Skip to main content

Exercise and Brain Neurotransmission

Summary

Physical exercise influences the central dopaminergic, noradrenergic and serotonergic systems. A number of studies have examined brain noradrenaline (norepinephrine), serotonin (5-hydroxytryptamine; 5-HT) and dopamine with exercise. Although there are great discrepancies in experimental protocols, the results indicate that there is evidence in favour of changes in synthesis and metabolism of monoamines during exercise.

There is a possibility that the interactions between brain neurotransmitters and their specific receptors could play a role in the onset of fatigue during prolonged exercise. The data on the effects of branched chain amino acid (BCAA) supplementation and ‘central fatigue’ seem to be conflicting, although recent studies suggest that BCAA supplementation has no influence on endurance performance.

There are numerous levels at which central neurotransmitters can affect motor behaviour; from sensory perception, and sensory-motor integration, to motor effector mechanisms. However, the crucial point is whether or not the changes in neurotransmitter levels trigger or reflect changes in monoamine release. Until recently most studies were done on homogenised tissue, which gives no indication of the dynamic release of neurotransmitters in the extracellular space of living organisms.

Recently, new techniques such as microdialysis and voltammetry were introduced to measure in vivo release of neurotransmitters. Microdialysis can collect virtually any substance from the brain of a freely moving animal with a limited amount of tissue trauma. This method allows measurement of local neurotransmitter release during on-going behavioural changes such as exercise.

The results of the first studies using these methods indicate that the release of most neurotransmitters is influenced by exercise. Although the few studies that have been published to date show some discrepancies, we feel that these recently developed and more sophisticated in vivo methods will improve our insight into the relationship between the monoamine and other transmitters during exercise. Continued quantitative and qualitative research needs to be conducted so that a further understanding of the effects of exercise on brain neurotransmission can be gained.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Fentem P. Benefits of exercise in health and disease. BMJ 1994; 308: 1291–5

    PubMed  CAS  Article  Google Scholar 

  2. 2.

    Freed C, Yamamoto B. Regional brain dopamine metabolism: a marker for the speed, direction and posture of moving animals. Science 1985; 229: 62–5

    PubMed  CAS  Article  Google Scholar 

  3. 3.

    Wilckens T, Schweiger U, Pirke K. Activation of 5-HT1c-receptors suppresses excessive wheel running induced by semistarvation in the rat. Psychopharmacol 1992; 109: 77–84

    CAS  Article  Google Scholar 

  4. 4.

    Gil M, Marti J, Armario A. Inhibition of catecholamine synthesis depresses behaviour of rats in the holeboard and forced swim tests: influence of previous chronic stress. Pharmacol Biochem Behav 1992; 43: 597–601

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    Hassler R, Striatal control of locomotion, intentional actions and of integrating and perceptive activity. J Neurol Sci 1978; 36: 187–224

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    Jacobs B, Fornal C. 5-HT and motor control: a hypothesis. Trends Neurosci 1993; 16(9): 346–50

    PubMed  CAS  Article  Google Scholar 

  7. 7.

    Jacobs B. Serotonin and behaviour: emphasis on motor control. J Clin Psychol 1991; 52: 12 Suppl.: 17–23

    Google Scholar 

  8. 8.

    Marsden C. The mysterious motor function of the basal ganglia. The Robert Wartenberg Lecture. Neurology 1982; 32: 514–39

    PubMed  CAS  Article  Google Scholar 

  9. 9.

    Bailey S, Davis J, Ahlborn E. Neuroendocrine and substrate responses to altered brain 5-HT activity during prolonged exercise to fatigue. J Appl Physiol 1993; 74(6): 3006–12

    PubMed  CAS  Google Scholar 

  10. 10.

    Newsholme E, Acworth I, Blomstrand E. Amino acids, brain neurotransmitters and a functional link between muiscle and brain that is important in sustained exercise. In: Benzi G editor. Advances in myochemistry. London: John Libby Eurotext, 1987: 127–38

    Google Scholar 

  11. 11.

    Blomstrand E, Celsing F, Newsholme E. Changes in plasma levels of aromatic and branched chain amino acids during sustained exercise in man and their possible role in fatigue. Acta Physiol Scand 1988; 133: 115–21

    PubMed  CAS  Article  Google Scholar 

  12. 12.

    Acworth I, Nicolass J, Morgan B, et al. Effect of sustained exercise on concentrations of plasma aromatic and branched chain amino acids and brain amines. Biochem Biophys Res Commmun 1986; 137(1): 149–53

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Dunn A, Dishmann R. Exercise and the neurobiology of depression. Exerc Sport Sci Rev 1991; 19: 41–98

    PubMed  CAS  Article  Google Scholar 

  14. 14.

    Herregodts P. Neurochemical studies of monoaminergic neurotransmitters in the central nervous system. Brussels: VUB Press, 1991

    Google Scholar 

  15. 15.

    Chaouloff F. Physical exercise and brain monoamines: a review. Acta Physiol Scand 1989; 137: 1–13

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    Barchas J, Freedman D. Brain amines: response to physiological stress. Biochem Pharmacol 1963; 12: 1232–35

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    Gordon R, Spector A, Sjoerdsma A, et al. Increased synthesis of norepinephrine and epinephrine in the intact rat during exercise and exposure to cold. J Pharmacol Exp Ther 1966; 153: 440–7

    PubMed  CAS  Google Scholar 

  18. 18.

    Moore K, Larivière E. Effects of stress and d-amphetamine on rat brain catecholamines. Biochem Pharmacol 1964; 13: 1098–100

    PubMed  CAS  Article  Google Scholar 

  19. 19.

    Moore K. Development of tolerance to the behavioural depressant effect of alpha-methyltyrosine. J Pharm Pharmacol 1968; 20: 805–6

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    Speciale S, Miller J, McMillen B, et al. Activation of specific central dopamine pathways: locomotion and footshock. Brain Res Bull 1986; 16: 33–8

    PubMed  CAS  Article  Google Scholar 

  21. 21.

    Bliss E, Aillion J. Relationship of stress and activity on brain dopamine and homovanillic acid. Life Sci 1971; 10: 1161–9

    CAS  Article  Google Scholar 

  22. 22.

    Bertolucci-D’Angio M, Serrano A, Scatton B. Differential effects of forced locomotion, tail pinch, immobilisation and methyl-beta-carboline carboxylate on extracellular DOPAC levels in the rat striatum, nucleus accumbens, and prefrontal cortex: an in vivo voltammetric study. J Neurochem 1990; 55: 1208–15

    PubMed  Article  Google Scholar 

  23. 23.

    Elam M, Svensson T, Thoren P. Brain monoamine metabolism is altered in rats following spontaneous long-distance running. Acta Physiol Scand 1987; 130: 313–6

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    Hoffmann P, Elam M, Thoren P, et al. Effects of long lasting voluntary running on the cerebral levels of dopamine, serotonin and their metabolites in the spontaneously hypertensive rat. Life Sci 1994; 54(13): 855–61

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    De Castro J, Duncan G. Operantly conditioned running: effects on brain catecholamine concentrations and receptor densities in the rat. Pharmacol Biochem Behav 1985; 23: 495–500

    PubMed  Article  Google Scholar 

  26. 26.

    Dey S, Singh R, Dey P. Exercise training: significance of regional alterations in serotonin metabolism of rat brain in relation to antidepressant effect of exercise. Physiol Behav 1992; 52: 1095–9

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Dey S. Physical exercise as a novel antidepressant agent: possible role of serotonin receptor subtypes. Physiol Behav 1994; 55(2): 323–9

    PubMed  CAS  Article  Google Scholar 

  28. 28.

    Cicardo V, Carbone S, De Rondina D, et al. Stress by forced swimming in the rat, effects of misanserin and moclobemide on GABAergic and monoaminergic systems in the brain. Comp Biochem Physiol C 1986; 83(1): 133–5

    PubMed  CAS  Article  Google Scholar 

  29. 29.

    Sheldon M, Sorcher S, Smith C. A comparison of the effects of morfine and forced running upon the incorporation of 14C-tyrosine into 14C-catecholamines in mouse brain, heart and spleen. J Pharmacol Exp Ther 1975; 193: 564–75

    PubMed  CAS  Google Scholar 

  30. 30.

    Brown B, Van Huss W. Exercise and rat brain catecholamines. J Appl Physiol 1973; 34(5): 664–9

    PubMed  CAS  Google Scholar 

  31. 31.

    Brown B, Payne T, Kim C, et al. Chronic response of rat brain norepinephrine and serotonin levels to endurance training. J Appl Physiol 1979; 46(1): 19–23

    PubMed  CAS  Google Scholar 

  32. 32.

    Östman I, Nybäck H. Adaptive changes in central and peripheral noradrenergic neurons in rats following chronic exercise. Neurosci 1976; 1:41–7

    Article  Google Scholar 

  33. 33.

    Stone E. Accumulation and metabolism of norepinephrine in rat hypothalamus after exhaustive stress. J Neurochem 1973; 21: 589–601

    PubMed  CAS  Article  Google Scholar 

  34. 34.

    Heyes M, Garnett E, Coates G. Central dopaminergic activity influences rats ability to run. Life Sci 1985; 36: 671–7

    PubMed  CAS  Article  Google Scholar 

  35. 35.

    Heyes M, Garnett E, Coates G. Nigrostriatal dopaminergic activity is increased during exhaustive exercise stress in rats. Life Sci 1988; 42: 1537–42

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Rea M, Hellhammer D. Activity wheel stress changes in brain norepinephrine turnover and the occurrence of gastric lesions. Psychother Psychosom 1984; 42: 218–23

    PubMed  CAS  Article  Google Scholar 

  37. 37.

    Sudo A. Time course of the changes of catecholamine levels in rat brain during swimming stress. Brain Res 1983; 276: 372–4

    PubMed  CAS  Article  Google Scholar 

  38. 38.

    Lukaszyk A, Buckzo W, Wisniewski K. The effect of strenuous exercise on the reactivity of the central dopaminergic system in the rat. Pol J Pharmacol Pharm 1983; 35: 29–36

    PubMed  CAS  Google Scholar 

  39. 39.

    Blomstrand E, Perret D, Parry-Billings M, et al. Effect of sustained exercise on plasma amino acid concentrations and on serotonin metabolism in six different brain regions in the rat. Acta Physiol Scand 1989; 136: 473–81

    PubMed  CAS  Article  Google Scholar 

  40. 40.

    Broocks A, Liu J, Pirki K. Semi-starvation induced hyperactivity compensates for decreased norepinephrine and dopamine turnover in the mediobasal hypothalamus of the rat. J Neural Transm 1990; 79: 113–24

    CAS  Article  Google Scholar 

  41. 41.

    Brown B, Piper E, Riggs C, et al. Acute and chronic effects of aerobic and anaerobic training upon brain neurotransmitters and cytochrome oxydase activity in muscle [abstract]. Intern J Sports Med 1992; 13:92–3

    Article  Google Scholar 

  42. 42.

    Chaouloff F, Laude D, Guezennec Y, et al. Motor activity increases tryptophan, 5-hydroxyindoleacetic acid, and homovanillic acid in ventricular cerebrospinal fluid of the conscious rat. J Neurochem 1986; 46: 1313–6

    PubMed  CAS  Article  Google Scholar 

  43. 43.

    Chaouloff F, Laude D, Meringo D. et al. Amphetamine and alpha-methyl-p-tyrosine affect the exercise induced imbalance between the availability of tryptophan and synthesis of serotonin in the brain of the rat. Neuropharmacol 1987; 26(8): 1099–106

    CAS  Article  Google Scholar 

  44. 44.

    Bailey S, Davis J, Ahlborn E. Effect of increased brain serotonergic activity on endurance performance in the rat. Acta Physiol Scand 1992; 145: 75–6

    PubMed  CAS  Article  Google Scholar 

  45. 45.

    Gilliam P, Spirduso W, Martin T, et al. The effects of exercise training on (3H)-spiperone binding in rat striatum. Pharmacol Biochem Behav 1984; 20: 863–7

    PubMed  CAS  Article  Google Scholar 

  46. 46.

    MacRea P, Spirduso W, Cartee G, et al. Endurance training effects on striatal D2 dopamine-receptor binding and striatal dopamine metabolite levels [letter]. Neurosci 1987; 79: 138–44

    Article  Google Scholar 

  47. 47.

    Boldry R, Willins D, Wallace L, et al. The role of endogenous dopamine in the hypermobility response to intra-accumbens AMPA. Brain Res 1991; 559: 100–8

    PubMed  CAS  Article  Google Scholar 

  48. 48.

    O’Connor W, Morari M, Fuxe K, et al. Dopamine and NMDA receptor regulation of striatal GABA output neurons. In: Louilot A, Durkin T, Spampinato U, et al. editors. Monitoring molecules in neuroscience. Gradignan: Publi Typ 1994; 289–90

    Google Scholar 

  49. 49.

    Chaouloff F, Elghozi J, Guezennec Y, et al. Effects of conditioned running on plasma, liver and brain tryptophan and on brain 5-hydroxytryptamine metabolism in the rat. Br J Pharmacol 1985; 86: 33–41

    PubMed  CAS  Article  Google Scholar 

  50. 50.

    Chaouloff F, Kennett G, Serrurrier B, et al. Amino acid analysis demonstrates that increased plasma free tryptophan causes the increase of brain tryptophan during exercise in the rat. J Neurochem 1986; 46: 1647–50

    PubMed  CAS  Article  Google Scholar 

  51. 51.

    Chaouloff F, Laude D, Elghozi J. Brain serotonin response to exercise in the rat: the influence of training duration. Biog Amines 1987; 4: 99–106

    CAS  Google Scholar 

  52. 52.

    Chaouloff F, Laude D, Elghozi J. Physical exercise: evidence for differential consequences of tryptophan on 5-HT synthesis and metabolism in central serotonergic cell bodies and terminals. J Neural Transm [Gen Sect] 1989; 78: 121–30

    CAS  Article  Google Scholar 

  53. 53.

    Romanowski W, Grabiec S. The role of serotonin in the mechanism of central fatigue. Acta Physiol Pol 1974; 25: 127–34

    PubMed  CAS  Google Scholar 

  54. 54.

    Bailey S, Davis J, Ahlborn E. Serotonergic agonists and antagonists affect endurance performance in the rat. Intern J Sports Med 1993; 14(6): 330–3

    CAS  Article  Google Scholar 

  55. 55.

    Meeusen R, Sarre S, Michotte Y, et al. The effects of exercise on neurotransmission in rat striatum, a microdialysis study. In: Louilot A, Durkin T, Spampinato U, et al., editors. Monitoring molecules in neuroscience. Gradignan: Publi Typ 1994; 181–2

    Google Scholar 

  56. 56.

    Wilson W, Marsden C. The effect of running on brain serotonin. In: Louilot A, Durkin T, Spampinato U, et al., editors. Monitoring molecules in neuroscience. Gradignan: Publi Typ 1994; 223–4

    Google Scholar 

  57. 57.

    Kurosawa M, Okada K, Sato A, et al. Extracellular release of acetylcholine, noradrenaline and serotonin increases in the cerebral cortex during walking in conscious rats. Neurosci Lett 1993; 161: 73–6

    PubMed  CAS  Article  Google Scholar 

  58. 58.

    Dishman R. Biological psychology, exercise, and stress. Quest 1994; 46: 28–59

    Article  Google Scholar 

  59. 59.

    Hellhammer D, Hingtgen J, Wade S, et al. Serotonergic changes in specific areas of rat brain associated with activity — stress gastric lesions. Psychosom Med 1983; 45: 115–22

    PubMed  CAS  Google Scholar 

  60. 60.

    Imperato A, Angelucci L, Casolini P, et al. Repeated stressful experiences differently affect limbic dopamine release during and following stress. Brain Res 1992; 577: 194–9

    PubMed  CAS  Article  Google Scholar 

  61. 61.

    Ferré S, Cortes R, Artigas F. Dopaminergic regulation of the serotonergic raphe-striatal pathway: microdialysis studies in freely moving rats. J Neurosci 1994; 14(8): 4839–46

    PubMed  Google Scholar 

  62. 62.

    Ohta K, Fukuuchi Y, Shimazu K, et al. Presynaptic glutamate receptors facilitate release of norepinephrine and 5-HT as well as dopamine in the normal and ischemic striatum. J Autonom Nerv Sys 1994; 49: S195–S202

    CAS  Article  Google Scholar 

  63. 63.

    Zocchi A, Pert A. Alterations in striatal acetylcholine overflow by cocaine, morphine, and MK-801: relationship to locomotor output. Psychopharmacol 1994; 115: 297–304

    CAS  Article  Google Scholar 

  64. 64.

    Chaouloff F. Physiolopharmacological interactions between stress hormones and central serotonergic systems. Brain Res Rev 1993; 18: 1–32

    PubMed  CAS  Article  Google Scholar 

  65. 65.

    Wurtman R, Lewis M. Exercise, plasma composition and neurotransmission. In: Brouns F, editor. Advances in nutrition and top sport. Med Sport Sci. Basel: Karger, 1991; 32:94–109

    Google Scholar 

  66. 66.

    Fernstrom J. Role of precursor availability in control of monoamine biosynthesis in brain. Physiol Rev 1983; 63(2): 484–546

    PubMed  CAS  Google Scholar 

  67. 67.

    Fernstrom J, Wurtman R. Brain serotonin content: physiological dependence on plasma tryptophan levels. Science 1971; 173: 149–52

    PubMed  CAS  Article  Google Scholar 

  68. 68.

    Fernstrom J, Wurtman R. Brain serotonin content: physiological regulation by plasma neutral amino acids. Science 1972; 178: 414–6

    PubMed  CAS  Article  Google Scholar 

  69. 69.

    Sharp T, Bramwell S, Grahame-Smith D. Effect of acute administration of L-tryptophan in the release of 5-HT in rat hippocampus in relation to serotonergic neuronal activity: an in vivo microdialysis study. Life Sci 1992; 50: 1215–23

    PubMed  CAS  Article  Google Scholar 

  70. 70.

    Hernandez L, Parada M, Baptista T, et al. Hypothalamic serotonin in treatments for feeding disorders and depression as studied by brain microdialysis. J Clin Psych 1991; 52(12 Suppl.): 32–40

    Google Scholar 

  71. 71.

    Kreider RB, Miriel V, Bertun E. Amino acid supplementation and exercise performance, Sports Med 1993; 16(3): 190–209

    PubMed  CAS  Article  Google Scholar 

  72. 72.

    Blomstrand E, Hassmen P, Ekblom B, et al. Administration of branched chain amino acids during sustained exercise — effects on performance and on plasma concentration of some amino acids. Eur J Appl Physiol 1991; 63: 83–8

    CAS  Article  Google Scholar 

  73. 73.

    Blomstrand E, Hassmen P, Newsholme E. Effect of branched chain amino acid supplementation on mental performance. Acta Physiol Scand 1991; 143: 225–6

    PubMed  CAS  Article  Google Scholar 

  74. 74.

    Segura R, Ventura J. Effect of L-Tryptophan supplementation on exercise performance. Int J Sports Med 1988; 9: 301–5

    PubMed  CAS  Article  Google Scholar 

  75. 75.

    Stensrund T, Holm H, Stromme S. L-Tryptophan supplementation does not improve running performance. Int J Sports Med 1992; 13(6): 481–5

    Article  Google Scholar 

  76. 76.

    Davis M, Bailey S, Woods J, et al. Effects of carbohydrate feedings on plasma free tryptophan and branched chain amino acids during prolonged cycling. Eur J Appl Physiol 1992; 65: 513–9

    CAS  Article  Google Scholar 

  77. 77.

    Galiano F, Davis J, Bailey M, et al., Physiological, endocrine and performance effects of adding branched chain amino acids to a 6% carbohydrate electrolyte beverage during prolonged cycling [abstract]. Med Sci Sports Exerc 1991; 23: S14

    Google Scholar 

  78. 78.

    Verger P, Aymard P, Cynobert L, et al. Effects of administration of branched chain amino acids versus glucose during acute exercise in the rat. Physiol Behav 1994; 55(3): 523–6

    PubMed  CAS  Article  Google Scholar 

  79. 79.

    Madsen K, Christensen D. Administration of glucose, glucose plus branched chain amino acids or placebo during sustained exercise and their effects on a 100 km bike performance [abstract]. Ninth International Conference Biochemistry of Exercise: 1994 July 21–26: Aberdeen, Scotland, 35

  80. 80.

    MacLean D, Graham T, Saltin B. Branched chain amino acid supplementation attenuates net protein degradation during exercise [abstract]. Ninth International Conference Biochemistry of Exercise: 1994: July 21–26: Aberdeen, Scotland, 51

  81. 81.

    Van Hall G, Raaymakers J, Saris W, et al. Ingestion of branched-chain amino acids and tryptophan during sustained exercise — failure to affect performance. J Physiol. In press.

  82. 82.

    Lambert M, Velloza P, Wilson G, et al. The effect of carbohydrate and branched chain amino acid supplementation on cycling performance and mental fatigue [abstract]. Ninth International Conference Biochemistry of Exercise: 1994 July 21–26: Aberdeen, Scotland,: 53

  83. 83.

    Martin-Du Pan R, Mauron C, Glaeser B, et al. Effect of various oral glucose doses on plasma neutral amino acid levels. Metabolism 1982; 31(9): 937–43

    CAS  Article  Google Scholar 

  84. 84.

    Chance W, Balasubramaniam A, Thomas I, et al. Amylin increases transport of tyrosine and tryptophan into the brain. Brain Res 1992; 593: 20–4

    PubMed  CAS  Article  Google Scholar 

  85. 85.

    Kwok R, Juorio A. Facilitating effect of insulin on brain 5-hydroxytryptamine metabolism. Neuroendocrinol 1987; 45: 267–73

    CAS  Article  Google Scholar 

  86. 86.

    Shimizu H, Bray G. Effects of insulin on hypothalamic monoamine metabolism. Brain Res 1990; 510: 251–8

    PubMed  CAS  Article  Google Scholar 

  87. 87.

    MacKenzie R, Trulson M. Does insulin act directly on the brain to increase tryptophan levels? J Neurochem 1978; 30: 1205–8

    PubMed  CAS  Article  Google Scholar 

  88. 88.

    Coggan A, Coyle E. Carbohydrate ingestion during prolonged exercise: effects on metabolism and performance. Exerc Sport Sci Rev 1991; 19: 1–40

    PubMed  CAS  Article  Google Scholar 

  89. 89.

    Chaouloff F, About the effects of L-tryptophan on exercise performance: lacunae and pitfalls [letter]. Int J Sports Med 1989; 10: 383

    Article  Google Scholar 

  90. 90.

    Wilson W, Maughan R. Evidence for a possible role of 5-hydroxytryptamine in the genesis of fatigue in man: administration of paroxetine, a 5-HT reuptake inhibitor, reduces the capacity to perform prolonged exercise. Exper Physiol 1992; (77): 921–4

    Google Scholar 

  91. 91.

    Davis M, Bailey S, Jackson D. et al. Effects of a serotonin agonist during prolonged exercise to fatigue in humans [abstract]. Med Sci Sports Exerc 1993; 25(5): S78

    Google Scholar 

  92. 92.

    De Meirleir K, Studies on cardiovascular drugs and (neuro)humoral substances in dynamic exercise [PhD thesis]. Brussels: Vrije Universiteit Brussel, 1985

    Google Scholar 

  93. 93.

    De Meirleir K, Gerlo F, Hollmann W, et al. Cardiovascular effects of pergolide mesylate during dynamic exercise. Proceedings of the British Pharmacology Society 1986; 633P

    Google Scholar 

  94. 94.

    Hillegaart V, Wadenberg M, Ahlenius S. Effects of 8-OH-DPAT on motor activity in the rat. Pharmacol Biochem Behav 1989; 32: 797–800

    PubMed  CAS  Article  Google Scholar 

  95. 95.

    Wallis D. 5-HT receptors involved in initiation or modulation of motor patterns: opportunities for drug development. Trends Neurosci 1994; 15: 288–92

    CAS  Google Scholar 

  96. 96.

    Jacobs B, Eubanks E. A comparison of the locomotor effects of 5-hydroxytryptamine and 5-hydroxytryptophan administered via two systemic routes. Pharmacol Biochem Behav 1974; (2): 137–9

    Google Scholar 

  97. 97.

    Kennett G, Curzon G. Evidence that mCPP may have behavioural effects mediated by central 5-HT1c receptors. Br J Pharmacol 1988; 94: 137–47

    PubMed  CAS  Article  Google Scholar 

  98. 98.

    Lucki I, Ward H, Frazer R. Effect of l-(m-chlorophenyl) piperazine and 1-(trifluoromethylphenyl) piperazine on locomotor activity. J Pharmacol Exp Ther 1989; 249: 155–64

    PubMed  CAS  Google Scholar 

  99. 99.

    Gerald M. Effect of (+)-amphetamine on the treadmill endurance performance of rats. Neuropharmacol 1978; 17: 703–4

    CAS  Article  Google Scholar 

  100. 100.

    Ahlenius S, Hillegaart V. Involvement of extrapyramidal motor mechanisms in the suppression of locomotor activity by antipsychotic drugs: a comparison between the effects produced by pre- and post-synaptic inhibition of dopaminergic neurotransmission. Pharmacol Biochem Behav 1986; 24: 1409–15

    PubMed  CAS  Article  Google Scholar 

  101. 101.

    Chaouloff F. Serotonin1c,2 receptors and endurance performance [letter]. Int J Sports Med 1994; (15): 339

    Google Scholar 

  102. 102.

    Bailey S, Davis J. Response to letter to the editor by F. Chaouloff [letter]. Int J Sports Med 1994; (15): 340–1

    Google Scholar 

  103. 103.

    Westerink B, Justice J. Microdialysis compared with other in vivo release models. In: Robinson T, Justice J, editors. Microdialysis in the neurosciences. Amsterdam: Elsevier Science Publishers, 1991; 23–46

    Google Scholar 

  104. 104.

    Ungerstedt U. Introduction to intracerebral microdialysis. In: Robinson T, Justice J, editors. Microdialysis in the neurosciences. Amsterdam: Elsevier Science Publishers, 1991: 3–22

    Google Scholar 

  105. 105.

    Ungerstedt U, Hallström A. In vivo microdialysis, a new approach to the analysis of neurotransmitters in the brain. Life Sci 1987; 41: 861–4

    PubMed  CAS  Article  Google Scholar 

  106. 106.

    Benveniste H, Hüttemeier C. Microdialysis — theory and application. Prog Neurobiol 1990; 35: 195–215

    PubMed  CAS  Article  Google Scholar 

  107. 107.

    Kissinger P, Hart J, Adams R. Voltammetry in brain tissue: a new neurophysiological measurement. Brain Res 1973; 55: 209–13

    PubMed  CAS  Article  Google Scholar 

  108. 108.

    Cenci A, Kalen P, Mandel R, et al. Regional differences in the regulation of dopamine and noradrenaline release in medial frontal cortex, nucleus accumbens and caudate-putamen: a microdialysis study in the rat. Brain Res 1992; 581: 217–28

    PubMed  CAS  Article  Google Scholar 

  109. 109.

    Imperato A, Honore T, Jensen L. Dopamine release in the nucleus caudatus and the nucleus accumbens is under glutamatergic control through non-NMDA receptors: a study in freely moving rats. Brain Res 1990; 530: 223–8

    PubMed  CAS  Article  Google Scholar 

  110. 110.

    Meeusen R, Sarre S, De Meirleir K, et al. Microdialysis as a method to measure central catecholamines during exercise [abstract]. Med Sci Sports Exerc 1994; 26(5): S23

    Google Scholar 

  111. 111.

    Pagliari R, Peyrin L, Milano S. Effect of submaximal physical exercise in norepinephrine release in the rat frontal cortex: a study with microdialysis. In: Louilot A, Durkin T, Spampinato U, et al., editors. Monitoring molecules in neuroscience. Gradignan: Publi Typ 1994; 342–3

    Google Scholar 

  112. 112.

    Hattori S, Li Q, Matsui N, et al. Treadmill running combined with microdialysis can evaluate motor deficit and improvement following dopaminergic grafts in 6-OHDAlesioned rats. Res Neurol Neurosci 1993; 6: 65–72

    CAS  Google Scholar 

  113. 113.

    Sabol K, Richard J, Freed C. In vivo dialysis measurements of dopamine and DOPAC in rats trained to turn on a circular treadmill. Pharmacol Biochem Behav 1990; 36: 21–8

    PubMed  CAS  Article  Google Scholar 

  114. 114.

    Meeusen R, Smolders I, Sarre S, et al. The effects of exercise on extracellular glutamate (GLU) and gamma-aminobutyric acid (GABA) in rat striatum, a microdialysis study [abstract]. Med Sci Sports Exerc 1995; 27(5): S215

    Google Scholar 

  115. 115.

    Gerin C, Legrand A, Privat A. Study of 5-HT release with chronically implanted microdialysis probe in the ventral horn of the spinal cord of unrestrained rats during exercise on a treadmill. J Neurosci Methods 1994; 52: 129–41

    PubMed  CAS  Article  Google Scholar 

  116. 116.

    Guadalupe T, Perez-Rodrigez I, Gonzalez-Mora J. Involvement of nucleus accumbens dopamine in motor activity: a voltammetric study. In: Louilot A, Durkin T, Spampinato U, et al., editors. Monitoring molecules in neuroscience. Gradignan: Publi Typ 1994; 179–80

    Google Scholar 

  117. 117.

    Chaouloff F. Influence of physical exercise on 5-HT1A receptor- and anxiety-related behaviours. Neurosci Lett 1994; 176: 226–30

    PubMed  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Romain Meeusen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Meeusen, R., De Meirleir, K. Exercise and Brain Neurotransmission. Sports Med 20, 160–188 (1995). https://doi.org/10.2165/00007256-199520030-00004

Download citation

Keywords

  • Dopamine
  • Branch Chain Amino Acid
  • Prolonged Exercise
  • mCPP
  • Brain Serotonin