Skip to main content
Log in

Anterior Cruciate Ligament Injury Rehabilitation in Athletes

Biomechanical Considerations

  • Injury Clinic
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

Postoperative rehabilitation is a major factor in the success of an anterior cruciate ligament (ACL) reconstruction procedure. Clinical investigations of patients after ACL reconstruction have shown that immobilisation of the knee, or restricted motion without muscle contraction, leads to undesired outcomes for the articular, ligamentous, and musculature structures that surround the knee.

Early joint motion is beneficial for; reducing pain, capsular contractions, articular cartilage, and for minimising scar formation that limit joint motion. These findings, combined with graft materials that have biomechanical properties similar to the normal ACL, and adequate fixation strength, have led many to recommend aggressive rehabilitation programmes that involve contraction of the dominant quadriceps muscles.

Recently, a prospective, randomised study of rehabilitation following ACL reconstruction has presented evidence that a closed kinetic chain exercise programme (foot fixed against a resistance) results in anterior-posterior knee laxity values that are similar to the contralateral normal knee. Also, open kinetic chain exercises (foot not fixed against a resistance) result in increased anterior-posterior knee laxity compared with the normal knee. Criteria must be observed because the relationship between rehabilitation exercises and the healing response of an ACL graft is unknown at present.

Biomechanical studies of healing ACL grafts performed in animals have shown that the graft requires a long time to revascularise and heal, and that the biomechanical behaviour of the graft never returns to normal. Functional knee braces provide a protective strain-shielding effect on the ACL when anterior shear loads and internal torques are applied to the knee in the non-weight-bearing condition. However, the strain shielding effect of functional braces decrease as the magnitude of anterior shear and internal torque applied to the knee increase. Future studies should strive to determine the actual loads transmitted across the knee and ACL graft strain during various rehabilitation exercises and relate these to the healing response of the knee and graft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Buckwalter JA. Activity vs rest in the treatment of bone, soft tissue and joint injuries. Iowa Orthop J 1995; 15: 29–42

    PubMed  CAS  Google Scholar 

  2. Paulos L, Noyes FR, Grood ES, et al. Knee rehabilitation after anterior cruciate ligament reconstruction and repair. Am J Sports Med 1981; 9: 140–9

    Article  PubMed  CAS  Google Scholar 

  3. Steadman JR. Rehabilitation of acute injuries of the anterior cruciate ligament. Clin Orthop 1983; 172: 129–32

    PubMed  Google Scholar 

  4. Akeson WH, Amiel D, Woo SL-Y. Immobility effects on synovial joints. The pathomechanics of joint contracture. Biorheology 1980; 17: 95–110

    PubMed  CAS  Google Scholar 

  5. Haggmark T, Erickson E. Cylinder or mobile cast brace after knee ligament surgery: a clinical analysis and morphological and enzymatic study of changes in quadriceps muscle. Am J Sports Med 1979; 7: 48–56

    Article  PubMed  CAS  Google Scholar 

  6. Jozsa L, Jarvinen M, Kannus P, et al. Fine structural changes in the articular cartilage of the rat’s knee following short-term immobilization in various positions: a scanning electron microscopical study. Int Orthop 1987; 11: 129–33

    Article  PubMed  CAS  Google Scholar 

  7. Jozsa L, Reffy A, Jarvinen M, et al. Cortical and trabecular osteopenia after immobilization — a quantitative histological study in rats. Int Orthop 1988; 12: 169–72

    Article  PubMed  CAS  Google Scholar 

  8. Jozsa L, Thöring J, Jarvinen M, et al. Quantitative alterations in intramuscular connective tissue following immobilization: an experimental study in rat calf muscle. Exp Mol Pathol 1988; 49: 267–78

    Article  PubMed  CAS  Google Scholar 

  9. Kennedy JC. Symposium: current concepts in the management of knee instability. Contemp Orthop 1982; 5: 59–78

    Google Scholar 

  10. Noyes FR. Functional properties of knee ligaments and alterations induced by immobilization. Clin Orthop Rel Res 1977; 123: 210–42

    Google Scholar 

  11. Noyes FR, Mangine RE, Barber S. Early knee motion after open and arthroscopic anterior cruciate ligament reconstruction. Am J Sports Med 1987; 15: 149–60

    Article  PubMed  CAS  Google Scholar 

  12. Shelbourne KD, Nitz P. Accelerated rehabilitation after ACL reconstruction. Am J Sports Med 1990; 18: 292–9

    Article  PubMed  CAS  Google Scholar 

  13. MacDonald PB, Hedden D, Pacin O, et al. Effects of accelerated rehabilitation programs after anterior cruciate ligament reconstruction with combined semitendinosus-gracilis autograft and a ligament augmentation device. Am J Sports Med 1995; 23: 588–92

    Article  PubMed  CAS  Google Scholar 

  14. Shelbourne DK, Klootwyk TE, Wilckens JH, et al. Ligament stability two to six years after anterior cruciate ligament reconstruction with autogenous patellar tendon graft and participation in accelerated rehabilitation program. Am J Sports Med 1995; 23: 575–9

    Article  PubMed  CAS  Google Scholar 

  15. Beynnon BD, Fleming BC, Johnson RJ, et al. Anterior cruciate ligament strain behavior during rehabilitation exercises in-vivo. Am J Sports Med 1995; 23: 24–34

    Article  PubMed  CAS  Google Scholar 

  16. Draganich LF, Vahey JW. An in-vitro study of anterior cruciate ligament strain induced by quadriceps and hamstrings forces. J Orthop Res 1990; 8: 57–63

    Article  PubMed  CAS  Google Scholar 

  17. Henning CE, Lynch MA, Glick KR. An in-vivo strain gage study of elongation of the anterior cruciate ligament. Am J Sports Med 1985; 13: 22–6

    Article  PubMed  CAS  Google Scholar 

  18. Jurist KA, Otis JC. Anteroposterior tibiofemoral displacements during isometric extension efforts. The role of external load and knee flexion angle. Am J Sports Med 1985; 13: 254–8

    Article  PubMed  CAS  Google Scholar 

  19. Lutz GE, Palmitier RA, An KN, et al. Comparison of tibiofemoral forces during open-kinetic chain and closed-kinetic chain exercises. J Bone Joint Surg Am 1993; 75: 732–9

    PubMed  CAS  Google Scholar 

  20. Shoemaker SC, Markolf KL. Effects of joint load on the stiffness and laxity of ligament deficient knees. J Bone Joint Surg Am 1985; 67: 136–46

    PubMed  CAS  Google Scholar 

  21. Yack HJ, Collins CE, Whieldon TJ. Comparison of closed and open kinetic chain exercises in the anterior cruciate ligament deficient knee. Am J Sports Med 1993; 21: 49–54

    Article  PubMed  CAS  Google Scholar 

  22. Bell C. On the nervous circle which connects the voluntary muscles with the brain. Philos Trans R Soc Lond B 1826; 116: 163–73

    Article  Google Scholar 

  23. Sherrington CS. The integrative action of the nervous system. London: Constable, 1906

    Google Scholar 

  24. Barrett DS. Proprioception and function after anterior cruciate econstruction. J Bone Joint Surg Br 1991; 73: 833–7

    PubMed  CAS  Google Scholar 

  25. Barrack RL, Skinner HB, Buckley SL. Proprioception in the anterior cruicate deficient knee. Am J Sports Med 1989; 17: 1–6

    Article  PubMed  CAS  Google Scholar 

  26. Good L, Beynnon BD, Gottlieb DJ, et al. Joint position sense is not changed after ACL disruption [abstract]. Trans Orthop Res Soc 1995; 20(1): 95

    Google Scholar 

  27. Corrigan JP, Cashman WF, Brady MP. Proprioception in the cruciate deficient knee. J Bone Joint Surg Br 1992; 74: 247–50

    PubMed  CAS  Google Scholar 

  28. Klein BP, Blaha JD, Simons W. Anterior cruciate deficient knees do not have altered proprioception [abstract]. Orthop Trans 1992; 16: 539

    Google Scholar 

  29. Beard DJ, Kyberd PJ, Fergusson CM, et al. Proprioception after rupture of the anterior cruciate ligament. An object indication for the need for surgery? J Bone Joint Surg Br 1993; 75: 311–5

    PubMed  CAS  Google Scholar 

  30. Jennings AG, Seedholm BB. Proprioception in the knee and reflex hamstrings contraction. J Bone Joint Surg Br 1994; 76: 491–4

    PubMed  CAS  Google Scholar 

  31. Beynnon BD, Gottlieb D, Elmqvist L-G, et al. The latency of reflex muscle contraction in normal and anterior cruciate ligament deficient subjects. Orthop Trans 1994; 8(2): 450–1

    Google Scholar 

  32. Wojtys EM, Huston LJ. Neuromuscular performance in normal and anterior cruciate ligament deficient lower extremities. Am J Sports Med 1994; 22: 89–104

    Article  PubMed  CAS  Google Scholar 

  33. Newton PO, Horibe S, Woo SL-Y. Experimental studies of anterior cruciate ligament autografts and allografts. In: Daniel DM, Akeson WH, O’Conner JJ, editors. Knee ligaments: structure, function, injury and repair. New York: Raven Press, 1990: 389–9

    Google Scholar 

  34. Beynnon BD, Johnson RJ, Fleming BC, et al. The measurement of elongation of anterior cruciate grafts in-vivo. J Bone Joint Surg Am 1994; 76: 520–31

    PubMed  CAS  Google Scholar 

  35. Beynnon BD, Pope MH, Wertheimer CM, et al. The effect of functional knee-braces on strain on the anterior cruciate ligament in-vivo. J Bone Joint Surg Am 1992; 74: 1298–312

    PubMed  CAS  Google Scholar 

  36. Arms SW, Donnermeyer D, Renström P, et al. The effect of knee braces on anterior cruciate ligament strain [abstract]. Trans Orthop Res Soc 1987; 12: 245

    Google Scholar 

  37. Butler DL, Grood ES, Noyes FR, et al. Mechanical properties of primate vascularized vs nonvascularized patellar tendon grafts: changes over time. J Orthop Res 1989; 7: 68–79

    Article  PubMed  CAS  Google Scholar 

  38. Bailock RT, Woo SL-Y, Lyon RM, et al. Use of patellar tendon autograft for anterior cruciate ligament reconstruction in the rabbit: a long term histological and biomecanical study. J Orthop Res 1989; 7: 474–85

    Article  Google Scholar 

  39. Jackson DW, Grood ES, Cohn BT, et al. The effect of in-situ freezing of the anterior cruciate ligament. J Bone Joint Surg Am 1991; 73: 201–13

    PubMed  CAS  Google Scholar 

  40. Beynnon BD, Johnson RJ, Tohyama H, et al. The relationship between anterior-posterior knee laxity and the structural properties of the patellar tendon graft. A study in canines. Am J Sports Med 1994; 22: 812–20

    Article  PubMed  CAS  Google Scholar 

  41. Glasgow SG, Gabriel JP, Sapega AA, et al. The effect of early versus late return to vigorous activities on the outcome of anterior cruciate reconstruction. Am J Sports Med 1993; 21: 243–8

    Article  PubMed  CAS  Google Scholar 

  42. Barber-Westin SD, Noyes FR. The effect of rehabilitation and return to activity on anterior-posterior knee displacements after anterior cruciate ligament reconstruction. Am J Sports Med 1993; 21: 264–70

    Article  PubMed  CAS  Google Scholar 

  43. Rosen MA, Jackson DW, Atwell EA. The efficacy of continuous passive motion in the rehabilitation of anterior cruciate ligament reconstruction. Am J Sports Med 1992; 20: 122–7

    Article  PubMed  CAS  Google Scholar 

  44. Richmond JC, Gladstone J, MacGillivray J. Continuous passive motion after arthroscopically assisted anterior cruciate ligament reconstruction: comparison of short-versus long-term use. J Arthroscop Rel Res 1991; 7: 39–44

    Article  CAS  Google Scholar 

  45. Bynum EB, Barrack RL, Alexander AH. Open versus closed kinetic chain exercises after anterior cruciate ligament reconstruction. Am J Sports Med 1995; 23: 401–6

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce D. Beynnon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beynnon, B.D., Johnson, R.J. Anterior Cruciate Ligament Injury Rehabilitation in Athletes. Sports Med 22, 54–64 (1996). https://doi.org/10.2165/00007256-199622010-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199622010-00005

Keywords

Navigation