The Role of Antioxidant Vitamins and Enzymes in the Prevention of Exercise-Induced Muscle Damage

Summary

A growing amount of evidence indicates that free radicals play an important role as mediators of skeletal muscle damage and inflammation after strenuous exercise. It has been postulated that the generation of oxygen free radicals is increased during exercise as a result of increases in mitochondrial oxygen consumption and electron transport flux, inducing lipid peroxidation. The literature suggests that dietary antioxidants are able to detoxify the peroxides produced during exercise, which could otherwise result in lipid peroxidation, and that they are capable of scavenging peroxyl radicals and therefore may prevent muscle damage.

Endogenous antioxidant enzymes also play a protective role in the process of lipid peroxidation. The studies reviewed (rodent and human) show significant increases of malondialdehyde (a product of lipid peroxidation) after exercise to exhaustion, and also favourable changes in plasma antioxidant levels and in antioxidant enzyme activity. In trained individuals and trained rats, the antioxidant enzyme activity increases markedly. In this way, the increased oxidative stress induced by exercise is compromised by increased antioxidant activity, preventing lipid peroxidation.

Human studies have shown that dietary supplementation with antioxidant vitamins has favourable effects on lipid peroxidation after exercise. Although several points of discussion still exist, the question whether antioxidant vitamins and antioxidant enzymes play a protective role in exercise-induced muscle damage can be answered affirmatively. The human studies reviewed indicate that antioxidant vitamin supplementation can be recommended to individuals performing regular heavy exercise. Moreover, trained individuals have an advantage compared with untrained individuals, as training results in increased activity of several major antioxidant enzymes and overall antioxidant status. However, future studies are needed in order to be able to give more specific information and recommendations on this topic.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Maxwell SRJ, Jakeman P, Thomason H, et al. Changes in plasma antioxidant status during eccentric exercise and the effect of vitamin supplementation. Free Radic Res Commun 1993; 19: 191–201

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Kuipers H. Exercise-induced muscle damage. Int J Sports Med 1994; 15: 132–5

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Jackson MJ, O’Farrell S. Free radicals and muscle damage. BMJ 1993; 49: 630–41

    CAS  Google Scholar 

  4. 4.

    Ebbeling CB, Clarkson PM. Exercise-induced muscle damage and adaptation. Sports Med 1989; 7: 207–34

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Kanter MM, Lesmes GR, Kaminsky LA, et al. Serum creatine kinase and lactate dehydrogenase changes following an eighty kilometer race. Eur J Appl Physiol 1988; 57: 60–3

    Article  CAS  Google Scholar 

  6. 6.

    Meydani M, Evans WJ, Handelman G, et al. Protective effect of vitamin E on exercise-induced oxidative damage in young and older adults. Am J Physiol 1993; 264: R992–8

    PubMed  CAS  Google Scholar 

  7. 7.

    Alessio HM. Exercise-induced oxidative stress. Med Sci Sports Exerc 1993; 25: 218–24

    PubMed  CAS  Google Scholar 

  8. 8.

    Sahlin K, Ekberg K, Cizinsky S. Changes in plasma hypoxanthine and free radical markers during exercise in man. Acta Physiol Scand 1991; 142: 275–81

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Lovlin R, Cottle W, Kavanagh M, et al. Are indices of free radical damage related to exercise intensity?. Eur J Appl Physiol 1987; 56: 313–6

    Article  CAS  Google Scholar 

  10. 10.

    Kanter MM, Nolte LA, Holloszy JO. Effects of an antioxidant vitamin mixture on lipid peroxidation at rest and postexercise. J Appl Physiol 1993; 74: 965–9

    PubMed  CAS  Google Scholar 

  11. 11.

    Viguie CA, Frei B, Shigenaga MK, et al. Antioxidant status and indexes of oxidative stress during consecutive days of exercise. J Appl Physiol 1993; 75: 566–72

    PubMed  CAS  Google Scholar 

  12. 12.

    Goldfarb AH. Antioxidants: role of supplementation to prevent exercise-induced oxidative stress. Med Sci Sports Exerc 1993; 25: 232–6

    PubMed  CAS  Google Scholar 

  13. 13.

    Tiidus PM, Houston ME. Vitamin E status and response to exercise training. Sports Med 1995; 20 1: 12–23

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Flaherty JT. Myocardial injury mediated by oxygen free radicals. Am J Med 1991; 91 Suppl. 3C: 79S–85S

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Downey JM. Free radicals and their involvement during long-term myocardial ischemia and reperfusion. Annu Rev Physiol 1990; 52: 487–504

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Sjödin B, Westing HY, Apple FS. Biochemical mechanisms for oxygen free radical formation during exercise. Sports Med 1990; 10: 236–54

    PubMed  Article  Google Scholar 

  17. 17.

    Machlin LJ, Gabriel E. Interactions of vitamin E with vitamin C, vitamin B12, and zinc. Ann NY Acad Sci 1980; 355: 98–108

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Ji LL, Fu R. Responses of glutathione system and antioxidant enzymes to exhaustive exercise and hydroperoxide. J Appl Physiol 1992; 72: 549–54

    PubMed  CAS  Google Scholar 

  19. 19.

    Yu BP. Cellular defenses against damage from reactive oxygen species. Physiol Reviews 1994; 74: 139–62

    CAS  Google Scholar 

  20. 20.

    Aruoma OI. Free radicals and antioxidant strategies in sports. J Nutr Biochem 1994; 5: 370–81

    Article  CAS  Google Scholar 

  21. 21.

    Jenkins RR. Free radical chemistry: relationship to exercise. Sports Med 1988; 156-70

  22. 22.

    Del Maestro RF. An approach to free radicals in medicine and biology. Acta Physiol Scand 1980; 492: 153–68

    Google Scholar 

  23. 23.

    Warren JA, Jenkins RR, Packer L, et al. Elevated muscle vitamin E does not attenuate eccentric exercise-induced muscle injury. J Appl Physiol 1992; 72: 2168–75

    PubMed  CAS  Google Scholar 

  24. 24.

    Jenkins RR, Goldfarb A. Introduction: oxidant stress, aging, and exercise. Med Sci Sports Exerc 1993; 25: 210–2

    PubMed  CAS  Google Scholar 

  25. 25.

    Jenkins RR, Krause K, Schofield LS. Influence of exercise on clearance of oxidant stress products and loosely bound iron. Med Sci Sports Exerc 1993; 25: 213–7

    PubMed  CAS  Google Scholar 

  26. 26.

    Robertson JD, Maughan RJ, Duthie GG, et al. Increased blood antioxidant systems of runners in response to training load. Clin Sci 1991; 80: 611–8

    PubMed  CAS  Google Scholar 

  27. 27.

    Duthie GG, Robertson JD, Maughan RJ, et al. Blood antioxidant status and erythrocyte lipid peroxidation following distance running. Arch Biochem Biophys 1990; 282: 78–83

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Niki E. Interaction of ascorbate and α-tocopherol. Ann NY Acad Sci 1987; 498: 186–98

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Esterbauer H, Puhl H, Waeg G. Vitamin E and atherosclerosis: an overview. Jpn Sci Soc Press 1993: 233-41

  30. 30.

    Steinberg D. Antioxidants and atherosclerosis: a current assessment. Circulation 1991; 84: 1420–5

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Niki E. Action of ascorbic acid as a scavenger of active and stable oxygen radicals. Nutr Cancer 1991; 15: 251–2

    Google Scholar 

  32. 32.

    Frei B, Ames BN. Ascorbic acid protects plasma lipids against oxidative damage. Nutr Cancer 1991; 15: 250–1

    Google Scholar 

  33. 33.

    Alessio HM, Goldfarb AH. Lipid peroxidation and scavenger enzymes during exercise: adaptive response to training. J Appl Physiol 1988; 64: 1333–6

    PubMed  CAS  Google Scholar 

  34. 34.

    Hammeren J, Powers S, Lawler J, et al. Exercise training-induced alterations in skeletal muscle oxidative and antioxidant enzyme activity in senescent rats. Int J Sports Med 1992; 13: 412–6

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Ji LL. Antioxidant enzyme response to exercise and aging. Med Sci Sports Exerc 1993; 25: 225–31

    PubMed  CAS  Google Scholar 

  36. 36.

    Laughlin MH, Simpson T, Sexton WL, et al. Skeletal muscle oxidative capacity, antioxidant enzymes, and exercise training. J Appl Physiol 1990; 68: 2337–43

    PubMed  CAS  Google Scholar 

  37. 37.

    Corbucci GG, Montanari G, Cooper MB, et al. The effect of exertion on mitochondrial oxidative capacity and on some antioxidant mechanisms in muscle from marathon runners. Int J Sports Med 1984; 5: 135S

    Article  Google Scholar 

  38. 38.

    Criswell D, Powers S, Dodd S, et al. High intensity training-induced changes in skeletal muscle antioxidant enzyme activity. Med Sci Sports Exerc 1993; 25: 1135–40

    PubMed  CAS  Google Scholar 

  39. 39.

    Sen CK. Oxidants and antioxidants in exercise. J Appl Physiol 1995; 79 3: 675–86

    PubMed  CAS  Google Scholar 

  40. 40.

    Tiidus PM, Houston ME. Antioxidant and oxidative enzyme adaptations to vitamin E deprivation and training. Med Sci Sports Exerc 1994; 26: 354–9

    PubMed  CAS  Google Scholar 

  41. 41.

    Jakeman P, Maxwell S. Effect of antioxidant vitamin supplementation on muscle function after eccentric exercise. Eur J Appl Physiol 1993; 67: 426–30

    Article  CAS  Google Scholar 

  42. 42.

    Duarte JAR, Appell HJ, Carvalho F, et al. Endothelium-derived oxidative stress may contribute to exercise-induced muscle damage. Int J Sports Med 1993; 14: 440–3

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Tiidus PM, Houston ME. Vitamin E status does not affect the responses to exercise training and acute exercise in female rats. J Nutr 1993; 123: 834–40

    PubMed  CAS  Google Scholar 

  44. 44.

    Higuchi M, Cartier L-J, Chen M, et al. Superoxide dismutase and catalase in skeletal muscle: adaptive response to exercise. JGerontol 1985; 40: 281–6

    CAS  Google Scholar 

  45. 45.

    Gohil K, Packer L, De Lumen B, et al. Vitamin E deficiency and vitamin E supplements: exercise and mitochondrial oxidation. J Appl Physiol 1985; 60: 1986–91

    Google Scholar 

  46. 46.

    Novelli GP, Bracciotti G, Falsini S. Spin-trappers and vitamin E prolong endurance to muscle fatigue in mice. Free Radic Biol Med 1990; 8: 9–13

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Stadtman ER. Ascorbic acid and oxidative inactivation of proteins. Nutr Cancer 1991; 15: 252

    Google Scholar 

  48. 48.

    Friedrich W. Vitamins. Berlin: Walter de Gruyter, 1988

    Google Scholar 

  49. 49.

    Goldfarb AH, McIntosh MK, Boyer BT, et al. Vitamin E effects on indexes of lipid peroxidation in muscle from DHEA-treated and exercised rats. J Appl Physiol 1994; 76: 1630–5

    PubMed  CAS  Google Scholar 

  50. 50.

    Bendich A. Exercise and free radicals: effects of antioxidant vitamins. Vol. 32. In: Brouns F, editor. Advances in nutrition and top sport. Med Sport Sci Basel: Karger, 1991: 59–78

    Google Scholar 

  51. 51.

    Sumida S, Tanaka K, Kitao H, et al. Exercise-induced lipid peroxidation and leakage of enzymes before and after vitamin E supplementation. Int J Biochem 1989; 21: 835–8

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Pincemail J, Deby C, Pirmay F, et al. Tocopherol mobilization during intensive exercise. Eur J Appl Physiol 1988; 57: 189–91

    Article  CAS  Google Scholar 

  53. 53.

    Gleeson M, Robertson JD, Maughan RJ. Influence on ascorbic acid status in man. Clin Sci 1987; 73: 501–5

    PubMed  CAS  Google Scholar 

  54. 54.

    Cannon SG, Orencole SF, Fielding RA, et al. Acute phase response in exercise: interaction of age and vitamin E neutrophils and muscle enzyme release. Am J Physiol 1990; 259: R1214–9

    PubMed  CAS  Google Scholar 

  55. 55.

    Simon-Schnass J, Pabst H. Influence of vitamin E on physical performance. Int J Vitam Nutr Res 1988; 38: 49–54

    Google Scholar 

  56. 56.

    Kasparek GJ, Snider RD. The susceptibility to exercise-induced muscle damage increases as rats grow larger. Experientia 1985; 41: 616–7

    Article  Google Scholar 

  57. 57.

    Zerba E, Komorowski TE, Faulkner JA. Free radical injury to skeletal muscle of young, adult and old mice. Am J Physiol 1990; 27: C429–35

    Google Scholar 

  58. 58.

    Amelink GJ, Van der Wal WAA, Wokke JHJ, et al. Exercise-induced muscle damage in the rat: the effect of vitamin E deficiency. Pfluegers Arch 1991; 419: 304–9

    Article  CAS  Google Scholar 

  59. 59.

    Trout L. Vitamin C and cardiovascular risk factors. Am J Clin Nutr 1991; 53: 322S–5S

    PubMed  CAS  Google Scholar 

  60. 60.

    Kallner AB, Hartmann D, Hornig DH. On the requirements of ascorbic acid in man: steady-state turnover and body pool in smokers. Am J Clin Nutr 1981; 34: 1347–55

    PubMed  CAS  Google Scholar 

  61. 61.

    Bendich A, Machlin LJ. Safety of oral intake of vitamin E. Am J Clin Nutr 1988; 48: 612–9

    PubMed  CAS  Google Scholar 

  62. 62.

    Zaeslein C. Vitamins in the field of medicine. Basle: Hoffmann-La Roche, 1982

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Caroline Dekkers.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dekkers, J.C., van Doornen, L.J.P. & Kemper, H.C.G. The Role of Antioxidant Vitamins and Enzymes in the Prevention of Exercise-Induced Muscle Damage. Sports Med. 21, 213–238 (1996). https://doi.org/10.2165/00007256-199621030-00005

Download citation

Keywords

  • Lipid Peroxidation
  • Adis International Limited
  • Muscle Damage
  • Eccentric Exercise
  • Glutathione Peroxidase Activity