. Levine BD, Engfred K, Friedman D, et al. High altitude endurance training: effect on aerobic capacity and work performance. Med Sci Sports Exerc 1990; 22 Suppl.: S35

    Google Scholar 

  49. Stine TA, Levine BD, Taylor S, et al. Quantification of altitude training in the field. Med Sci Sports Exerc 1992; 24 Suppl. 5: S103

    Google Scholar 

  50. Loeppky JA, Bynum WA. Effects of periodic exposure to hypobaria and exercise on physical work capacity. J Sports Med Phys Fitness 1970; 10: 238–47

    PubMed  CAS  Google Scholar 

  51. Mairbaurl H, Schobersberger W, Humpler E, et al. Beneficial effects of exercising at moderate altitude on red cell oxygen transport and on exercise performance. Pflugers Arch 1986; 406: 594–9

    PubMed  Article  CAS  Google Scholar 

  52. Trappe T, Clem KL, Trappe SW, et al. Changes in O2 kinetics as a result of moderate altitude training followed by sea-level re-exposure. Med Sci Sports Exerc 1993; 24 Suppl. 5: S90

    Google Scholar 

  53. Dick FW. Training at altitude in practise. Int J Sports Med 1992; 13(1): S203–S205

    PubMed  Article  Google Scholar 

  54. Heath D, Williams DR. Man at high altitude. New York: Longman Group, 1977: 45

    Google Scholar 

  55. Haymes EM, Puhl JL, Temples TE. Training for cross country skiing and iron status. Med Sci Sports Exerc 1986; 18: 162–7

    PubMed  CAS  Google Scholar 

  56. Reynafarje C, Lozano R, Valdivieso J. The polycythemia of high altitudes: iron metabolism and related aspects. Blood 1959; 14: 433–55

    PubMed  CAS  Google Scholar 

  57. British Olympic Association [newsletter]. Technical News 1993; 1 (5)

  58. Lawler J, Powers SK, Thompson D. Linear relationship between VC2max and VO2max decrement during exposure to acute hypoxia. J Appl Physiol 1988; 64(4): 1486–92

    PubMed  CAS  Google Scholar 

  59. Astrand PO, Cuddy TE, Saltin B, et al. Cardiac output during submaximal and maximal work. J Appl Physiol 1964; 19: 268–72

    PubMed  CAS  Google Scholar 

  60. Gale GE, Torre-Bueno JR, Moon RE, et al. Ventilation-perfusion inequality in normal subjects during exercise at sea level and simulated altitude. J Appl Physiol 1985; 58: 978–88

    PubMed  CAS  Google Scholar 

  61. Houston CS, Sutton JR, Cymerman A, et al. Operation Everest II: man at extreme altitude. J Appl Physiol 1987; 63: 877–82

    PubMed  CAS  Google Scholar 

  62. Dempsey JA, Hanson PG, Henderson KS. Exercise-induced arterial hypoxaemia in healthy human subjects at sea level. J Physiol 1984; 355: 161–75

    PubMed  CAS  Google Scholar 

  63. Byrne-Quinn E, Weil JV, Sodal IE, et al. Ventilatory control in the athlete. J Appl Physiol 1971; 30: 91–8

    PubMed  CAS  Google Scholar 

  64. Martin BJ, Sparks KE, Zwillich CW, et al. Low exercise ventilation in endurance athletes. Med Sci Sports Exerc 1979; 11: 181–5

    CAS  Google Scholar 

  65. Bowie W, Cumming GR. Sustained handgrip-reproducibility; effects of hypoxia. Med Sci Sports Exerc 1971; 3(1): 24–31

    CAS  Google Scholar 

  66. Young A, Wright J, Knapik J, et al. Skeletal muscle strength during exposure to hypobaric hypoxia. Med Sci Sports Exerc 1980; 12(5): 330–5

    PubMed  CAS  Google Scholar 

  67. Orizio D, Esposito F, Veicsteinas A. Effect of acclimatization to high altitude (5050 m) on motor unit activation pattern and muscle performance. J Appl Physiol 1994; 77(6): 2840–4

    PubMed  CAS  Google Scholar 

  68. Di Prampero PE, Mognoni P, Veicsteinas A. The effects of hypoxia on maximal anaerobic alactic power in man. In: Brendel W, Zink RA, editors. High altitude physiology and medicine. New York: Springer-Verlag, 1982: 88–93

    Chapter  Google Scholar 

  69. Ward MP, Milledge JS, West JB. High altitude medicine and physiology. Philadelphia (PA): University of Pennsylvania Press, 1989

    Google Scholar 

  70. McLellan TM, Kavanagh MF, Jacobs I. The effect of hypoxia on performance during 30s or 45s of supramaximal exercise. Eur J Appl Physiol 1990; 60: 155–61

    Article  CAS  Google Scholar 

  71. Levine BD, Stray-Gunderson J. A practical approach to altitude training: where to live and train for optimal performance enhancement. Int J Sports Med 1992; 13: S209–S212

    PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wolski, L.A., McKenzie, D.C. & Wenger, H.A. Altitude Training for Improvements in Sea Level Performance. Sports Med. 22, 251–263 (1996). https://doi.org/10.2165/00007256-199622040-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199622040-00004

Keywords

  • Adis International Limited
  • Endurance Training
  • Endurance Athlete
  • Maximal Aerobic Power
  • Training Camp