Skip to main content

The Emerging Role of Glutamine as an Indicator of Exercise Stress and Overtraining

Summary

Glutamine is an amino acid essential for many important homeostatic functions and for the optimal functioning of a number of tissues in the body, particularly the immune system and the gut. However, during various catabolic states, such as infection, surgery, trauma and acidosis, glutamine homeostasis is placed under stress, and glutamine reserves, particularly in the skeletal muscle, are depleted.

With regard to glutamine metabolism, exercise stress may be viewed in a similar light to other catabolic stresses. Plasma glutamine responses to both prolonged and high intensity exercise are characterised by increased levels during exercise followed by significant decreases during the post-exercise recovery period, with several hours of recovery required for restoration of pre-exercise levels, depending on the intensity and duration of exercise. If recovery between exercise bouts is inadequate, the acute effects of exercise on plasma glutamine level may be cumulative, since overload training has been shown to result in low plasma glutamine levels requiring prolonged recovery. Athletes suffering from the overtraining syndrome (OTS) appear to maintain low plasma glutamine levels for months or years. All these observations have important implications for organ functions in these athletes, particularly with regard to the gut and the cells of the immune system, which may be adversely affected. In conclusion, if methodological issues are carefully considered, plasma glutamine level may be useful as an indicator of an overtrained state.

This is a preview of subscription content, access via your institution.

References

  1. Fry RW, Morton AR, Keast D. Overtraining in athletes: an update. Sports Med 1991; 12: 32–65

    PubMed  CAS  Google Scholar 

  2. Budgett R. Overtraining syndrome. Brit J Sports Med 1990; 24: 231–6

    CAS  Google Scholar 

  3. Lehmann M, Foster C, Keul J. Overtraining in endurance athletes: a brief review. Med Sci Sports Exerc 1993; 25: 854–62

    PubMed  CAS  Google Scholar 

  4. Stone MH, Keith RE, Kearney JT, et al. Overtraining: a review of the signs, symptoms and possible causes. J Appl Sport Sci Res 1991; 5: 35–50

    Google Scholar 

  5. Ryan AJ, Brown RL, Frederick EC, et al. Overtraining of athletes. Physician Sports Med 1983; 11: 93–110

    Google Scholar 

  6. Snyder AC, Jeukendrup AE, Hesselink MKC, et al. A physiological/psychological indicator of over-reaching during intensive training. Int J Sports Med 1993; 14: 29–32

    PubMed  CAS  Google Scholar 

  7. Morgan WP, Brown DR, Raglin JS, et al. Psychological monitoring of overtraining and staleness. Br J Sports Med 1987; 21: 107–14

    PubMed  CAS  Google Scholar 

  8. Fry RW, Morton AR, Crawford GPM, et al. Cell numbers and in vitro responses of leucocytes and lymphocyte sub-populations following maximal exercise and interval training sessions of different intensities. Eur J Appl Physiol 1992; 64: 218–27

    CAS  Google Scholar 

  9. Mackinnon LT, Hooper S. Mucosal (secretory) immune system responses to exercise of varying intensity and during overtraining. Int J Sports Med 1994; 15: S179–83

    PubMed  Google Scholar 

  10. Verde T, Thomas S, Shephard RJ. Potential markers of heavy training in highly trained distance runners. Br J Sports Med 1992; 26: 167–75

    PubMed  CAS  Google Scholar 

  11. Adlercreutz H, Harkonen M, Kuoppasalmi K, et al. Effect of training on plasma anabolic and catabolic steroid hormones and their response during physical exercise. Int J Sports Med 1986; 7: 27–8

    PubMed  CAS  Google Scholar 

  12. Parry-Billings M, Blomstrand E, McAndrew N, et al. A communication link between skeletal muscle, brain and cells of the immune system. Int J Sports Med 1990; 11(Special Issue): 1–7

    Google Scholar 

  13. Pyne DB. Uric acid as an indicator of training stress. Sport Health 1993; 11:26–7

    Google Scholar 

  14. Keast D, Arstein D, Harper W, et al. Depression of plasma glutamine following exercise stress and its possible influence on the immune system. Med J Aus 1995; 162: 15–8

    CAS  Google Scholar 

  15. Parry-Billings M, Budgett R, Koutedakis Y, Blomstrand E, Brooks S, et al. Plasma amino acid concentrations in the over training syndrome: possible effects on the immune system. Med Sci Sports Exerc 1992; 24: 1353–8

    PubMed  CAS  Google Scholar 

  16. Rowbottom DG, Keast D, Goodman C, et al. The haematological, biochemical and immunological profile of athletes suffering from the Overtraining Syndrome. Eur J Appl Physiol 1995; 70: 502–9

    CAS  Google Scholar 

  17. Felig P. Amino acid metabolism in man. Annu Rev Biochem 1975; 44: 933–55

    PubMed  CAS  Google Scholar 

  18. Damian AC, Pitts RF. Rates of glutaminase I and glutamine synthetase reactions in rat kidney in vivo. Am J Physiol 1970; 218: 1249–55

    PubMed  CAS  Google Scholar 

  19. Newsholme EA, Leech AR. Biochemistry for the medical sciences. Chichester: John Wiley, 1983

    Google Scholar 

  20. Goldstein L, Schrock H, Cha C-J. Relationship of muscle glutamine production to renal ammonia metabolism. Biochem Soc Trans 1980; 8: 509–10

    PubMed  CAS  Google Scholar 

  21. Pitts RF, Pilkington LA, MacLeod MB, et al. Metabolism of glutamine by the intact functioning kidney of the dog. J Clin Invest 1972; 51: 557–65

    PubMed  CAS  Google Scholar 

  22. Krebs HA. Glutamine metabolism in the animal body. In: Mora J, Palacios R, editors. Glutamine: metabolism, enzymology, and regulation. New York: Academic Press, 1980: 319–29

    Google Scholar 

  23. Hanson PJ, Parsons DS. Metabolism and transport of glutamine and glucose in vascularly perfused small intestine rat. Biochem J 1977; 166:509–19

    PubMed  CAS  Google Scholar 

  24. Souba WW, Smith RJ, Wilmore RJ. Glutamine metabolism by the intestinal tract. J Parent Enter Nutr 1985; 9: 608–17

    CAS  Google Scholar 

  25. Windmueller HG, Spaeth AE. Uptake and metabolism of plasma glutamine by the small intestine. J Biol Chem 1974; 249: 5070–9

    PubMed  CAS  Google Scholar 

  26. Windmueller HG, Spaeth AE. Intestinal metabolism of glutamine and glutamate from the lumen as compared to glutamine from blood. Arch Biochem Biophys 1975; 171: 662–72

    PubMed  CAS  Google Scholar 

  27. Ardawi MSM, Newsholme EA. Metabolism in lymphocytes and its importance to the immune response. Essays Biochem 1985: 1–44

    Google Scholar 

  28. MacLennan PA, Brown RA, Rennie MJ. A positive relationship between protein synthesis rate and intracellular glutamine concentration in perfused rat skeletal muscle. FEBS Lett 1987;215:187–91

    PubMed  CAS  Google Scholar 

  29. Souba WW. Glutamine: physiology, biochemistry and nutrition in critical illness. Austin, (Tex): R.G. Landes, 1992

    Google Scholar 

  30. Felig P, Wahren J, Raf L. Evidence of inter-organ amino-acid transport by blood cells in humans. Proc Natl Acad Sci USA 1973; 70: 1775–9

    PubMed  CAS  Google Scholar 

  31. Newsholme EA, Parry-Billings M. Properties of glutamine release from muscle and its importance for the immune system. J Parenter Enter Nutr 1990; 14: 635–75

    Google Scholar 

  32. Ardawi MSM, Jamal YS. Glutamine metabolism in skeletal muscle of glucocorticoid-treated rats. Clin Sci 1990; 79: 139–47

    PubMed  CAS  Google Scholar 

  33. Häussinger D. Glutamine metabolism in the liver: overview and current concepts. Metabolism 1989; 38Suppl. 1: 14–7

    PubMed  Google Scholar 

  34. Frayn KN, Khan K, Coppack SW, et al. Amino acid metabolism in human subcutaneous adipose tissue in vivo. Clin Sci 1991; 80:471–4

    PubMed  CAS  Google Scholar 

  35. Bergström J, Furst P, Noree L-O, et al. Intracellular free amino acid concentration in human muscle tissue. J Appl Physiol 1974; 36: 693–7

    PubMed  Google Scholar 

  36. Turinsky J, Long CL. Free amino acids in muscle: effect of muscle fiber population and denervation. Am J Physiol 1990; 258:E485–91

    PubMed  CAS  Google Scholar 

  37. Graham TE, Turcotte LP, Kiens B, et al. Training and muscle ammonia and amino acid metabolism in humans during prolonged exercise. J Appl Physiol 1995; 78: 725–35

    PubMed  CAS  Google Scholar 

  38. Pozefsky T, Felig P, Tobin JD, et al. Amino acid balance across tissues of the forearm in post-absorptive man. Effects of insulin at two dose levels. J Clin Invest 1969; 48: 2273–82

    PubMed  CAS  Google Scholar 

  39. Rennie MJ, Tadros L, Khogali S, et al. Glutamine transport and its metabolic effects. J Nutr 1994; 124: S1503–8

    Google Scholar 

  40. Golden MHN, Jahoor P, Jackson AA. Glutamine production rate and its contribution to urinary ammonia in normal man. Clin Sci 1982; 62: 299–305

    PubMed  CAS  Google Scholar 

  41. Kapadia CR, Muhlbacher F, Smith RJ, et al. Alterations in glutamine metabolism in response to cooperative stress and food deprivation. Surg Forum 1982; 33: 19–21

    CAS  Google Scholar 

  42. Roth E, Funovics J, Muhlbacher F, et al. Metabolic disorders in severe abdominal sepsis: glutamine deficiency in skeletal muscle. Clin Nutr 1982; 1: 25–41

    PubMed  CAS  Google Scholar 

  43. Wilmore DW. Alterations in protein, carbohydrate, and fat metabolism in injured and septic patients. J Am Coll Nutr 1983; 2:3–13

    PubMed  CAS  Google Scholar 

  44. King PA, Goldstein L, Newsholme EA. Glutamine synthetase activity of muscle in acidosis. Biochem J 1983; 216: 523–5

    PubMed  CAS  Google Scholar 

  45. Darmaun D, Matthews DE, Bier DM. Physiological hypercortisolemia increases proteolysis, glutamine, and alanine production. Am J Physiol 1988; 255: E366–73

    PubMed  CAS  Google Scholar 

  46. Hundal HS, Babij P, Taylor PM, et al. Effects of corticosteroid on the transport and metabolism of glutamine in rat skeletal muscle. Biochim Biophys Acta 1991; 1092: 376–83

    PubMed  CAS  Google Scholar 

  47. Leighton B, Parry-Billings M, Dimitriadis G, et al. Physiological glucocorticoid levels regulate glutamine and insulin-mediated glucose metabolism in skeletal muscle of the rat. Biochem J 1991; 274: 187–92

    PubMed  CAS  Google Scholar 

  48. Parry-Billings M, Leighton B, Dimitriadis GD, et al. Effects of physiological and pathological levels of glucocorticoids on skeletal muscle glutamine metabolism in the rat. Biochem Pharmacol 1990; 40: 1145–8

    PubMed  CAS  Google Scholar 

  49. Rennie MJ, MacLennan PA, Hundal HS, et al. Skeletal muscle glutamine transport, intramuscular glutamine concentration, and muscle-protein turnover. Metabolism 1989; 38Suppl. 1: 47–51

    PubMed  CAS  Google Scholar 

  50. Max S. Glucocorticoid-mediated induction of glutamine synthetase in skeletal muscle. Med Sci Sports Exerc 1990; 22: 325–30

    PubMed  CAS  Google Scholar 

  51. Babij P, Hundal HS, Rennie MJ, et al. Effects of corticosteroids on glutamine transport in rat skeletal muscle. J Physiol 1986; 374: 35P

    Google Scholar 

  52. Welbourne TC, Joshi S. Interorgan glutamine metabolism during acidosis. J Parenter Enter Nutr 1990; 14 Suppl.: S77–85

    Google Scholar 

  53. Newsholme EA, Lang J, Relman AS. Control of rate of glutamine metabolism in the kidney. Contrib Nephrol 1982; 31: 1–4

    PubMed  CAS  Google Scholar 

  54. Welbourne TC, Phromphetcharat P, Givens G, et al. Regulation of interorgan glutamine flow in metabolic acidosis. Am J Physiol 1986; 250: E457–63

    PubMed  CAS  Google Scholar 

  55. Szondy Z, Newsholme EA. The effect of glutamine concentration on the activity of carbamoyl-phosphate synthetase II and incorporation of [3H]thymidine into DNA in rat mesenteric lymphocytes stimulated by phytohaemagglutinin. Biochem J 1989; 261: 979–83

    PubMed  CAS  Google Scholar 

  56. Brand K, Leibold W, Luppa P, et al. Metabolic alterations associated with proliferation of mitogen-stimulated lymphocytes and of lymphoblastoid cell lines: evaluation of glucose and glutamine metabolism. Immunobiology 1986; 173: 23–34

    PubMed  CAS  Google Scholar 

  57. Caldwell MD. Local glutamine metabolism in wounds and inflammation. Metabolism 1989; 38Suppl. 1: 34–9

    PubMed  CAS  Google Scholar 

  58. Griffiths M, Keast D. The effect of glutamine on murine splenic leukocyte responses to T- and B-cell mitogens. Immunol Cell Biol 1990; 68: 405–8

    PubMed  CAS  Google Scholar 

  59. Wallace C, Keast D. Glutamine and macrophage function. Metabolism 1992; 41: 1016–20

    PubMed  CAS  Google Scholar 

  60. Calder PC. Newsholme EA. Glutamine promotes interleukin-2 production by concanavalin A-stimulated lymphocytes. Proc Nutr Soc 1992; 51: 105A

    Google Scholar 

  61. Schneider YJ, Lavoix A. Monoclonal antibody production in semicontinuous serum- and protein-free culture. J Immunol Methods 1990; 129:251–68

    PubMed  CAS  Google Scholar 

  62. Frisina JP, Gaudieri S, Cable T, et al. Effects of acute exercise on lymphocyte subsets and metabolic activity. Int J Sports Med 1994; 15:36–41

    PubMed  CAS  Google Scholar 

  63. Ardawi MSM, Newsholme EA. Maximum activities of some enzymes of glycolysis, the tricarboxylic acid cycle and ketone-body and glutamine utilisation pathways in lymphocytes of the rat. Biochem J 1982; 208: 743–8

    PubMed  CAS  Google Scholar 

  64. Ardawi MSM. Glutamine-synthesizing activity in lungs of fed, starved, acidotic, diabetic, injured and septic rats. Biochem J 1990; 270: 829–32

    PubMed  CAS  Google Scholar 

  65. Austgen TA, Chen MK, Salloum RM, et al. Glutamine metabolism by the endotoxin-injured lung. J Trauma 1991; 31: 1068–75

    PubMed  CAS  Google Scholar 

  66. Souba WW, Plumley DA, Salloum RM, et al. Effects of glucocorticoids on lung glutamine and alanine metabolism. Surgery 1990; 108:213–9

    PubMed  CAS  Google Scholar 

  67. Hertz L, Kvamme E, McGeer E. Glutamine, glutamate and GAB A in the nervous system. New York: Liss, 1984

    Google Scholar 

  68. Lacey JM, Wilmore DW. Is glutamine a conditionally essential amino acid? Nutr Rev 1990; 48: 297–309

    PubMed  CAS  Google Scholar 

  69. Welbourne TC, Joshi S. Enterai glutamine spares endogenous glutamine in chronic acidosis. J Parenter Enter Nutr 1994; 18:243–7

    CAS  Google Scholar 

  70. Souba WW, Wilmore DW. Postoperative alterations of arterio-venous exchange of amino acids across the gastrointestinal tract. Surgery 1983; 94: 342–50

    PubMed  CAS  Google Scholar 

  71. Meister A, editors. Biochemistry of the amino acids. 2nd ed. Vol. 1. New York: Academic Press, 1965: 1–57

    Google Scholar 

  72. Archibald RM. Chemical characteristics and physiological roles of glutamine. Chem Rev 1945; 37: 161–208

    PubMed  CAS  Google Scholar 

  73. Vaneijk HMH, Dejong CHC, Deutz NEP, et al. Influence of storage conditions on normal plasma amino-acid concentrations. Clin Nutr 1994; 13: 374–80

    CAS  Google Scholar 

  74. Khan K, Blaak E, Elia M. Quantifying intermediary metabolites in whole blood after a simple deproteinization step with sulfosalicylic acid. Clin Chem 1991; 37: 718–33

    Google Scholar 

  75. Grossie VB, Yick J, Alpeter M, et al. Glutamine stability in biological tissues evaluated by fluorometric analysis. Clin Chem 1993; 39: 1059–63

    PubMed  CAS  Google Scholar 

  76. Lund P. L-Glutamine. Determination with glutaminase and glutamate dehydrogenase. In: Bergmeyer HU, editors. Methods of enzymatic analysis, Vol. 4. New York: Academic Press, 1974: 1719–22

    Google Scholar 

  77. Graser TA, Godel HG, Albers S, et al. An ultra rapid and sensitive high-performance liquid Chromatographic method for determination of tissue and plasma free amino acids. Anal Biochem 1985; 151: 142–52

    PubMed  CAS  Google Scholar 

  78. Castell LM, Liu CT, Newsholme EA. Diurnal variation of plasma glutamine and arginine in normal and fasting subjects. Proc NutrSoc 1995; 54: 118A

    Google Scholar 

  79. Elia M, Folmer P, Schlatmann A, et al. Amino acid metabolism in muscle and in the whole body of man before and after ingestion of a single mixed meal. Am J Clin Nutr 1989; 49: 1203–10

    PubMed  CAS  Google Scholar 

  80. Sahlin K, Katz A, Broberg S. Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise. Am J Physiol 1990; 259: C834–41

    PubMed  CAS  Google Scholar 

  81. Sewell DA, Gleeson M, Blannin AK. Hyperammonaemia in relation to high-intensity exercise duration in man. Eur J Appl Physiol 1994; 69: 350–4

    CAS  Google Scholar 

  82. Ziegler TR, Benfell K, Smith RJ, et al. Safety and metabolic effects of L-glutamine administration in humans. J Parenter Enter Nutr 1990; 14: S137–46

    Google Scholar 

  83. Babij P, Matthews SM, Rennie MJ. Changes in blood ammonia, lactate and amino acids in relation to workload during bicycle ergometer exercise in man. Eur J Appl Physiol 1983; 50:405–11

    CAS  Google Scholar 

  84. Bergström J, Furst P, Hultman E. Free amino acids in muscle tissue and plasma during exercise in man. Clin Physiol 1985; 5: 155–60

    PubMed  Google Scholar 

  85. Déchelotte P, Darmaun D, Rongier M, et al. Absorption and metabolic effects of enterally administered glutamine in humans. Am J Physiol 1991; 260: G677–82

    PubMed  Google Scholar 

  86. Eriksson LS, Broberg S, Björkman O, et al. Ammonia metabolism during exercise in man. Clin Physiol 1985; 5: 325–36

    PubMed  CAS  Google Scholar 

  87. Katz A, Broberg S, Sahlin K, et al. Muscle ammonia and amino acid metabolism during dynamic exercise in man. Clin Physiol 1986; 6: 365–79

    PubMed  CAS  Google Scholar 

  88. Rennie MJ, Edwards RHT, Krywawych S, et al. Effect of exercise on protein turnover in man. Clin Sci 1981; 61: 627–39

    PubMed  CAS  Google Scholar 

  89. Bernt E, Bergmeyer HU. L-glutamate. UV-assay with glutamate dehydrogenase and NAD. In: Bergmeyer HU, editors. Methods of enzymatic analysis. Vol. 4. New York: Academic Press, 1974: 1704–8

    Google Scholar 

  90. Mayers EP, Smith OH, Fredricks WW, et al. The isolation and characterisation of glutamine-requiring strains of Escherichia coli K12. Mol Gen Genet 1975; 137: 131–42

    Google Scholar 

  91. Weitzman ED, Fukushima D, Nogeire C, et al. Twenty-four hour pattern of the episodic secretion of cortisol in normal subjects. J Clin Endocrinol Metab 1971; 33: 14–22

    PubMed  CAS  Google Scholar 

  92. Feigin RD, Klainer AS, Beisel WR. Circadian periodicity of blood aminoacids in adult men. Nature 1967; 215: 512–4

    PubMed  CAS  Google Scholar 

  93. Feigin RD, Klainer AS, Beisel WR. Factors affecting circadian periodicity of blood amino acids in man. Metabolism 1968; 17:764–75

    PubMed  CAS  Google Scholar 

  94. Palmer T, Rossiter MA, Levin B, et al. The effect of protein loads on plasma amino acid levels. Clin Sci Mol Med 45: 827–32; 1973

    PubMed  CAS  Google Scholar 

  95. Greig JE, Rowbottom DG, Keast D. The effect of a common (viral) stress on plasma glutamine concentration. Med J Aust 1995; 163:385–8

    PubMed  CAS  Google Scholar 

  96. Keast D, Vasquez AR. Inhibition in vitro of the replication of murine cytomegalovirus or reovirus type 3 by the glutamine analogue acivicin. Arch Virol 1992; 124: 235–44

    PubMed  CAS  Google Scholar 

  97. Fitzgerald L. Overtraining increases the susceptibility to infection. Int J Sports Med 1991; 12Suppl. 1: S5–8

    PubMed  Google Scholar 

  98. Maughan RJ, Gleeson M. Influence of a 36h fast followed by refeeding with glucose, glycerol or placebo on metabolism and performance during prolonged exercise in man. Eur J ApplPhysiol 1988; 57: 570–6

    CAS  Google Scholar 

  99. Dohm GL, Beecher GR, Warren RQ, et al. Influence of exercise on free amino acid concentrations in rat tissues. J Appl Physiol 1981; 50: 41–4

    PubMed  Google Scholar 

  100. Christophe J, Winand J, Kutzner R, et al. Amino acid levels in plasma, liver, muscle, and kidney during and after exercise in fasted and fed rats. Am J Physiol 1971; 221: 453–7

    PubMed  CAS  Google Scholar 

  101. Décombaz J, Reinhardt P, Anantharaman K, et al. Biochemical changes in a 100km run: free amino acids, urea, and creatinine. Eur J Appl Physiol 1979; 41: 61–72

    Google Scholar 

  102. Henriksson J. Effect of exercise on amino acid concentrations in skeletal muscle and plasma. J Exp Biol 1991; 160: 149–65

    PubMed  CAS  Google Scholar 

  103. Buono MJ, Clancy TR, Cook JR. Blood lactate and ammonium ion accumulation during graded exercise in humans. J Appl Physiol 1984; 57: 135–9

    PubMed  CAS  Google Scholar 

  104. Newsholme EA. Biochemical mechanisms to explain immuno-suppression in well-trained and overtrained athletes. Int J Sports Med 1994; 15: S142–7

    PubMed  Google Scholar 

  105. Fry RW, Morton AR, Keast D. Periodisation of training stress— a review. Can J Sports Sci 1992; 17: 234–40

    CAS  Google Scholar 

  106. Fry RW, Morton AR, Garcia Webb P, et al. Biological responses to overload training in endurance sports. Eur J Appl Physiol 1992; 64: 335–44

    CAS  Google Scholar 

  107. Noakes TD. The Lore of Running. Cape Town: Oxford University Press, 1985

    Google Scholar 

  108. Sharp NCC, Koutedakis Y. Sport and the overtraining syndrome: immunological aspects. Br Med Bull 1992; 48: 518–33

    PubMed  CAS  Google Scholar 

  109. Keast D, Morton AR. Overtraining. In: Fahey TD, editors. Encyclopedia of sports medicine and exercise physiology. New York: Garland Publishing. In press

  110. Fry RW, Morton AR, Keast D. Overtraining syndrome and the chronic fatigue syndrome — part I. NZ J Sports Med 1991; 19: 48–52

    Google Scholar 

  111. Fry RW, Morton AR, Keast D. Overtraining syndrome and the chronic fatigue syndrome — part II. NZ J Sports Med 1991; 19: 76–7

    Google Scholar 

  112. Parker S, Brukner P. Is your Sportsperson suffering from Chronic Fatigue Syndrome? Sports Health 1994; 12: 15–7

    CAS  Google Scholar 

  113. Rowbottom DG, Keast D, Garcia-Webb P, et al. Serum free cortisol responses to a standard exercise test among elite triathletes. Aust J Sci Med Sport. In press

  114. Falduto MT, Young AP, Hickson RC. Exercise inhibits glucocorticoidinduced glutamine synthetase expression in red skeletal muscle. Am J Physiol 1992; 262: C214–20

    PubMed  CAS  Google Scholar 

  115. Wasserman DH, Geer RJ, Williams PE, et al. Interaction of gut and liver in nitrogen metabolism during exercise. Metabolism 1991; 40: 307–14

    PubMed  CAS  Google Scholar 

  116. Kaplowitz N, Aw TY, Ookhtens M. The regulation of hepatic glutathione. Ann Rev Pharmacol Toxicol 1985; 25: 715–44

    CAS  Google Scholar 

  117. Hong RW, Rounds JD, Helton WS, Robinson MK, Wilmore DW Glutamine preserves liver glutathione after lethal hepatic injury. Ann Surg 1992; 215: 114–9

    PubMed  CAS  Google Scholar 

  118. Snoke JE, Yanan S, Bloch K. Synthesis of glutathione from Yglutamylcysteine. J Biol Chem 1953; 201: 573–86

    PubMed  CAS  Google Scholar 

  119. Jenkins RR. Free radical chemistry: relationship to exercise. Sports Med 1988; 5: 156–70

    PubMed  CAS  Google Scholar 

  120. Nieman DC. Exercise, upper respiratory tract infection, and the immune system. Med Sci Sports Exerc 1994; 26: 128–39

    PubMed  CAS  Google Scholar 

  121. Koutedakis Y, Budgett R, Fullman L. Rest in underperforming elite competitors. Br J Sports Med 1990; 24: 248–52

    PubMed  CAS  Google Scholar 

  122. Darmaun D, Just B, Messing B, et al. Glutamine metabolism in healthy adult men: response to enterai and intravenous feeding. Am J Clin Nutr 1994; 59: 1395–402

    PubMed  CAS  Google Scholar 

  123. Hammarqvist F, Wernerman J, Ali MR, et al. Addition of glutamine to total parenteral nutrition after elective abdominal surgery spares free glutamine in muscle, counteracts the fall in protein synthesis, and improves nitrogen balance. Ann Surg 1989; 209: 455–61

    PubMed  CAS  Google Scholar 

  124. Kapadia CR, Colpoys MF, Jiang ZM, Johnson DJ, Smith RJ, et al. Maintenance of skeletal muscle intracellular glutamine during standard surgical trauma. J Parenter Enter Nutr 1985; 9: 583–9

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rowbottom, D.G., Keast, D. & Morton, A.R. The Emerging Role of Glutamine as an Indicator of Exercise Stress and Overtraining. Sports Med 21, 80–97 (1996). https://doi.org/10.2165/00007256-199621020-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199621020-00002

Keywords

  • Glutamine
  • Adis International Limited
  • Chronic Fatigue Syndrome
  • Glutamine Level
  • Glutamine Metabolism