Skip to main content

Exercise and Bone Mineral Density

Summary

A decrease in physical activity may lead to an increased loss of bone and an increase in the incidence of osteoporotic fractures. Studies have demonstrated increases in bone formation in animals and increases in bone mineral density in humans. Studies of animals show that bone has enhanced physical and mechanical properties following periods of increased stress. Strains which are high in rate and magnitude, and of abnormal distribution, but not necessarily long in duration, are best for inducing new bone formation, resulting in the strengthening of bone by increased density. Cross-sectional studies show that athletes, especially those who are strength-trained, have greater bone mineral densities than nonathletes, and that strength, muscle mass and maximal oxygen uptake correlate with bone density. Longitudinal training studies indicate that strength training and high impact endurance training increase bone density.

Strain induction, the deformation that occurs in bone under loading, may cause a greater level of formation and an inhibition of resorption within the normal remodelling cycle of bone, or it may cause direct activation of osteoblastic bone formation from the quiescent state.

Various mechanisms have been proposed for the transformation of mechanical strain into biochemical stimuli to enhance bone formation. These include prostaglandin release, piezoelectric and streaming potentials, increased bone blood flow, microdamage and hormonally mediated mechanisms. These mechanisms may act on their own or in concert, depending on the loading situation and the characteristics of the bone.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Martin AD, Silverthorn KG, Houstyon CS, et al. Trends in fracture of the proximal femur in two million Canadians; 1972 to 1984. Clin Orthop Relat Res 1991; 266: 111–8

    PubMed  Google Scholar 

  2. 2.

    Carter CH, Hayes W. Bone compressive strength: the influence of density and strain rate. Science 1976; 194: 1174–5

    PubMed  CAS  Article  Google Scholar 

  3. 3.

    Erickson AV, Isberg BO, Lindgren JU. Prediction of vertebral strength by dual photon absorptiometry and quantitative computed tomography. Calcif Tissue Int 1989; 44: 243–50

    Article  Google Scholar 

  4. 4.

    Kanders B, Dempster DW, Lindsay R. Interaction of calcium nutrition and physical activity on bone mass in young women. J Bone Miner Res 1988; 3: 145–9

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    Cheng S, Suominen H, Rantanen T, et al. Bone mineral density and physical activity in 50–60 year old women. Bone Miner 1991; 12: 123–32

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    Snow-Harter C, Whalen R, Myburgh K, et al. Bone mineral density, muscle strength, and recreational exercise in men. J Bone Miner Res 1992; 7: 1291–6

    PubMed  CAS  Article  Google Scholar 

  7. 7.

    Recker RR, Davies KM, Hinders SM, et al. Bone gain in young women. JAMA 1992; 268: 2403–8

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    Stillman RJ, Lohman TG, Slaughter MH, et al. Physical activity and bone mineral content in women aged 30 to 85 years. Med Sci Sports Exerc 1986; 18: 576–80

    PubMed  CAS  Google Scholar 

  9. 9.

    Cooper C, Barker DJP, Wickham C. Physical activity, muscle strength, and calcium intake in fracture of the proximal femur in Britain. BMJ 1988; 297: 1443–6

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Kaplan FS. Osteoporosis-pathology and prevention. Clin Symp 1987; 39: 1–32

    PubMed  CAS  Google Scholar 

  11. 11.

    Buchanan JR, Myers C, Lloyd T, et al. Early vertebral trabecular bone loss in normal premenopausal women. J Bone Miner Res 1988; 3: 583–7

    PubMed  CAS  Article  Google Scholar 

  12. 12.

    Lindsay R, Cosman F, Herrington BS, et al. Bone mass and body composition in normal women. J Bone Miner Res 1992; 7: 55–63

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Riggs BL, Wahner HW, Seeman E, et al. Changes in bone mineral density of the proximal femur and spine with aging. J Clin Invest 70: 1982; 716–23

    PubMed  CAS  Article  Google Scholar 

  14. 14.

    Riggs BL, Wahner HW, Melton LJ, et al. Rates of bone loss in appendicular and axial skeletons of women. Evidence of substantial vertebral bone loss before menopause. J Clin Invest 1986; 77: 1487–91

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Notelovitz M, Martin D, Tesa R, et al. Estrogen therapy and variable resistance weight training increase bone mineral in surgically menopausal women. J Bone Miner Res 1991; 6: 583–90

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    Ramsdale S J, Bassey EJ, Pye DW. Dietary calcium intake relates to bone mineral density in premenopausal women. Br J Nutr 1994; 71: 77–84

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    Gambrell RD. The menopause: benefits and risks of estrogenprogestogen replacement therapy. Fertil Steril 1982; 37: 457–74

    PubMed  Google Scholar 

  18. 18.

    Raab DM, Smith EL, Crenshow TD, et al. Bone mechanical properties after exercise training in young and old rats. J Appl Physiol 1990; 68: 130–4

    PubMed  CAS  Google Scholar 

  19. 19.

    Meade JB, Cowin SC, Klawitter JJ, et al. Bone remodeling due to continuously applied loads. Calcif Tissue Int 1984; 36: S25–S30

    PubMed  Article  Google Scholar 

  20. 20.

    O’Connor JA, Lanyon LE. The influence of strain rate on adaptive bone remodelling. J Biomech 1982; 15: 767–81

    PubMed  Article  Google Scholar 

  21. 21.

    Rubin CT, Lanyon LE. Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 1985; 37: 411–7

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    Lanyon LE, Goodship AE, Pye CJ, et al. Mechanically adaptive bone remodelling. J Biomech 1982; 15: 141–54

    PubMed  CAS  Article  Google Scholar 

  23. 23.

    Woo S, Kuel SC, Amiel D, et al. The effect of prolonged physical training on the properties of long bone: a study of Wolff’s law. J Bone Joint Surg Am 1981; 63: 780–6

    PubMed  CAS  Google Scholar 

  24. 24.

    Frankel VH, Nordin M. Basic biomechanics of the skeletal system. Philadelphia: Lea & Febiger, 1980: 15–60

    Google Scholar 

  25. 25.

    Frost HM. Bone mass and the mechanostat: a proposal. Anat Ree 1987; 219: 1–9

    CAS  Article  Google Scholar 

  26. 26.

    Frost HM. A determinant of bone architecture: the minimum effective strain. Clin Orthop Relat Res 1983; 175: 286–92

    PubMed  Google Scholar 

  27. 27.

    Goodship AE, Lanyon LE, McFie H. Functional adaptation of bone to increased stress. J Bone Joint Surg Am 1979; 61: 539–47

    PubMed  CAS  Google Scholar 

  28. 28.

    Lanyon LE, Baggott DC. Mechanical function as an influence on the structure and form of bone. J Bone Joint Surg Br 1976; 58: 436–43

    PubMed  Google Scholar 

  29. 29.

    Rahn BA. Bone healing: histologic and physiologic concepts. In: Sumener-Smith G, editor. Bone in clinical orthopaedics. Philadelphia: WB Saunders, 1982: 335–41

    Google Scholar 

  30. 30.

    Currey JD, Butler G. The mechanical properties of bone tissue in children. J Bone Joint Surg Am 1975; 57: 810–7

    PubMed  CAS  Google Scholar 

  31. 31.

    Lanyon LE, Rubin CT. Static vs dynamic loads as an influence on bone remodelling. Biomechanics 1984; 17: 897–905

    CAS  Article  Google Scholar 

  32. 32.

    Hert J, Liskova M, Landrgot B. Influence of the long term, continuous bending on the bone. Folia Morphol 1969; 17: 389–99

    CAS  Google Scholar 

  33. 33.

    Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Surgery Am 1984; 66: 397–402

    CAS  Google Scholar 

  34. 34.

    Whalen RT, Carter DR. Influence of physical activity on the regulation of bone density. J Biomech 1988; 21: 825–37

    PubMed  CAS  Article  Google Scholar 

  35. 35.

    Davee AM, Rosen CJ, Adler RA. Exercise patterns and trabecular bone density in college women. J Bone Miner Res 1990; 5: 245–50

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Heinonen A, Oja P, Kannus P, et al. Bone mineral density of female athletes in different sports. Bone Miner 1993; 23: 1–14

    PubMed  CAS  Article  Google Scholar 

  37. 37.

    Heinreich CH, Going S, Pamenter RW, et al. Bone mineral content of cyclically menstruating female resistance and endurance trained athletes. Med Sci Sports Exerc 1990; 22: 558–63

    Article  Google Scholar 

  38. 38.

    Nilsson BE, Westlin NE. Bone density and athletes. Clin Orthop Relat Res 1971; 77; 179–82

    PubMed  CAS  Google Scholar 

  39. 39.

    Block JE, Friedlander AL, Brooks GA, et al. Determinants of bone density among athletes engaged in weight-bearing and non-weight bearing activity. J Appl Physiol 1989; 67: 1100–5

    PubMed  CAS  Google Scholar 

  40. 40.

    Colletti LA, Edwards J, Gordon L, et al. The effects of musclebuilding exercise on bone general density of the radius, spine and hip in young men. Calcif Tissue Int 1989; 45: 12–4

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    Karlsson MK, Johnell O, Obrant KJ. Bone mineral density in weight lifters. Calcif Tissue Int 1993; 52: 212–5

    PubMed  CAS  Article  Google Scholar 

  42. 42.

    Conroy BP, Kraemer WJ, Maresh CM, et al. Bone mineral density in elite junior Olympic weightlifters. Med Sci Sports Exerc 1993; 25: 1103–9

    PubMed  CAS  Google Scholar 

  43. 43.

    Granhed H, Jonson R, Hansson T. The loads on the lumbar spine during extreme weightlifting. Spine 1987; 12: 146–9

    PubMed  CAS  Article  Google Scholar 

  44. 44.

    Slemenda CW, Johnston CC. High intensity activities in young women: site specific bone mass effects among male figure skaters. Bone Miner 1993; 20: 125–32

    PubMed  CAS  Article  Google Scholar 

  45. 45.

    Nichols D, Sanborn C, Bonnick S, et al. The effects of gymnastics training on bone mineral density. Med Sci Sports Exerc 1994; 26: 1220–5

    PubMed  CAS  Google Scholar 

  46. 46.

    Lane NE, Bloch DA, Jones HH, et al. Long-distance running, bone density, and osteoarthritis. JAMA 1986; 255: 1147–51

    PubMed  CAS  Article  Google Scholar 

  47. 47.

    Michel BA, Bloch DA, Fries JF. Weight bearing exercise, over-exercise, and lumbar bone density over age 50 years. Arch Intern Med 1989; 149; 2325–9

    PubMed  CAS  Article  Google Scholar 

  48. 48.

    Bilanin JE, Blanchard M, Russek-Cohen E. Lower vertebral bone density in male long distance runners. Med Sci Sports Exerc 1989;21: 66–70

    PubMed  CAS  Article  Google Scholar 

  49. 49.

    Drinkwater BL, Nilson K, Chestnut CH, et al. Bone mineral content of amenorrheic and eumenorrheic athletes. New Engl J Med 1984; 311: 277–81

    PubMed  CAS  Article  Google Scholar 

  50. 50.

    Linnell SL, Stager JM, Blue PW, et al. Bone mineral content and menstrual regularity in female runners. Med Sci Sports Exerc 1984; 16: 343–8

    PubMed  CAS  Google Scholar 

  51. 51.

    Marcus R, Cann CE, Madvig P, et al. Menstrual function and bone mass in elite women distance runners: endocrine and metabolic features. Ann Int Med 1985; 102: 158–63

    PubMed  CAS  Google Scholar 

  52. 52.

    Grimston SK, Tanguay KE, Bundberg CM, et al. The calciotropic hormone response to changes in serum calcium during exercise in female long distance runners. J Clin Endocrinol Metab 1993; 76: 867–72

    PubMed  CAS  Article  Google Scholar 

  53. 53.

    MacDougall JD, Webber CE, Martin J, et al. Relationship among running mileage, bone density, and serum testosterone in male runners. J Appl Physiol 1992; 73: 1165–70

    PubMed  CAS  Google Scholar 

  54. 54.

    Orwoll ES, Ferar J, Oviatt SK, et al. The relationship of swimming exercise to bone mass in men and women. Arch Intern Med 1989; 149: 2197–200

    PubMed  CAS  Article  Google Scholar 

  55. 55.

    Grimston SK, Willows ND, Hanley DA. Mechanical loading regime and its relationship to bone mineral density in children. Med Sci Sports Exerc 1993; 25: 1203–10

    PubMed  CAS  Google Scholar 

  56. 56.

    Pocock NA, Eisman JA, Hopper JL, et al. Genetic derterminants of bone mass in adults: a twin study. J Clin Invest 1987; 80: 706–10

    PubMed  CAS  Article  Google Scholar 

  57. 57.

    Dalsky GP. Exercise: its effect on bone mineral content. Clin Obstet Gynecol 1987; 30: 820–32

    PubMed  CAS  Article  Google Scholar 

  58. 58.

    Menkes A, Mazel S, Redmond RA, et al. Strength training increases regional bone mineral density and bone remodeling in middle-aged and older men. J Appl Physiol 1993; 74: 2478–84

    PubMed  CAS  Google Scholar 

  59. 59.

    Kasperk CH, Wergedal JE, Farie JR, et al. Androgens directly stimulate proliferation of bone cells in vitro. Endocrinology 1989; 124: 1576–8

    PubMed  CAS  Article  Google Scholar 

  60. 60.

    Smith R, Rutherford OM. Spine and total body bone mineral density and serum testosterone levels in male athletes. Eur J App Physiol 1993; 67: 330–4

    CAS  Article  Google Scholar 

  61. 61.

    Eickhoff J, Molczyk L, Gallagher JC, et al. Influence of isotonic, isometric and isokinetic muscle strength on bone mineral density of the spine and femur in young women. Bone Miner 1993; 20: 201–9

    PubMed  CAS  Article  Google Scholar 

  62. 62.

    Snow-Harter C, Bouxsein M, Lewis B, et al. Muscle strength as a predictor of bone mineral density in young women. J Bone Miner Res 1990; 5: 589–95

    PubMed  CAS  Article  Google Scholar 

  63. 63.

    Bevier WC, Wiswell RA, Pyka G, et al. Relationship of body composition, muscle strength, and aerobic capacity to bone mineral density in older men and women. J Bone Miner Res 1989; 4: 421–32

    PubMed  CAS  Article  Google Scholar 

  64. 64.

    Sinaki M, Offord KP. Physical activity in postmenopausal women: effect on back muscle strength and bone mineral density of the spine. Arch Phys Med Rehabil 1988; 69: 277–80

    PubMed  CAS  Google Scholar 

  65. 65.

    Pocock NA, Eisman J, Gwinn T, et al. Muscle strength, physical fitness, and weight but not age predict femoral neck bone mass. J Bone Miner Res 1989; 4: 441–7

    PubMed  CAS  Article  Google Scholar 

  66. 66.

    Sale DG, Upton ARM, McComas AJ, et al. Neuromuscular function in weight-trainers. Exp Neurol 1983; 82: 521–31

    PubMed  CAS  Article  Google Scholar 

  67. 67.

    Reid IR, Ames A, Evans MC, et al. Determinants of total body and regional bone mineral density in normal postmenopausal women. J Clin Endocrinol Metab 1992; 75: 45–51

    PubMed  CAS  Article  Google Scholar 

  68. 68.

    Reid IR, Plank LD, Evans MC. Fat mass is an independent determinant of whole body bone density in premenopausal women but not in men. J Clin Endocrinol Metab 1992; 75: 775–82

    Google Scholar 

  69. 69.

    Doyle F, Brown J. Relation between bone mass and muscle weight. Lancet 1970; 21: 391–3

    Article  Google Scholar 

  70. 70.

    Nichols D, Sanborn C, Bonnick S, et al. Relationship of muscle mass to bone mineral density in female intercollegiate athletes. Med Sci Sports Exerc 1992; 24: S46

    Google Scholar 

  71. 71.

    Pocock NA, Eisman JA, Yeates MG, et al. Physical fitness is a major determinant of femoral neck and lumbar spine bone mineral density. J Clin Invest 1986; 78: 618–21

    PubMed  CAS  Article  Google Scholar 

  72. 72.

    Dalsky GP, Stocke KS, Ehsoni AA, et al. Weight-bearing exercise training and lumbar bone mineral content in postmenopausal women. Ann Int Med 1988; 108: 824–8

    PubMed  CAS  Google Scholar 

  73. 73.

    Kirk S, Sharp CF, Elbaum N, et al. Effect of long-distance running on bone mass in women. J Bone Miner Res 1989; 4: 515–22

    PubMed  CAS  Article  Google Scholar 

  74. 74.

    Gleeson PB, Protas EJ, LeBlanc AD, et al. Effects of weight lifting on bone mineral density in premenopausal women. J Bone Miner Res 1990; 5: 153–8

    PubMed  CAS  Article  Google Scholar 

  75. 75.

    Pruitt LA, Jackson RD, Bartels RL, et al. Weight-training effects on bone mineral density in early postmenopausal women. J Bone Miner Res 1992; 7: 179–85

    PubMed  CAS  Article  Google Scholar 

  76. 76.

    Rockwell JC, Sorensen AM, Baker S, et al. Weight training decreases vertebral bone density in premenopausal women: a prospective study. J Clin Endocrinol Med 1990; 71: 988–93

    CAS  Article  Google Scholar 

  77. 77.

    Ryan AS, Treuth MS, Rubin MA, et al. Effects of strength training on bone mineral density: hormonal and bone turnover relationships. J Appl Physiol 1994; 77: 1678–84

    PubMed  CAS  Google Scholar 

  78. 78.

    Snow-Harter C, Bousxein MS, Lewis BT, et al. Effects of resistance and endurance exercise on bone mineral status of young women: a randomized exercise intervention trial. J Bone Miner Res 1992; 7: 761–9

    PubMed  CAS  Article  Google Scholar 

  79. 79.

    Chilibeck P, Calder A, Sale D, et al. Reproducibility of bone and body composition measurements by dual energy x-ray absorptiometry. Can Assoc Radiol J 1994; 45: 297–302

    PubMed  CAS  Google Scholar 

  80. 80.

    Sale DG. Testing strength and power. In: MacDougall JD, Wenger HA, Green HJ, et al., editors. Physiological testing of the elite athlete. 2nd ed. Champaign, IL: Human Kinetics, 1991: 21–106

    Google Scholar 

  81. 81.

    Nilas L, Hassager C, Christiansen C. Long term precision of dual photon absorptiometry in the lumbar spine in clinical settings. Bone Miner 1988; 3: 305–15

    PubMed  CAS  Google Scholar 

  82. 82.

    Shipp CC, Berger PS, Deehr MS, et al. Precision of dual-photon absorptiometry. Calcif Tissue Int 1988; 42: 287–92

    PubMed  CAS  Article  Google Scholar 

  83. 83.

    Wahner HW, Bunn WL, Brown ML, et al. Comparison of dual-energy x-ray absorptiometry and dual photon absorptiometry for bone mineral measurement of the lumbar spine. Mayo Clin Proc 1988; 63: 1075–84

    PubMed  CAS  Google Scholar 

  84. 84.

    Smidt G, Lin SY, O’Dwyer KD, et al. The effect of high-intensity trunk exercise on bone mineral density of postmenopausal women. Spine 1992; 17: 280–5

    PubMed  CAS  Article  Google Scholar 

  85. 85.

    Sinaki M, Heinz WW, Offord DP, et al. Efficacy of nonloading exercises in prevention of vertebral bone loss in postmenopausal women: a controlled trial. Mayo Clin Proc 1989; 64: 762–9

    PubMed  CAS  Google Scholar 

  86. 86.

    Beverly MC, Rider TH, Evans MJ, et al. Local bone mineral response to brief exercise that stresses the skeleton. BMJ 1989; 299: 233–5

    PubMed  CAS  Article  Google Scholar 

  87. 87.

    Simkin A, Ayalon J, Leighter I. Increased trabecular bone density due to bone-loading exercises in postmenopausal osteoporotic women. Calcif Tissue Int 1987; 40: 59–63

    PubMed  CAS  Article  Google Scholar 

  88. 88.

    Issekutz B, Blizzark JJ, Birkhead NC, et al. Effect of prolonged bed rest on urinary calcium output. J Appl Physiol 1966; 21: 1013–20

    PubMed  Google Scholar 

  89. 89.

    Leblanc AD, Schneider VS, Evans HJ, et al. Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res 1990; 5: 843–50

    PubMed  CAS  Article  Google Scholar 

  90. 90.

    Grove KA, Londeree BR. Bone density in postmenopausal women: high impact vs low impact exercise. Med Sci Sports Exerc 1992; 24: 1190–4

    PubMed  CAS  Google Scholar 

  91. 91.

    Krolner B, Toft B, Nielsen SP, et al. Physical exercise as prophylaxis against involutional vertebral bone loss: a controlled trial. Clin Sci 1983; 64: 541–6

    PubMed  CAS  Google Scholar 

  92. 92.

    Smith EL, Gilligan C, McAdam M, et al. Deterring bone loss by exercise intervention in premenopausal and postmenopausal women. Calcif Tissue Int 1989; 44: 312–21

    PubMed  CAS  Article  Google Scholar 

  93. 93.

    Bloomfield SA, Williams NI, Lamb DR, et al. Non-weight bearing exercise may increase lumbar spine bone mineral density in healthy postmenopausal women. Am J Phys Med Rehabil 1993; 72: 204–9

    PubMed  CAS  Article  Google Scholar 

  94. 94.

    Smith EL, Gilligan C. Effects of inactivity and exercise on bone. Physician Sports Med 1987; 15: 91–102

    Article  Google Scholar 

  95. 95.

    Cavanaugh DJ, Cann CE. Brisk walking does not stop bone loss in postmenopausal women. Bone 1988; 9: 201–4

    PubMed  CAS  Article  Google Scholar 

  96. 96.

    Hatori M, Hasegawa A, Adachi H, et al. The effects of walking at the anaerobic threshold level on vertebral bone loss women; in postmenopausal women. Calcif Tissue Int 1993; 52: 411–4

    PubMed  CAS  Article  Google Scholar 

  97. 97.

    Martin D, Notelovitz M. Effects of aerobic training on bone mineral density of postmenopausal women. J Bone Miner Res 1993; 8: 931–6

    PubMed  CAS  Article  Google Scholar 

  98. 98.

    Nelson ME, Fisher EC, Dilmanian FA, et al. A 1-year walking program and increased dietary calcium in postmenopausal women: effects on bone. Am J Clin Nutr 1991; 53: 1304–11

    PubMed  CAS  Google Scholar 

  99. 99.

    Chow R, Harrison JE, Notarius C. Effect of two randomised exercise programmes on bone mass of healthy postmenopausal women. BMJ 1987; 295: 1441–4

    PubMed  CAS  Article  Google Scholar 

  100. 100.

    Rikli RE, McManis BG. Effects of exercise on bone mineral content in postmenopausal women. Res Q Exerc Sport 1990; 61: 243–9

    PubMed  CAS  Google Scholar 

  101. 101.

    Peterson SE, Peterson MD, Raymond G, et al. Muscular strength and bone density with weight training in middle-aged women. Med Sci Sports Exerc 1991; 23: 499–504

    PubMed  CAS  Google Scholar 

  102. 102.

    Fogelman I, Ryan P. Measurement of bone mass. Bone 1992; 13- S23-S28 122

    Google Scholar 

  103. 103.

    Sale DG, Jacobs I, MacDougall JD, et al. Comparison of two regimens of concurrent strength and endurance training. Med Sci Sports Exerc 1990; 22: 348–56

    PubMed  CAS  Google Scholar 

  104. 104.

    Burr DB. The relationships among physical, geometrical and mechanical properties of bone. Yearbook Physiol Anthropol 1980; 23: 109–46

    Google Scholar 

  105. 105.

    Guyton AC. Textbook of medical physiology. Philadelphia: WB Saunders, 1990: 868–84

    Google Scholar 

  106. 106.

    Pan LC, Price PA. Effect of transcriptional inhibitors on the bone carboxyglutamic acid protein response to 1,25-dihydroxyvitamin D in osteosarcoma cells. J Biochem 1984; 259: 5844–9

    CAS  Google Scholar 

  107. 107.

    Lanyon LE. Functional strain as a determinant for bone remodeling. Calcif Tissue Int 1984; 36: S56–S61

    PubMed  Article  Google Scholar 

  108. 108.

    Parfitt AM. The cellular basis of bone remodelling: the quantum concept reexamined in light of recent advances in the cell biology of bone. Calcif Tissue Int 1984; 36: S37–S45

    PubMed  Article  Google Scholar 

  109. 109.

    Epstein S. Serum and urinary markers of bone remodeling: assessment of bone turnover. Endocrine Rev 1988; 9: 437–49

    CAS  Article  Google Scholar 

  110. 110.

    Chambers TJ. Phagocytic recognition of bone by macrophages. Pathology 1981; 135: 1–7

    CAS  Article  Google Scholar 

  111. 111.

    Chambers TJ. The cellular basis of bone resorption. Clin Orthop Relat Res 1980; 151: 283–93

    PubMed  Google Scholar 

  112. 112.

    Farley JR, Masuda T, Wergedal JE, et al. Human skeletal growth factor: characterization of the mitogenic effect on bone cells in vitro. Biochemistry 1982; 21: 3508–13

    PubMed  CAS  Article  Google Scholar 

  113. 113.

    Hauschka PV, Lian JB, Gallop PM. Direct identification of the calcium binding amino-acid carboxyglutamate in mineralized tissue. Proc Natl Acad Sci U S A 1975; 72: 3925–9

    PubMed  CAS  Article  Google Scholar 

  114. 114.

    Price PA, Otsuka AS, Poser JW, et al. Characterization of a carboxyglutamic acid containing protein from bone. Proc Natl Acad Sci U S A 1976; 73: 1147–1155

    Google Scholar 

  115. 115.

    Wright GM, LeBlond CP. Immunohistochemical localization of procollagens. J Histochem Cytochem 1981; 29: 791–800

    PubMed  CAS  Article  Google Scholar 

  116. 116.

    Lian JB, Jauschka PV, Gallop PM. Properties and biosynthesis of vitamin K dependent calcium binding protein in bone. Fed Proc 1978; 37: 2615–22

    PubMed  CAS  Google Scholar 

  117. 117.

    Riggs BL, Tsai KS, Mann KG. Effect of acute increases in bone matrix degradation on circulating levels of bone Gla protein. J Bone Miner Res 1986; 1: 539–46

    PubMed  CAS  Article  Google Scholar 

  118. 118.

    Martin RK, Albright JP, Clarke WR, et al. Load-carrying effects on the adult beagle tibia. Med Sci Sports Exerc 1981; 13: 343–9

    PubMed  CAS  Google Scholar 

  119. 119.

    Snow-Harter C. Biochemical changes in postmenopausal women following a muscle fitness program. Physician Sports Med 1987; 15: 90–6

    Google Scholar 

  120. 120.

    Bell NH, Godsen RN, Henry DP, et al. The effects of muscle-building exercise on vitamin D and mineral metabolism. J Bone Miner Res 1988; 3: 369–73

    PubMed  CAS  Article  Google Scholar 

  121. 121.

    Fiore CE, Cottine E, Fargetta C, et al. The effects of muscle-building exercise on forearm bone mineral content and osteoblast activity in drug-free and anabolic steroids self-administering young men. Bone Miner 1991; 13: 77–83

    PubMed  CAS  Article  Google Scholar 

  122. 122.

    Shifrin LZ. Correlation of serum alkaline phosphatase with bone formation rates. Clin Orthop 1970; 70: 212–20

    PubMed  CAS  Google Scholar 

  123. 123.

    McComb R, Bowers GN, Posen S. Alkaline phosphatase. New York: Plenum, 1979: 570–4

    Book  Google Scholar 

  124. 124.

    Posen S, Cornish C, Kleerekoper M. Alkaline phosphatase and metabolic bone disorders. In: Avioli LV, Brane SM, editors. Metabolic bone disease. Vol. 1. New York: Academic Press, 1977: 141–7

    Google Scholar 

  125. 125.

    Pead MJ, Suswillo R, Skerry TM, et al. Increased 3h-uridine levels in osteocytes following a single short period of dynamic bone loading in vivo. Calcif Tissue Int 1988; 43: 92–6

    PubMed  CAS  Article  Google Scholar 

  126. 126.

    El Haj AJ, Minter SL, Rawlinson CF, et al. Cellular responses to mechanical loading in vitro. J Bone Miner Res 1990; 5: 923–32

    PubMed  Article  Google Scholar 

  127. 127.

    Buckley MJ, Banes AJ, Levin LG, et al. Osteoblasts increase their rate of division and align in response to cyclic, mechanical tension in vitro. Bone Miner 1988; 4: 225–36

    PubMed  CAS  Google Scholar 

  128. 128.

    El Haj AJ, Pead MJ, Skerry TM, et al. Early cellular responses in load-related adaptive bone remodelling [abstract]. Bone 1988; 9: 255

    Article  Google Scholar 

  129. 129.

    Hasegawa S, Sato S, Saito S, et al. Mechanical stretching increases the number of cultured bone cells synthesizing DNA and alters their pattern of protein synthesis. Calcif Tissue Int 1985; 37: 431–6

    PubMed  CAS  Article  Google Scholar 

  130. 130.

    Nuland JK, Veldhuijzen JP, Burger EH. Direct effects of intermittent compressive force on mineral metabolism in bone and cartilage in vitro. Bone 1987; 9: 254–5

    Article  Google Scholar 

  131. 131.

    Pead MJ, Lanyon LE. Indomethacin modulation of load-related stimulation of new bone formation in vivo. Calcif Tissue Int 1989; 45: 34–40

    PubMed  CAS  Article  Google Scholar 

  132. 132.

    Raisz LG, Kream BE. Regulation of bone formation. New Engl J Med 1983; 309: 29–35

    PubMed  CAS  Article  Google Scholar 

  133. 133.

    Skerry TM, Bitensky L, Chaayen J, et al. Early strain related changes in enzyme activity in osteocytes following bone loading in vivo. J Bone Miner Res 1989; 4: 783–8

    PubMed  CAS  Article  Google Scholar 

  134. 132.

    Mori S, Jee WSS, Li XJ, et al. Effects of prostaglandin E2 on production of new cancellous bone in the axial skeleton of ovariectomized rats. Bone 1990; 11: 103–13

    PubMed  CAS  Article  Google Scholar 

  135. 134.

    Li XJ, Jee WSS, Li YL, et al. Transient effects of subcutaneously administered prostaglandin E2 on cancellous and cortical bone in young adult dogs. Bone 1990; 11: 353–64

    PubMed  CAS  Article  Google Scholar 

  136. 135.

    Chyun YS, Raisz LG. Stimulation of bone formation by prostagandin E2. Prostaglandins 1984; 27: 97–103

    PubMed  CAS  Google Scholar 

  137. 136.

    Somjen D, Binderman I, Berger E, et al. Bone remodelling induced by physical stress is prostaglanin E2 mediated. Biochim Biophys Acta 1980; 627: 91–100

    PubMed  CAS  Article  Google Scholar 

  138. 137.

    Binderman I, Zor U, Kaye AM, et al. The transduction of mechanical force into biochemical events in bone cells may involve activation of phospholipase a2. Calcif Tissue Int 1988; 42: 261–6

    PubMed  CAS  Article  Google Scholar 

  139. 138.

    Klein DC, Raisz LG. Prostaglandins: stimulation of bone resorption in tissue culture. Endocrinology 1970; 86: 1436–40

    PubMed  CAS  Article  Google Scholar 

  140. 139.

    Tashjianish H, Voelkel EF, Goldhaber P, et al. Prostaglandins, bone resorption and hypercalcaemia. Prostaglandins 1973; 3: 515–24

    Article  Google Scholar 

  141. 140.

    Chambers TJ. The pathobiology of the osteoclast. J Clin Pathol 1985; 38: 241–52

    PubMed  CAS  Article  Google Scholar 

  142. 141.

    Bassett CA. Biologic significance of piezoelectricity. Calcif Tissue Res 1967; 1: 252–72

    Article  Google Scholar 

  143. 142.

    Bassett CA, Becker RO. Generation of electric potentials by bone in response to mechanical stress. Science 1962; 137: 1063–4

    PubMed  CAS  Article  Google Scholar 

  144. 143.

    Shamos MH, Lavine LS. Physical bases for bioelectric effects in mineralized tissues. Clin Orthop 1964; 35: 177–88

    PubMed  CAS  Google Scholar 

  145. 144.

    Shamos MH, Lavine LS. Piezoelectricity as a fundamental property of biological tissues. Nature 1967; 213: 267–9

    PubMed  CAS  Article  Google Scholar 

  146. 145.

    Lanyon LE, Hartman W. Strain related electrical potentials recorded in vitro and in vivo. Calcif Tissue Res 1977; 22: 315–27

    PubMed  CAS  Article  Google Scholar 

  147. 146.

    Bassett CA. Electrical potentials. Sci Am 1965; 213: 18–26

    PubMed  CAS  Article  Google Scholar 

  148. 147.

    Anderson JC, Eriksson C. Piezoelectric properties of dry and wet bone. Nature 1970; 227: 491–2

    PubMed  CAS  Article  Google Scholar 

  149. 148.

    Gross D, Williams WS. Streaming potential and the electromechanical response of physiologically-moist bone. J Biomech 1982; 15: 277–95

    PubMed  CAS  Article  Google Scholar 

  150. 149.

    Davidovitch Z, Shanfeld JL, Montgomery PC, et al. Biochemical mediators of the effects of mechanical forces and electric currents on mineralized tissues. Calcif Tissue Int 1984; 36: S86–S97

    PubMed  Article  Google Scholar 

  151. 150.

    Skerry TM, Bitensky L, Chayen J, et al. Loading-related reorientation of bone proteoglycan in vivo: strain memory in bone tissue. J Orthop Res 1988; 6: 547–51

    PubMed  CAS  Article  Google Scholar 

  152. 151.

    Kiiskinen A, Suominen H. Blood circulation of long bones in trained growing rats and mice: biochemistry of long bones. J Appl Physiol 1975; 44: 50–4

    Google Scholar 

  153. 152.

    Tondevold E, Burlow J. Bone blood flow in conscious dogs at rest and during exercise. Acta Orthop Scand 1983; 54: 53–7

    PubMed  CAS  Article  Google Scholar 

  154. 153.

    McInnis JC, Robb RA, Kelly PJ. The relationship of bone blood flow, bone tracer deposition and endosteal new bone formation. J Lab Clin Med 1980; 96: 511–22

    PubMed  CAS  Google Scholar 

  155. 154.

    Martin RB, Burr DB. A hypothetical mechanism for the stimulation of osteonal remodelling by fatigue damage. J Biomech 1982; 15: 137–9

    PubMed  CAS  Article  Google Scholar 

  156. 155.

    Carter DR. Mechanical loading histories and cortical bone remodeling. Calcif Tissue Int 1984; 36 Suppl.: 19–24

    Article  Google Scholar 

  157. 156.

    Leichter I, Simkin A, Marguilies JY, et al. Gain in mass density of bone following strenuous physical activity. J Orthop Res 1989; 7: 86–90

    PubMed  CAS  Article  Google Scholar 

  158. 157.

    Lanyon LE. Functional strain in bone tissue as an objective and controlling stimulus for adaptive bone remodelling. J Biomech 1987; 20: 1083–93

    PubMed  CAS  Article  Google Scholar 

  159. 158.

    Kraemer WJ, Marchitelli L, Gordon S, et al. Hormonal and growth factor responses to heavy resistance exercise protocols. J Appl Physiol 1990; 69: 1442–50

    PubMed  CAS  Google Scholar 

  160. 159.

    Pan LC, Price PA. 1,25-dihydroxyvitamin D stimulates transcription of bone Gla protein gene [abstract]. Am Soc Bone Miner Res 1986; 1Suppl. 1: Abstract 20

    Google Scholar 

  161. 160.

    Huddleston AL, Rockwell D, Kulund DN, et al. Bone mass in lifetime tennis athletes. JAMA 1980; 244: 1107–9

    PubMed  CAS  Article  Google Scholar 

  162. 161.

    Jacobson PC, Beaver W, Grubb SA, et al. Bone density in women: college athletes and older women. J Orthop Res 1984; 2: 328–32

    PubMed  CAS  Article  Google Scholar 

  163. 162.

    Calder A, Chilibeck P, Sale D, et al. Upper but not lower limb lateral asymmetry in lean mass and bone mineral density in young women. Med Sci Sports Exerc 1992; 24: S45

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Digby G. Sale.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chilibeck, P.D., Sale, D.G. & Webber, C.E. Exercise and Bone Mineral Density. Sports Med 19, 103–122 (1995). https://doi.org/10.2165/00007256-199519020-00003

Download citation

Keywords

  • Bone Mineral Density
  • Bone Formation
  • Bone Mass
  • Bone Mineral Content
  • Endurance Training