Skip to main content

Advertisement

Log in

Measurement of Anaerobic Work Capacities in Humans

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

The development of simple, noninvasive tests of work capacities, underpinned primarily by anaerobic metabolism, proliferated in the early 1970s. A 30-second maximal cycle test developed at the Wingate Institute initiated efforts to develop work tests of anaerobic capacities. Such tests can be developed using any ergometer which simulates competitive conditions and enables an accurate determination of mechanical work output. A 10-second all-out test is commonly used to measure maximal work output generated primarily via the hydrolysis of high-energy Phosphagens (i.e. the alactic work capacity). In contrast, a variety of constant-load and all-out tests of anaerobic (alactic plus lactic) work capacity have been proposed. It has been suggested that all-out tests provide more information about physiological capabilities and are easier to apply than constant-load tests. The optimal duration for an all-out test of anaerobic work capacity is proposed at 30 seconds, a duration which may also provide the basis for the development of accurate field tests of anaerobic capacity. There is evidence that the y-intercept of the maximal work-derivation regression is a valid work estimate of anaerobic capacity in athletes, although its utility is undermined by the number of tests required for its derivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Green S, Dawson BT. Measurement of anaerobic capacities in humans: definitions, limitations and unsolved problems. Sports Med 1993; 15(5): 312–27

    Article  PubMed  CAS  Google Scholar 

  2. Maison GL, Broeker AC. Training in human muscle working with and without blood supply. Am J Physiol 1941; 132: 390–404

    Google Scholar 

  3. Vandewalle H, Peres G, Monod H. Standard anaerobic exercise tests. Sports Med 1987; 4: 268–89

    Article  PubMed  CAS  Google Scholar 

  4. Lakomy HKA. An ergometer for measuring the power generated during sprinting. Br J Sports Med 1985; 19: 81–4

    Article  PubMed  Google Scholar 

  5. Cheetham ME, Boobis LH, Brooks S, et al. Human muscle metabolism during sprinting. J Appl Physiol 1986; 61(1): 54–60

    PubMed  CAS  Google Scholar 

  6. Nevill ME, Boobis LH, Brooks S, et al. Effect of training on muscle metabolism during treadmill sprinting. J Appl Physiol 1989; 67(6): 2376–82

    PubMed  CAS  Google Scholar 

  7. di Prampero PE. Energetics of muscular exercise. Rev Physiol Biochem Pharmacol 1981; 89: 144–222

    Google Scholar 

  8. Hirvonen J, Rehunen S, Rusko H, et al. Breakdown of high-energy phosphate compounds and lactate accumulation during short supramaximal exercise. Eur J Appl Physiol 1987; 56: 253–9

    Article  CAS  Google Scholar 

  9. Hultman E, Greenhaff PL, Ren J-M, et al. Energy metabolism and fatigue during intense muscular contraction. Biochem Soc Trans 1991; 19: 347–53

    PubMed  CAS  Google Scholar 

  10. Szogy A. The influence of speed and strength characteristics on the anaerobic capacity of adolescent cyclists. In: Oseid S, Carlsen K-H, editors. Children and exercise XIII; international series on sport sciences. Champaign: Human Kinetics, 1989: 67–73

    Google Scholar 

  11. Boobis LH. Metabolic aspects of fatigue during sprinting. In: MacLeod D, Maughan R, Nimmo M, editors. Exercise: benefits, limits and adaptations. London: E & FN Spon, 1987: 116–43

    Google Scholar 

  12. McKenna MJ, Green RA, Shaw PF, et al. Tests of anaerobic power and capacity. Aust J Sci Med Sport 1987; 19(2): 13–7

    Google Scholar 

  13. Seresse O, Ama PFM, Simoneau J, et al. Anaerobic performances of sedentary and trained subjects. Can J Sport Sci 1989; 14(1): 46–52

    Google Scholar 

  14. Simoneau JA, Lortie G, Boulay MR, et al. Tests of anaerobic alactacid and lactacid capacities: description and reliability. Can J Appl Sports Sci 1983; 8(4): 266–70

    CAS  Google Scholar 

  15. Telford RD. Specific performance analysis with air-braked ergometers. J Sports Med 1982; 22: 349–57

    CAS  Google Scholar 

  16. Freeman P, Sandstrom R. Kayaking. In: Draper J, Telford R, editors. Sport specific guidelines for the physiological assessment of the elite athlete. Canberra: Australian Coaching Council, 1989: 53–66

    Google Scholar 

  17. Gillam I, Ellis L. Cross Country Skiing. In: Draper J, Telford R, editors. Sport specific guidelines for the physiological assessment of the elite athlete. Canberra: National Sports Research Program, Australian Coaching Council, 1989: 1–20

    Google Scholar 

  18. Beleastro AN, Campbell CJ, Bonen A, et al. Adaptation of human skeletal muscle myofibril ATPase activity to power training. Aust J Sports Med 1981; 13(4): 93–7

    Google Scholar 

  19. Jacobs I, Esbjornsson M, Sylven C, et al. Sprint training effects on muscle myoglobin, enzymes, fiber type, and blood lactate. Med Sci Sports Exerc 1987; 19(4): 368–74

    PubMed  CAS  Google Scholar 

  20. Jansson E, Esbjornsson M, Holm I, et al. Increase in the proportion of fast-twitch muscle fibres by sprint training in males. Acta Physiol Scand 1990; 140: 359–63

    Article  PubMed  CAS  Google Scholar 

  21. Thorstensson A, Sjodin B, Karlsson J. Enzyme activities and muscle strength after ‘sprint training’ in man. Acta Physiol Scand 1975; 94: 313–8

    Article  PubMed  CAS  Google Scholar 

  22. Esbjornsson M, Sylven C, Holm I, et al. Fast twitch fibres may predict anaerobic performance in both females and males. Int J Sports Med 1993; 14(5): 257–63

    Article  PubMed  CAS  Google Scholar 

  23. Cunningham DA, Faulkner JA. The effect of training on aerobic and anaerobic metabolism. Med Sci Sports 1969; 1: 65–9

    Google Scholar 

  24. Schnabel A, Kindermann W. Assessment of anaerobic capacity in runners. Eur J Appl Physiol 1983; 52: 42–6

    Article  CAS  Google Scholar 

  25. Paterson DH, Cunningham DA, Bumstead LA. Recovery O2 and blood lactic acid: longitudinal analysis in boys aged 11 to 15 years. Eur J Appl Physiol 1986; 55: 93–9

    Article  CAS  Google Scholar 

  26. Berg A, Keul J. Comparative performance diagnostics of anaerobic exertion in laboratory and field exercise of decathletes. Int J Sports Med 1985; 6: 244–53

    Google Scholar 

  27. Houston ME, Thomson JA. The response of endurance-adapted adults to intense anaerobic training. Eur J Appl Physiol 1977; 36: 207–13

    Article  CAS  Google Scholar 

  28. Parkhouse WS, McKenzie DC, Hochachka PW, et al. Buffering capacity of deproteinized human vastus lateralis muscle. J Appl Physiol 1985; 58(1): 14–7

    PubMed  CAS  Google Scholar 

  29. Medbø JI, Sejersted OM. Acid-base and electrolyte balance after exhausting exercise in endurance-trained and sprint-trained subjects. Acta Physiol Scand 1985; 125: 97–109

    Article  PubMed  Google Scholar 

  30. Thomson JM, Garvie KJ. A laboratory method for the determination of anaerobic energy expenditure during sprinting. Can J Appl Sports Sci 1981; 6(1): 21–6

    CAS  Google Scholar 

  31. Green HJ, Houston ME. Effect of a season of ice hockey on energy capacities and associated function. Med Sci Sports 1975; 7: 299–303

    PubMed  CAS  Google Scholar 

  32. Green S. Anthropometric and physiological characteristics of South Australian soccer players. Aust J Sci Med Sports 1992; 24(1): 3–7

    Google Scholar 

  33. McKenzie DC, Parkhouse WS, Hearst WE. Anaerobic performance characteristics of elite Canadian 800 meter runners. Can J Appl Sports Sci 1982; 7(3): 158–60

    CAS  Google Scholar 

  34. Rhodes EC, Mosher RE, McKenzie DC, et al. Physiological profiles of the Canadian Olympic soccer team. Can J Appl Sports Sci 1986; 11(1): 31–6

    CAS  Google Scholar 

  35. Hermansen L, Medbø JI. The relative significance of aerobic and anaerobic processes during maximal exercise of short duration. In: Marconnet P, Poortmans HJ, L Hermansen, et al., editors. Medicine and sport sciences: physiological chemistry of training and detraining. Basel: Karger, 1984: 56–67

    Google Scholar 

  36. Medbø JI, Mohn AC, Tabata I, et al. Anaerobic capacity determined by maximal accumulated O2 deficit. J Appl Physiol 1988; 64(1): 50–60

    PubMed  Google Scholar 

  37. Carlson J, Portier B. Running. In: Draper J, Telford R, editors. Sport specific guidelines for the physiological assessment of the elite athlete. Canberra: Australian Coaching Council, 1989: 91–6

    Google Scholar 

  38. Crielaard JM, Merken P, Franchimont P, et al. Evaluation de la capacité anaerobic lactique en athlétisme. Med Sport 1986; 60: 239–44

    Google Scholar 

  39. Debruyn-Prevost P, Sturbois X. Physiological response of girls to aerobic and anaerobic endurance tests. J Sports Med 1984; 24: 149–54

    CAS  Google Scholar 

  40. Hebbelinck M. Ergometry in physical research. J Sports Med 1969; 9: 69–79

    CAS  Google Scholar 

  41. Heyters C, Poortmans JR. Evaluation de la capacité anaerobique: étude de la reproductibilité et de la validité d’un test de laboratoire. Can J Appl Sports Sci 1977; 2: 183–7

    Google Scholar 

  42. Hill AV. Muscular movement in man. New York: McGraw-Hill, 1927

    Google Scholar 

  43. Scherrer J, Samson M, Paleologue A. Etude du travail musculaire et de la fatigue: Données ergometriques obtenués chez l’homme. J Physiol Paris 1954; 46: 887–916

    PubMed  CAS  Google Scholar 

  44. Monod H, Scherrer J. The work capacity of a synergic muscular group. Ergonomics 1965; 8: 329–38

    Article  Google Scholar 

  45. Whipp BJ, Huntsman DJ, Storer TW, et al. A constant which determines the duration of tolerance to high-intensity work. Fed Proc 1982; 41: 1591

    Google Scholar 

  46. Moritani T, Nagata A, Devries HA, et al. Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics 1981; 24: 339–50

    Article  PubMed  CAS  Google Scholar 

  47. Bulbulian R, Wilcox AR, Darabos BL. Anaerobic contribution to distance running performance of trained cross-country athletes. Med Sci Sports Exerc 1986; 18(1): 107–13

    PubMed  CAS  Google Scholar 

  48. Gaesser GA, Wilson LA. Effects of continuous and interval training on the parameters of the power-endurance time relationship for high-intensity exercise. Int J Sports Med 1988; 9: 417–21

    Article  PubMed  CAS  Google Scholar 

  49. Housh DJ, Housh TJ, Bauge SM. A methodological consideration for the determination of critical power and anaerobic work capacity. Res Q Exerc Sport 1990; 61(4): 406–9

    PubMed  CAS  Google Scholar 

  50. Jenkins DG, Quigley BM. The y-intercept of the critical power function as a measure of anaerobic work capacity. Ergonomics 1991; 34(1): 13–22

    Article  PubMed  CAS  Google Scholar 

  51. Poole DC, Ward SA, Whipp BJ. The effects of training on the metabolic and respiratory profile of high-intensity cycle ergometer exercise. Eur J Appl Physiol 1990; 59: 421–9

    Article  CAS  Google Scholar 

  52. Jenkins DG, Quigley BM. The influence of high-intensity exercise training on the Wlim-Tlim relationship. Med Sci Sports Exerc 1993; 25(2): 275–82

    PubMed  CAS  Google Scholar 

  53. Nebelsick-Gullett LJ, Housh TJ, Johnson GO, et al. A comparison between methods of measuring anaerobic work capacity. Ergonomics 1988; 31: 1413–9

    Article  PubMed  CAS  Google Scholar 

  54. Vandewalle H, Kapitaniak B, Grun S, et al. Comparison between a 30-s all-out test and a time-work test on a cycle ergometer. Eur J Appl Physiol 1989; 58: 375–81

    Article  CAS  Google Scholar 

  55. Hughson RL, Orok CJ, Staudt LE. A high velocity treadmill running test to assess endurance running potential. Int J Sports Med 1984; 5(1): 23–35

    Article  PubMed  CAS  Google Scholar 

  56. Wakayoshi K, Ikuta K, Yoshida T, et al. Determination and validity of critical velocity as an index of swimming performance in the competitive swimmer. Eur J Appl Physiol 1992; 64: 153–7

    Article  CAS  Google Scholar 

  57. Jenkins DG, Quigley BM. Blood lactate in trained cyclists during cycle ergometry at critical power. Eur J Appl Physiol 1990; 61: 278–83

    Article  CAS  Google Scholar 

  58. Jenkins DG, Quigley BM. Endurance training enhances critical power. Med Sci Sports Exerc 1992; 24(11): 1283–9

    PubMed  CAS  Google Scholar 

  59. Green S, Dawson BT, Goodman C, et al. The y-intercept of the maximal work-duration relationship and anaerobic capacity in cyclists. Eur J Appl Physiol. In press

  60. Medbø JI, Burgers S. Effeets of training on the anaerobic capacity. Med Sci Sports Exerc 1990; 22(4): 501–7

    PubMed  Google Scholar 

  61. Bell GA, Wenger HA. The effect of one-legged sprint training on intramuscular pH and non-bicarbonate buffering capacity. Eur J Appl Physiol 1988; 58: 158–64

    Article  CAS  Google Scholar 

  62. Cadefau J, Casademont J, Grau JM, et al. Biochemical and histochemical adaptation to sprint training in young athletes. Acta Physiol Scand 1990; 140: 341–51

    Article  PubMed  CAS  Google Scholar 

  63. Roberts AD, Billeter R, Howald H. Anaerobic muscle enzyme changes after interval training. Int J Sports Med 1982; 3: 18–21

    Article  PubMed  CAS  Google Scholar 

  64. Poole DC. Letter to the editor-in-chief. Med Sci Sports Exerc 1986; 18(6): 703–4

    Article  PubMed  CAS  Google Scholar 

  65. Medbø JI, Tabata I. Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise. J Appl Physiol 1989; 67(5): 1881–6

    PubMed  Google Scholar 

  66. Medbø JI, Tabata I. Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling. J Appl Physiol 1993; 75(4): 1654–60

    PubMed  Google Scholar 

  67. Peronnet F, Massicotte D. Table of nonprotein respiratory quotient: an update. Can J Sport Sci 1991; 16(1): 23–9

    PubMed  CAS  Google Scholar 

  68. Craig NP, Pyke FS, Norton KI. Specificity of test duration when assessing the anaerobic lactacid capacity of high-performance track cyclists. Int J Sports Med 1989; 10(4): 237–42

    Article  PubMed  CAS  Google Scholar 

  69. Fry RW, Morton AR. Physiological and kinanthropometric attributes of elite flatwater kayakists. Med Sci Sports Exerc 1991; 23(11): 1297–301

    PubMed  CAS  Google Scholar 

  70. Jacobs I. Influence of carbohydrate stores on maximal human power output. In: MacLeod D, Maughan R, Nimmo M, et al., editors. Exercise: benefits, limits and adaptation. London: E& FN Spon, 1987: 104–15

    Google Scholar 

  71. Symons JD, Jacobs I. High-intensity exercise performance is not impaired by low intramuscular glycogen. Med Sci Sports Exerc 1989; 21(5): 550–7

    PubMed  CAS  Google Scholar 

  72. Rohrs DM, Mayhew JL, Arabas C, et al. The relationship between seven anaerobic tests and swim performance. J Swimming Res 1990; 6(4): 15–9

    Google Scholar 

  73. Vandewalle H, Peres G, Heller J, et al. All-out anaerobic capacity tests on cycle ergometers. Eur J Appl Physiol 1985; 54: 222–9

    Article  CAS  Google Scholar 

  74. Ayalon A, Inbar O, Bar-Or O. Relationship among measurements of explosive strength and anaerobic power. In: Nelson RC, Morehouse CA, editors. Biomechanics IV, International series on sport sciences. Baltimore: University Press, 1974: 572–7

    Google Scholar 

  75. Patton JF, Murphy MM, Frederick FA. Maximal power outputs during the Wingate anaerobic test. Int J Sports Med 1985; 6: 82–5

    Article  PubMed  CAS  Google Scholar 

  76. Katch V, Weltman A, Martin R, et al. Optimal test characteristics for maximal anaerobic work on the bicycle ergometer. Res Q 1977; 48(2): 319–27

    PubMed  CAS  Google Scholar 

  77. Denis C, Linossier MT, Dormois D, et al. Power and metabolic responses during supramaximal exercise in 100-m and 800-m runners. Scand J Med Sci Sports 1992; 2: 62–9

    Article  Google Scholar 

  78. Katch VL, Weltman A. Interrelationships between anaerobic power output, anaerobic capacity and aerobic power. Ergonomics 1979; 22: 325–32

    Article  PubMed  CAS  Google Scholar 

  79. Withers RT, Sherman WM, Clark DG, et al. Muscle metabolism during 30, 60 and 90 s of maximal cycling on an air-braked ergometer. Eur J Appl Physiol 1991; 63(5): 354–62

    Article  CAS  Google Scholar 

  80. Bar-Or O, Dotan R, Inbar O. A 30-second all-out ergometric test — its reliability and validity for anaerobic capacity [abstract]. Isr JMed Sci 1977; 13: 326

    Google Scholar 

  81. Bar-Or O. Wingate test: update on reliability and validity: review. Sports Med 1987; 4: 381–94

    Article  PubMed  CAS  Google Scholar 

  82. Goslin BR, Graham TE. A comparison of ‘anaerobic’ components pf O2 debt and the Wingate Test. Can J Appl Sports Sci 1985; 10(3): 134–40

    CAS  Google Scholar 

  83. Bouchard C, Taylor AW, Dulac S. Testing maximal anaerobic power and capacity. In: MacDougall JD, Wenger HA, Green HJ, et al., editors. Physiological testing of the elite athlete. New York: Mouvement Publications, 1982: 61–74

    Google Scholar 

  84. Thompson NN, Foster C, Rogourski B, et al. Serial responses of anaerobic muscular performance in competitive athletes [abstract]. Med Sci Sports Exerc 1986; 18: S1

    Google Scholar 

  85. Perez HR, Wygand JW, Kowalski A, et al. A comparison of the Wingate power test to bicycle time trial performance. Med Sci Sports Exerc 1986; 18: S1

    Google Scholar 

  86. Katch VL. Kinetics of oxygen uptake and recovery for supramaximal work of short duration. Int Z Angew Physiol 1973; 31: 197–207

    PubMed  CAS  Google Scholar 

  87. Seresse O, Lortie G, Bouchard C, et al. Estimation of the contribution of the various energy systems during maximal work of short duration. Int J Sports Med 1988; 9: 456–60

    Article  Google Scholar 

  88. Saltin B. The physiological and biochemical basis of aerobic and anaerobic capacities in man: effect of training and range of adaptation. In: Maehlum S, Nilsson S, Renstrom P, et al., editors. An update on sports medicine. Proceedings from the 2nd Scandinavian conference on sports. Oslo, 1987: 16–59

    Google Scholar 

  89. Boulay MR, Lortie G, Simoneau JA, et al. Specificity of aerobic/anaerobic work capacities and powers. Int J Sports Med 1985; 6: 325–8

    Article  PubMed  CAS  Google Scholar 

  90. Davies CTM, Sandstrom ER. Maximal mechanical power output and capacity of cyclists and young adults. Eur J Appl Physiol 1989; 58: 838–44

    Article  CAS  Google Scholar 

  91. Pearson MP, Spriet LL, Stevens ED. Effect of sprint training on swim performance and white muscle metabolism during exercise and recovery in rainbow trout (salmo gairdneri). J Exp Biol 1990; 149: 45–60

    Google Scholar 

  92. di Prampero PE, Mognoni P. Maximal anaerobic power in man. In: di Prampero PE, Poortmans HJ, editors. Medicine and sport sciences: physiological chemistry of exercise and training. Basel: Karger, 1981: 38–44

    Google Scholar 

  93. McCartney N, Heigenhauser GJF, Jones NL. Power output and fatigue of human muscle in maximal cycling exercise. J Appl Physiol 1983; 55(1): 218–24

    PubMed  CAS  Google Scholar 

  94. Sargeant AJ, Hoinville E, Young A. Maximum leg force and power output during short-term dynamic exercise. J Appl Physiol 1981; 51: 1175–82

    PubMed  CAS  Google Scholar 

  95. Dotan R, Bar-Or O. Load optimization for the Wingate anaerobic test. Eur J Appl Physiol 1983; 51: 409–17

    Article  CAS  Google Scholar 

  96. Mannion AF, Jakeman PH. Comparison of velocity dependent and time dependent measures of anaerobic work capacity. In: Reilly T, Watkins J, Borms J, et al., editors. Kinanthropometry III: proceedings of the VIII Commonwealth and International Conference on Cambridge University Press, 1986: 301–7

  97. Sargeant AJ, Dolan P, Young A. Optimal velocity for maximal short-term (anaerobic) power output in cycling. Int J Sports Med 1984; 5: 124–5

    Article  Google Scholar 

  98. Gastin P, Lawson D, Hargreaves M, et al. Variable resistance loadings in anaerobic power testing. Int J Sports Med 1991; 12(6): 513–8

    Article  PubMed  CAS  Google Scholar 

  99. Seresse O, Simoneau JA, Bouchard C, et al. Aerobic and anaerobic energy contribution during maximal work output in 90 s determined with various ergocycle workloads. Int J Sports Med 1991; 12(6): 543–7

    Article  Google Scholar 

  100. Thomson JM. Prediction of anaerobic capacity: a performance test employing an optimal exercise stress. Can J Appl Sports Sci 1981; 6(1): 16–20

    CAS  Google Scholar 

  101. Scott CB, Roby FB, Lohman TG, et al. The maximally accumulated oxygen deficit as an indicator of anaerobic capacity. Med Sci Sports Exerc 1991; 23(5): 618–24

    PubMed  CAS  Google Scholar 

  102. Borsetto C, Ballarin E, Casoni I, et al. A field test for determining the speed obtained through anaerobic glycolysis in runners. Int J Sports Med 1989; 10(5): 339–45

    Article  PubMed  CAS  Google Scholar 

  103. Conconi F, Ferrari M, Ziglio PG, et al. Determination of the anaerobic threshold by a noninvasive field test in runners. J Appl Physiol 1982; 52(4): 869–73

    PubMed  CAS  Google Scholar 

  104. Katch V, Weltman A, Traeger L. All-out versus a steady-paced cycling strategy for maximal work output of short duration. Res Q 1976; 47(2): 164–8

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, S. Measurement of Anaerobic Work Capacities in Humans. Sports Med 19, 32–42 (1995). https://doi.org/10.2165/00007256-199519010-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199519010-00003

Keywords

Navigation