Advertisement

Sports Medicine

, Volume 20, Issue 2, pp 77–89 | Cite as

Exercise Loading of Tendons and the Development of Overuse Injuries

A Review of Current Literature
  • Joanne M. Archambault
  • J. Preston Wiley
  • Robert C. Bray
Review Article

Summary

This review examines recent studies on the effects of exercise on tendons in animal models. Although tendon adaptation to exercise has been described using histology, morphometry, ultrasonography and molecular biology, precise measurements of excess tendon loading during exercise protocols have not been reported. Only a few studies have attempted to evaluate the mechanical strength of exercised tendons. The long term effect of exercise on tendons appears to be positive, but researchers have suggested that periods of mechanical weakness occur in tendons during adaptation to loading conditions. Studies documenting changes associated with the terminal state of pathological tendons are also summarised. Unfortunately, there are no descriptions of tendon tissue in the early stages of overuse injury. Since blood flow is commonly implicated in the emergence of tendinitis, the final section covers recent work on blood flow and tendon physiology. Related research identifying cellular mediators (hyperthermia, hypoxia, and oxidative stress) involved in the development of tendinitis is also presented. Suggestions for further research into exercise loading and the development of tendon overuse injuries are made.

Keywords

Adis International Limited Achilles Tendon Flexor Tendon Tendinitis Overuse Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frost HM. Skeletal structural adaptations to mechanical usage (SATMU): 4. Mechanical influences on intact fibrous tissues. Anat Rec 1990; 226: 433–9PubMedCrossRefGoogle Scholar
  2. 2.
    Williams JGP. Achilles tendon lesions in sport. Sports Med 1986; 3(2): 114–35PubMedCrossRefGoogle Scholar
  3. 3.
    Hess GP, Cappiello WL, Poole RM, et al. Prevention and treatment of overuse tendon injuries. Sports Med 1989; 8(6): 371–84PubMedCrossRefGoogle Scholar
  4. 4.
    Clancy WG. Tendon trauma and overuse injury. In: WB Leadbetter, JA Buckwalter, SL Gordon, editors. Sports induced inflammation: clinical and basic concepts. Park Ridge (IL): American Academy of Orthopaedic Surgeons, 1990: 609–18Google Scholar
  5. 5.
    Galloway MT, Jokl P, Dayton OW. Achilles tendon overuse injuries. Clin Sports Med 1992; 11(4): 771–82PubMedGoogle Scholar
  6. 6.
    Williams JGP. Achilles tendon lesions in sport. Sports Med 1993; 16(3): 216–20PubMedCrossRefGoogle Scholar
  7. 7.
    Torstensen ET, Bray RC, Wiley JP. Patellar tendinitis: a review of current concepts and treatment. Clin J Sports Med 1994; 4(1): 77–82CrossRefGoogle Scholar
  8. 8.
    Kvist M. Achilles tendon injuries in athletes. Sports Med 1994: 18(3): 173–201PubMedCrossRefGoogle Scholar
  9. 9.
    Scioli MW. Achilles tendinitis. Orthop Clin North Am 1994: 25(1): 177–182PubMedGoogle Scholar
  10. 10.
    Soma CA, Mandelbaum BR. Achilles tendon disorders. Clin Sports Med 1994; 13(4): 811–23PubMedGoogle Scholar
  11. 11.
    Komi PV, Slonen M, Järvinen M, et al. In vivo registration of Achilles tendon force in man: I. Methodological development. Int J Sports Med 1987; 8 Suppl.: 3–8PubMedCrossRefGoogle Scholar
  12. 12.
    Gregor RJ, Komi PV, Jarvinen M. Achilles tendon forces during cycling. Int J Sports Med 1987; 8 Suppl.: 9–14PubMedCrossRefGoogle Scholar
  13. 13.
    Komi PV, Fukashiro S, Järvinen M. Biomechanical loading of Achilles tendon during normal locomotion. Clin Sports Med 1992; 11(3): 521–31PubMedGoogle Scholar
  14. 14.
    Curwin SL, Stanish WD. Tendinitis: its etiology and treatment. Lexington, MA: DC Heath and Company 1984Google Scholar
  15. 15.
    Viidik A. Structure and function of normal and healing tendons and ligaments. In: Mow VC, Ratcliffe A, Woo SL-Y, editors. Biomechanics of diarthrodial joints. New York, NY: Springer-Verlag, 1990; 1: 3–38CrossRefGoogle Scholar
  16. 16.
    O’Brien M. Functional anatomy and physiology of tendons. Clin Sports Med 1992; 11(3): 505–20PubMedGoogle Scholar
  17. 17.
    Zamora AJ, Marini JF. Tendon and myo-tendinous junction in an overloaded skeletal muscle of the rat. Anat Embryol 1988; 179: 89–96PubMedCrossRefGoogle Scholar
  18. 18.
    Gillis CL, Meagher DM, Pool RR, et al. Ultrasonographically detected changes in equine superficial digital flexor tendons during the first months of race training. Am J Vet Res 1993; 54(11): 1797–802PubMedGoogle Scholar
  19. 19.
    Michna H. Morphometric analysis of loading-induced changes in collagen-fibril populations in young tendons. Cell Tissue Res 1984; 236: 465–70PubMedCrossRefGoogle Scholar
  20. 20.
    Michna H. Tendon injuries induced by exercise and anabolic steroids in experimental mice. Int Orthop 1987; 11: 157–62PubMedCrossRefGoogle Scholar
  21. 21.
    Michna H, Hartmann G. Adaptation of tendon collagen to exercise. Int Orthop 1989; 13: 161–5PubMedCrossRefGoogle Scholar
  22. 22.
    Enwemeka CS, Maxwell LC, Fernandes G. Ultrastructural morphometry of matrical changes induced by exercise and food restriction in the rat calcaneal tendon. Tissue Cell 1992; 24(4): 499–510PubMedCrossRefGoogle Scholar
  23. 23.
    Curwin SL, Vailas AC, Wood J. Immature tendon adaptation to strenuous exercise. J Appl Physiol 1988: 65(5); 2297–301PubMedGoogle Scholar
  24. 24.
    Birch HL, Patterson-Kane J, Wilson AM, et al. Athletic training alters the glycosaminoglycan composition and collagen fibril diameters in tendon [abstract]. Transactions of the 41st Annual Meeting of the Orthopaedic Research Society: 1995; Orlando, FL, 135–23Google Scholar
  25. 25.
    Hansson H-A, Engstrom AMC, Holm S, et al. Somatomedin C immunoreactivity in the Achilles tendon varies in a dynamic manner with the mechanical load. Acta Physiol Scand 1988; 134: 199–208PubMedCrossRefGoogle Scholar
  26. 26.
    Karpakka J, Vaananen K, Virtanen P, et al. The effects of remobilization and exercise on collagen biosynthesis in rat tendon. Acta Physiol Scand 1990; 139: 139–45PubMedCrossRefGoogle Scholar
  27. 27.
    Backman C, Boquist L, Friden J, et al. Chronic Achilles paratenonitis with tendinosis: an experimental model in the rabbit. J Orthop Res 1990; 8(4): 541–7PubMedCrossRefGoogle Scholar
  28. 28.
    Rais O. Heparin treatment of peritenomyosis (peritendinitis) crepitans acuta. Acta Chir Scand 1961; Suppl. 268: 45–90Google Scholar
  29. 29.
    Viidik A. Tensile strength properties of Achilles tendon systems in trained and untrained rabbits. Acta Orthop Scand 1969; 40: 261–72PubMedCrossRefGoogle Scholar
  30. 30.
    Woo SL-Y, Ritter MA, Amiel D, et al. The biomechanical and biochemical properties of swine tendons: long term effects of exercise on the digital extensors. Connect Tissue Res 1980; 7: 177–83PubMedCrossRefGoogle Scholar
  31. 31.
    Woo SL-Y, Gomez MA, Amiel D, et al. The effects of exercise on the biomechanical and biochemical properties of swine digital flexor tendons. J Biomech Eng 1981; 103(2): 51–6PubMedCrossRefGoogle Scholar
  32. 32.
    Sommer H-M. The biomechanical and metabolic effects of a running regime on the Achilles tendon in the rat. Int Orthop 1987 11: 71–5PubMedCrossRefGoogle Scholar
  33. 33.
    Vilarta R, de Campos Vidal B. Anisotropic and biomechanical properties of tendons modified by exercise and denervation: Aggregation and macromelecular order in collagen bundles. Matrix 1989; 9: 55–61PubMedCrossRefGoogle Scholar
  34. 34.
    Fox JM, Blazina ME, Jobe FW, et al. Degeneration and rupture of the Achilles tendon. Clin Orthop 1975; 107: 221–4PubMedCrossRefGoogle Scholar
  35. 35.
    Perugia L, Ricciardi Pollini PT, et al. Ultrastructural aspects of degenerative tendinopathy. Int Orthop 1978; 1: 303–7CrossRefGoogle Scholar
  36. 36.
    Józsa L, Bálint BJ, Réffy A, et al. Fine structural alterations of collagen fibers in degenerative tendinopathy. Arch Orthop Trauma Surg 1984; 103: 47–51PubMedCrossRefGoogle Scholar
  37. 37.
    Coombs RRH, Klenerman L, Narcisi P, et al. Collagen typing in Achilles tendon rupture [abstract]. J Bone Joint Surg Br 1980: 62-B(2); 258Google Scholar
  38. 38.
    Józsa L, Réffy A, Bálint JB. Polarization and electron microscopic studies on the collagen of intact and ruptured human tendons. Acta Histochem 1984; 74: 209–15PubMedCrossRefGoogle Scholar
  39. 39.
    Józsa L, Reffy A, Kannus P, et al. Pathological alterations in human tendons. Arch Orthop Trauma Surg 1990; 110: 15–21PubMedCrossRefGoogle Scholar
  40. 40.
    Kannus P, Józsa L. Histopathological changes preceding spontaneous rupture of a tendon. J Bone Joint Surg Am 1991; 73-A(10): 1507–25Google Scholar
  41. 41.
    Kvist M, Józsa L, Järvinen M. Vascular changes in the ruptured Achilles tendon and paratenon. Int Orthop 1992; 16: 377–82PubMedCrossRefGoogle Scholar
  42. 42.
    Schepsis AA, Leach RE. Surgical management of Achilles tendinitis. Am J Sports Med 1987; 15(4): 308–15PubMedCrossRefGoogle Scholar
  43. 43.
    Nelen G, Martens M, Burssens A. Surgical treatment of chronic Achilles tendinitis. Am J Sports Med 1989; 17(6): 754–9PubMedCrossRefGoogle Scholar
  44. 44.
    Anderson DL, Taunton JE, Davidson RG. Surgical management of chronic Achilles tendinitis. Clin J Sports Med 1992; 2(1): 38–42CrossRefGoogle Scholar
  45. 45.
    Kvist M, Józsa L, Järvinen MJ, et al. Fine structural alterations in chronic Achilles paratenonitis in athletes. Pathol Res Pract 1985; 180: 416–23PubMedCrossRefGoogle Scholar
  46. 46.
    Kvist M, Józsa L, Jarvinen MJ, et al. Chronic Achilles paratenonitis in athletes: a histological and histochemical study. Pathology 1987; 19: 1–11PubMedCrossRefGoogle Scholar
  47. 47.
    Kvist MH, Lehto MUK, Józsa L, et al. Chronic Achilles paratenonitis: an immunohistologic study of fibronectin and fibrinogen. Am J Sports Med 1988; 16(6): 616–23PubMedCrossRefGoogle Scholar
  48. 48.
    Hart DA, Frank CB, Bray RC. Inflammatory processes in repetitive motion and over-use syndromes: potential role of neurogenic mechanisms in tendons and ligaments. In: SL Gordon, SJ Blair, LJ Fine, editors. Repetitive motion disorders of the upper extremity. Park Ridge, IL: American Academy of Orthopaedic Surgeons, 1995: in pressGoogle Scholar
  49. 49.
    Stromberg B. Morphologic, thermographic and’ 33Xe clearance studies on normal and diseased superficial digital flexor tendons in race horses. Equine Vet J 1973; 5(4): 156–61PubMedCrossRefGoogle Scholar
  50. 50.
    Webbon PM. Equine tendon stress injuries. Equine Vet J 1973; 5(2): 58–64PubMedCrossRefGoogle Scholar
  51. 51.
    Genovese RL, Rantanen NW, Simpson BS, et al. Clinical experience with quantitative analysis of SDF tendon injuries in thoroughbred and standard bred racehorses. Vet Clin North Am Equine Pract 1990; 6(1): 129–45PubMedGoogle Scholar
  52. 52.
    Marr CM. Microwave thermography: a non-invasive technique for investigation of injury of the superficial digital flexor tendon in the horse. Equine Vet J 1992; 24(4): 269–73PubMedCrossRefGoogle Scholar
  53. 53.
    Marr CM, Love S, Boyd JS, et al. Factors affecting the clinical outcome of injuries to the superficial digital flexor tendon in National Hunt and point-to point racehorses. Vet Rec 1993; 132 (May 8): 476–9PubMedCrossRefGoogle Scholar
  54. 54.
    Dyson SJ, Kidd L. Five cases of gastrocnemius tendinitis in the horse. Equine Vet J 1992: 24(5); 351–6PubMedCrossRefGoogle Scholar
  55. 55.
    Williams LF, Heaton A, McCullagh KG. Cell morphology and collagen types in equine tendon scar. Res Vet Sci 1980; 28: 302–10PubMedGoogle Scholar
  56. 56.
    Riederer-Henderson MA, Gauger A, Olson L, et al. Attachment and extracelluar matrix differences between tendon and synovial fibroblastic cells. In Vitro 1983; 19(2): 127–33PubMedCrossRefGoogle Scholar
  57. 57.
    Marr CM, McMillan I, Boyd JS, et al. Ultrasonographic and histopathological findings in equine superficial digital flexor tendon injury. Equine Vet J 1993; 25(1): 23–9PubMedCrossRefGoogle Scholar
  58. 58.
    Lagergren C, Lindholm Å. Vascular distribution in the Achilles tendon: an angiographic and microangiographic study. Acta Chir Scand 1958/59; 116: 491–5Google Scholar
  59. 59.
    Smart GW, Taunton JE, Clement DB. Achilles tendon disorders in runners: a review. Med Sci Sports Exerc 1980; 12(4): 231–43PubMedGoogle Scholar
  60. 60.
    Weiland A, An K-N, Furcht L, et al. Peripheral blood vessel. In: Woo SL-Y, Buckwalter JA, editors. Injury and repair of the musculoskeletal soft tissues. Park Ridge, IL: American Academy of Orthopaedic Surgeons 1988: 355–6Google Scholar
  61. 61.
    Carr AJ, Norris SH. The blood supply of the calcaneal tendon. J Bone Joint Surg Br 1989; 71-B(1); 100–1Google Scholar
  62. 62.
    Frey C, Shereff M, Greenidge N. Vascularity of the posterior tibial tendon. J Bone Joint Surg Am 1990; 72-A(6): 884–8Google Scholar
  63. 63.
    Astrom M, Westlin N. Blood flow in the human Achilles tendon assessed by laser Doppler flowmetry. J Orthop Res 1994; 12(2): 246–52PubMedCrossRefGoogle Scholar
  64. 64.
    Astrom M, Westlin N. Blood flow in chronic Achilles tendinopathy. Clin Orthop Rel Res 1994b; 308: 166–172Google Scholar
  65. 65.
    Bülow J, Tondevold E. Blood flow in different adipose tissue depots during prolonged exercise in dogs. Pflügers Arch 1982; 392: 235–8PubMedCrossRefGoogle Scholar
  66. 66.
    Backman C, Friden J, Widmark A. Blood flow in chronic Achilles tendinosis: radioactive microsphere study in rabbits. Acta Orthop Scand 1991; 62(4): 386–7PubMedCrossRefGoogle Scholar
  67. 67.
    Kraus-Hansen AE, Fackelman GE, Becker C, et al. Preliminary studies on the vascular anatomy of the equine superficial digital flexor tendon. Equine Vet J 1992; 24(1): 46–51PubMedCrossRefGoogle Scholar
  68. 68.
    Birch HL, Wilson AM, Goodship AE. Hypoxia — a possible aetiological role in tendon degeneration [abstract]. Transactions of the 40th Annual Meeting of the Orthopaedic Research Society: 1994; New Orleans, LA, 64–11Google Scholar
  69. 69.
    Gordon GA. Stress reactions in connective tissues: a molecular hypothesis. Med Hypotheses 1991; 36: 289–94PubMedCrossRefGoogle Scholar
  70. 70.
    Wilson AM, Goodship AE. Exercise-induced hyperthermia as a possible mechanism for tendon degeneration. J Biomech 1994; 27(7): 899–905PubMedCrossRefGoogle Scholar
  71. 71.
    Han JS, Lee LH, Kish V. A preliminary report of the partial failure induced by repetitive muscle contraction at the bone-tendon junction of the humeral epicondyle in an animal model [abstract]. Transactions of the 41st Annual Meeting of the Orthopaedic Research Society; 1995 Orlando, FL, 610Google Scholar

Copyright information

© Adis International Limited 1995

Authors and Affiliations

  • Joanne M. Archambault
    • 1
  • J. Preston Wiley
    • 2
  • Robert C. Bray
    • 2
    • 3
  1. 1.Human Performance Laboratory, Faculty of KinesiologyUniversity of CalgaryCalgaryCanada
  2. 2.Sport Medicine Centre, Faculty of KinesiologyUniversity of CalgaryCalgaryCanada
  3. 3.McCaig Center for Joint Injury and Arthritis Research, Faculty of MedicineUniversity of CalgaryCalgaryCanada

Personalised recommendations