Skip to main content

Exercise, Training and Red Blood Cell Turnover

Summary

Endurance training can lead to what has been termed ‘sports anaemia’. Although under normal conditions, red blood cells (RBCs) have a lifespan of about 120 days, the rate of aging may increase during intensive training. However, RBC deficiency is rare in athletes, and sports anaemia is probably due to an expanded plasma volume. Cycling, running and swimming have been shown to cause RBC damage.

While most investigators measure indices of haemolysis (for example, plasma haemoglobin or haptoglobin), RBC removal is normally an extravascular process that does not involve haemolysis. Attention is now turning to cellular indices (such as antioxidant depletion, or protein or lipid damage) that may be more indicative of exercise-induced damage.

RBCs are vulnerable to oxidative damage because of their continuous exposure to oxygen and their high concentrations of polyunsaturated fatty acids and haem iron. As oxidative stress may be proportional to oxygen uptake, it is not surprising that antioxidants in muscle, liver and RBCs can be depleted during exercise. Oxidative damage to RBCs can also perturb ionic homeostasis and facilitate cellular dehydration. These changes impair RBC deformability which can, in turn, impede the passage of RBCs through the microcirculation. This may lead to hypoxia in working muscle during single episodes of exercise and possibly an increased rate of RBC destruction with long term exercise. Providing RBC destruction does not exceed the rate of RBC production, no detrimental effect to athletic performance should occur. An increased rate of RBC turnover may be advantageous because young cells are more efficient in transporting oxygen.

Because most techniques examine the RBC population as a whole, more sophisticated methods which analyse cells individually are required to determine the mechanisms involved in exercise-induced damage of RBCs.

This is a preview of subscription content, access via your institution.

References

  1. Szygula Z. Erythrocytic system under the influence of physical exercise and training. Sports Med 1990; 10: 181–97

    PubMed  CAS  Article  Google Scholar 

  2. Weight LM. Sports anaemia: does it exist? Sports Med 1993; 16: 1–4

    PubMed  CAS  Article  Google Scholar 

  3. Magnusson B, Hallberg L, Rossander L, et al. Iron metabolism and sports anaemia. Acta Med Scand 1984; 216: 157–64

    PubMed  CAS  Article  Google Scholar 

  4. Hebbel RP, Eaton JW. Pathobiology of heme interaction with the erythrocyte membrane. Sem Hematol 1989; 26: 136–49

    CAS  Google Scholar 

  5. Mairbaurl H. Red blood cell function in hypoxia at altitude and exercise. Int J Sports Med 1994; 15: 51–63

    PubMed  CAS  Article  Google Scholar 

  6. Besa EC. Hematologic effects of androgens revisited: an alternative therapy in various hematologic conditions. Sem Hematol 1994; 31: 134–45

    CAS  Google Scholar 

  7. Telford RD, Cunningham RB. Sex, sport, and body-size dependency of hematology in highly-trained athletes. Med Sci Sports Exerc 1991;23:788–94

    PubMed  CAS  Google Scholar 

  8. Elgsaeter A, Mikkelsen A. Shapes and shape changes in vitro in normal red blood cells. Biochim Biophys Acta 1991; 1071: 273–90

    PubMed  CAS  Article  Google Scholar 

  9. Waugh RE, Mohandas N, Jackson CW, et al. Rheologie properties of senescent erythrocytes: loss of surface area and volume with age. Blood 1992; 79: 1351–8

    PubMed  CAS  Google Scholar 

  10. Aminoff D. The role of sialoglycoconjugates in the aging and sequestration of red cells from circulation. Blood Cells 1988; 14: 229–47

    PubMed  CAS  Google Scholar 

  11. Piomelli S. Commentary to: the relationship of red cell enzymes to red cell life-span by E. Beutler. Blood Cells 1988; 14: 81–6

    CAS  Google Scholar 

  12. Mohandas N, Phillips WM, Bessis M. Red blood cell deformability and haemolytic anemias. Sem Hematol 1979; 16: 95–114

    CAS  Google Scholar 

  13. Clark MR. Senescence of red blood cells: problems and progress. Physiol Rev 1988; 68: 503–53

    PubMed  CAS  Google Scholar 

  14. Kosower NS. Altered properties of erythrocytes in the aged. Am J Hematol 1993; 42: 241–7

    PubMed  CAS  Article  Google Scholar 

  15. Beutler E. Isolation of the aged. Blood Cells 1988; 14: 1–5

    PubMed  CAS  Google Scholar 

  16. Beutler E. The relationship of red cell enzymes to red cell life-span. Blood Cells 1988; 14: 69–75

    PubMed  CAS  Google Scholar 

  17. Dale GL, Norenberg SL. Density fractionation of erythrocytes by percol/hypaque results in only a slight enrichment for aged cells. Biochim Biophys Acta 1990; 1036: 183–7

    PubMed  CAS  Article  Google Scholar 

  18. Mueller TJ, Jackson CW, Dockter ME, et al. Membrane skeletal alterations during in vivo mouse red cell aging: increase in the band 4.1a: 4.1b ratio. J Clin Invest 1987; 79: 492–9

    PubMed  CAS  Article  Google Scholar 

  19. Fortier N, Snyder LM, Garver F, et al. The relationship between in vivo generated hemoglobin skeleton protein complex and increased red cell membrane rigidity. Blood 1988; 71: 1427–31

    PubMed  CAS  Google Scholar 

  20. Shiga T, Sekiy M, Maeda N, et al. Cell age-dependent changes in deformability and calcium accumulation of human erythrocytes. Biochim Biophys Acta 1985; 814: 289–99

    PubMed  CAS  Article  Google Scholar 

  21. Beppu M, Mizukami A, Nagoya M, et al. Binding of anti-band 3 autoantibody to oxidatively-damaged erythrocytes. J Biol Chem 1990; 265:3226–33

    PubMed  CAS  Google Scholar 

  22. Kay MMB, Bosman GJCGM, Johnson GJ, et al. Band-3 polymers and aggregates, and hemoglobin precipitates in red cell aging. Blood Cells 1988; 14: 275–89

    PubMed  CAS  Google Scholar 

  23. Corbett JD, Golan DE. Band 3 and glycophorin are progressively aggregated in density-fractionated sickle and normal red blood cells. J Clin Invest 1993; 91: 208–17

    PubMed  CAS  Article  Google Scholar 

  24. Fishelson Z, Marikovsky Y. Reduced CRl expression on aged erythrocytes: immunoelectron microscopic and functional analysis. Mech Ageing Dev 1993; 72: 25–35

    PubMed  CAS  Article  Google Scholar 

  25. Lutz HU, Fasler S, Stammler P, et al. Naturally occurring anti-band 3 autoantibodies and complement in phagocytosis of oxidatively-stressed and in clearance of senescent red cells. Blood Cells 1988; 14: 175–95

    PubMed  CAS  Google Scholar 

  26. Vlassara H, Valinsky J, Brownlea M, et al. Advanced glycosylation endproducts on erythrocyte cell surface induce receptor-mediated phagocytosis by macrophages: a model for turnover of aging cells. J Exp Med 1987; 166: 539–49

    PubMed  CAS  Article  Google Scholar 

  27. Chiu D, Lubin B. Oxidative hemoglobin denaturation and RBC destruction: the effect of heme on red cell membranes. Sem Hematol 1989; 26: 128–35

    CAS  Google Scholar 

  28. Danon D, Marikovsky Y. The aging of the red blood cell: a multifactor process. Blood Cells 1988; 14: 7–15

    PubMed  CAS  Google Scholar 

  29. Nobes PR, Carter AB. Reticulocyte counting using flow cytometry. J Clin Pathol 1990; 43: 675–8

    PubMed  CAS  Article  Google Scholar 

  30. Jennings LK, Brown LK, Dockter ME. Quantitation of protein 3 content of circulating erythrocytes at the single cell level. Blood 1985; 65: 1256–62

    PubMed  CAS  Google Scholar 

  31. Rolfes-Curl A, Ogden LL, Omann GM, et al. Flow cytometric analysis of human erythrocytes, II: possible identification of senescent RBC with fluorescently labelled wheat-germ agglutinin. Exp Gerontol 1991; 26: 327–45

    PubMed  CAS  Article  Google Scholar 

  32. Newhouse IJ, Clement DB. Iron status in athletes: an update. Sports Med 1988; 5: 337–52

    PubMed  CAS  Article  Google Scholar 

  33. Selby GB, Eichner ER. Hematocrit and performance: the effect of endurance training on blood volume. Sem Hematol 1994; 31: 122–7

    CAS  Google Scholar 

  34. Cook JD. The effect of endurance training on iron metabolism. Sem Hematol 1994; 31: 146–54

    CAS  Google Scholar 

  35. O’Toole ML, Hiller WDB, Roalstad MS, et al. Hemolysis during triathlon races: its relation to race distance. Med Sci Sports Exerc 1988; 20: 272–5

    PubMed  Article  Google Scholar 

  36. Green HJ, Sutton JR, Coates G, et al. Response of red cell and plasma volume to prolonged training in humans. J Appl Physiol 1991; 70: 1810–5

    PubMed  CAS  Google Scholar 

  37. Schmidt W, Maassen N, Trost F, et al. Training-induced effects on blood volume, erythrocyte turnover, and haemoglobin oxygen-binding properties. Eur J Appl Physiol 1988; 57: 490–8

    CAS  Article  Google Scholar 

  38. Smith EM, Hill RL, Lehman IR, et al. Principles of biochemistry: mammalian biochemistry. 7th ed. Auckland: McGraw-Hill, 1983

    Google Scholar 

  39. Huebers HA, Finch CA. The physiology of transferrin and transferrin receptors. Physiol Rev 1987; 67: 520–82

    PubMed  CAS  Google Scholar 

  40. Dallman PR. Biochemical basis for the manifestations of iron deficiency. Annu Rev Nutr 1993; 6: 13–40

    Article  Google Scholar 

  41. Schacter B. Heme catabolism by heme oxygenase: physiology, regulation and mechanism of action. Seinm Hematol 1989; 25: 349–69

    Google Scholar 

  42. Diess A. Iron metabolism in reticuloendothelial cells. Semin Hematol 1983; 20: 81–90

    Google Scholar 

  43. Miller BJ, Pate RR, Burgess W. Foot impact force and intravascular hemolysis during distance running. Int J Sports Med 1988; 9: 56–60

    PubMed  CAS  Article  Google Scholar 

  44. Casoni I, Borsetto C, Cavicchi A, et al. Reduced hemoglobin concentration and red cell hemoglobinization in Italian marathon and ultramarathon runners. Int J Sports Med 1985; 6: 176–9

    PubMed  CAS  Article  Google Scholar 

  45. Lijnen P, Hespel P, Fagard R, et al. Indicators of cell breakdown in plasma during and after a marathon race. Int J Sports Med 1988; 9: 108–13

    PubMed  CAS  Article  Google Scholar 

  46. Wolf PL, Lott JA, Nitti GJ, et al. Changes in serum enzymes, lactate, and haptoglobin following acute physical stress in international-class athletes. Clin Biochem 1987; 20: 73–7

    PubMed  CAS  Article  Google Scholar 

  47. Witte DL. Can serum ferritin be effectively interpreted in the presence of the acute-phase response? Clin Chem 1991; 37: 484–5

    PubMed  CAS  Google Scholar 

  48. Seiler D, Nagel D, Franz H, et al. Effects of long-distance running on iron metabolism and hematological parameters. Int J Sports Med 1989; 10: 357–62

    PubMed  CAS  Article  Google Scholar 

  49. Kanaley JA, Ji LL. Antioxidant enzyme activity during prolonged exercise in amenorrheic and eumenorrheic athletes. Metabolism 1991; 40: 88–92

    PubMed  CAS  Article  Google Scholar 

  50. Cook JD, Skikne BS, Baynes RD. Serum tranferrin receptor. Annu Rev Med 1993; 44: 63–74

    PubMed  CAS  Article  Google Scholar 

  51. Selby GB, Eichner ER. Endurance swimming, intravascular hemolysis, anemia, and iron depletion: new perspective on athletes anemia. Am J Med 1986; 81: 791–4

    PubMed  CAS  Article  Google Scholar 

  52. Schobersberger W, Tschann M, Hasibeder W, et al. Consequences of 6 weeks strength training on red cell O2 transport and iron status. Eur J Appl Physiol 1990; 60: 163–8

    CAS  Article  Google Scholar 

  53. Dufaux B, Hoederath A, Streitberger I, et al. Serum ferritin, transferrin, haptoglobin, and iron in middle- and long-distance runners, elite rowers, and professional racing cyclists. Int J Sports Med 1981; 2: 43–6

    PubMed  CAS  Article  Google Scholar 

  54. Pelliccia A, Di Nucci GB. Anemia in swimmers: fact or fiction? Study of hematologic and iron status in male and female top-level swimmers. Int J Sports Med 1987; 8: 227–30

    PubMed  CAS  Article  Google Scholar 

  55. Berglund B, Birgegard G, Hemmingsson P. Serum erythropoietin in cross-country skiers. Med Sci Sports Exerc 1988; 20: 208–9

    PubMed  CAS  Article  Google Scholar 

  56. Klausen T, Dela F, Hippe E, et al. Diurnal variations of serum erythropoietin in trained and untrained subjects. Eur J Appl Physiol 1993; 67: 545–8

    CAS  Article  Google Scholar 

  57. Klausen T, Mohr T, Ghisler U, et al. Maximal oxygen uptake and erythropoietic responses after training at moderate altitude. Eur J Appl Physiol 1991; 62: 376–9

    CAS  Article  Google Scholar 

  58. Weight LM, Byrne MJ, Jacobs P. Haemolytic effects of exercise. Clin Sci 1991; 81: 147–52

    PubMed  CAS  Google Scholar 

  59. Landaw SA. Factors that accelerate or retard red blood cell senescence. Blood Cells 1988; 14: 47–67

    PubMed  CAS  Google Scholar 

  60. Dacie JV, Lewis SM. Practical haematology. Edinburgh: Churchill-Livingstone, 1984

    Google Scholar 

  61. Labbe RF, Rettmer RL. Zinc protoporphyrin: a product of iron-deficient erythropoiesis. Sem Hematol 1989; 26: 40–6

    CAS  Google Scholar 

  62. Buysse AM, Delanghe JR, De Buyzere ML, et al. Enzymatic erythrocyte creatine determinations as an index for cell age. Clin Chim Acta 1990; 187: 155–62

    PubMed  CAS  Article  Google Scholar 

  63. Schmidt W, Maassen N, Tegtbur U, et al. Changes in plasma volume and red cell formation after a marathon competition. Eur J Appl Physiol 1989; 58: 453–8

    CAS  Article  Google Scholar 

  64. Yu BP. Cellular defenses against damage from reactive oxygen species. Physiol Rev 1994; 74: 139–62

    PubMed  CAS  Google Scholar 

  65. Demopoulos HB, Santomier JP, Seligman ML, et al. Free radical pathology: rationale and toxicology of antioxidants and other supplements in sports medicine and exercise science. In: Katch FI, editor. Sport, health and nutrition, 1984 Olympic Scientific Congress Proceedings, vol 2. Champaign, Ill.: Human Kinetics, 1986: 139–89

    Google Scholar 

  66. Halliwell B, Gutteridge JMC, Cross CE. Free radicals, antioxidants, and human disease: where are we now ? J Lab Clin Med 1992; 119: 598–620

    PubMed  CAS  Google Scholar 

  67. Maiorino M, Coassin M, Roveri A, et al. Microsomal lipid peroxidation: effect of vitamin-E and its functional interaction with phospholipid hydroperoxide glutathione peroxidase. Lipids 1989; 24: 721–6

    PubMed  CAS  Article  Google Scholar 

  68. Halliwell B, Gutteridge JMC. Role of free radicals and catalytic metal ions in human disease. In: Packer L, Glazer AN, editors. Oxygen radicals in biological systems, part B. Methods Enzymol 1990; 186: 1–85

    PubMed  CAS  Article  Google Scholar 

  69. Gutteridge JMC, Halliwell B. The measurement and mechanism of lipid peroxidation in biologic systems. Trends Biochem Sci 1990; 15: 129–35

    PubMed  CAS  Article  Google Scholar 

  70. Davies KJA, Goldberg AL. Oxygen radicals stimulate intracellular proteolysis and lipid peroxidation by independent mechanisms. J Biol Chem 1987; 262: 8220–6

    PubMed  CAS  Google Scholar 

  71. Shechter Y, Burstein Y, Patchornik A. Selective oxidation of methionine residues in proteins. Biochemistry 1975; 14: 4497–503

    PubMed  CAS  Article  Google Scholar 

  72. Baysal E, Sullivan SG, Stern A. Prooxidant and antioxidant effects of ascorbate on tBuOOH-induced erythrocyte membrane damage. Int J Biochem 1989; 21: 1109–13

    PubMed  CAS  Article  Google Scholar 

  73. Dean RT, Gebicki J, Gieseg S, et al. Hypothesis: a damaging role in aging for reactive protein oxidation products. Mutat Res 1992; 275: 387–93

    PubMed  CAS  Article  Google Scholar 

  74. Oliver CN, Ahn B, Moerman EJ, et al. Age-related changes in oxidized proteins. J Biol Chem 1987; 262: 5488–91

    PubMed  CAS  Google Scholar 

  75. Gebicki S, Gebicki JM. Formation of peroxides in amino acids and proteins exposed to oxygen free radicals. Biochem J 1993; 289: 743–9

    PubMed  CAS  Google Scholar 

  76. Krinsky NI. Mechanism of action of biological antioxidants. Proc Soc Exp Biol Med 1992; 200: 248–54

    PubMed  CAS  Google Scholar 

  77. Frei B, Kim MC, Ames B. Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc Natl Acad Sci USA 1990; 87: 4879–83

    PubMed  CAS  Article  Google Scholar 

  78. Constantinescu A, Han D, Packer L. Vitamin E recycling in human erythrocyte membranes. J Biol Chem 1993; 268: 10906–13

    PubMed  CAS  Google Scholar 

  79. Hebbel RP. Erythrocyte antioxidants and membrane vulnerability. J Lab Clin Med 1986; 107: 401–4

    PubMed  CAS  Google Scholar 

  80. Packer L. Protective role of vitamin E in biological systems. Am J Clin Nutr 1991; 53: 1050S–5S

    PubMed  CAS  Google Scholar 

  81. Goldfarb AH. Antioxidants: role of supplementation to prevent exercise-induced oxidative stress. Med Sci Sports Exerc 1993; 25: 232–6

    PubMed  CAS  Google Scholar 

  82. Traber MG. Determinants of plasma vitamin E concentrations. Free Rad Biol Med 1994; 16: 229–39

    PubMed  CAS  Article  Google Scholar 

  83. Meister A. Glutathione-ascorbic acid antioxidant systems in animals. J Biol Chem 1994; 269: 9397–400

    PubMed  CAS  Google Scholar 

  84. Miester A. On the antioxidant effects of ascorbic acid and glutathione. Biochem Pharmacol 1992; 44: 1905–15

    Article  Google Scholar 

  85. Burton GW, Wronska U, Stone L, et al. Biokinetics of dietary RRR-α-tocopherol in the male guinea pig at three dietary levels of vitamin C and two levels of vitamin E. Evidence that vitamin C does not spare vitamin E in vivo. Lipids 1990; 25: 199–210

    PubMed  CAS  Article  Google Scholar 

  86. Kretzschmar M, Müller D. Aging, training and exercise: a review of effects on plasma glutathione and lipid peroxides. Sports Med 1993; 15: 196–209

    PubMed  CAS  Article  Google Scholar 

  87. Lu SC, Garcia-Ruiz C, Kuhlenkamp J, et al. Hormonal regulation of glutathione efflux. J Biol Chem 1990; 265: 16088–95

    PubMed  CAS  Google Scholar 

  88. Sen CK, Rankinen T, Vaisanen S, Rauramaa R. Oxidative stress after human exercise: effect of N-acetylcysteine supplementation. J Appl Physiol 1994; 76: 2570–7

    PubMed  CAS  Google Scholar 

  89. Mansouri A, Lurie AA. Methemoglobinemia. Am J Hematol 1993; 42: 7–12

    PubMed  CAS  Article  Google Scholar 

  90. Winterbourn CC, Stern A. Human red cells scavenge extracellular hydrogen peroxide and inhibit formation of hypochlorous acid and hydroxyl radical. J Clin Invest 1987; 80: 1486–91

    PubMed  CAS  Article  Google Scholar 

  91. Emlen W, Carl V, Burdick G. Mechanism of transfer of immune complexes from red blood cell CR 1 to monocytes. Clin Exp Immunol 1992; 89: 8–17

    PubMed  CAS  Article  Google Scholar 

  92. Seppi C, Addolorata M, Minetti G, et al. Evidence for membrane oxidation during in vivo aging of human erythrocytes. Mech Ageing Dev 1991; 57: 247–58

    PubMed  CAS  Article  Google Scholar 

  93. Moore RB, Hulgan TM, Green JW, et al. Increased susceptibility of the sickle cell membrane Ca2+ + Mg2+-ATPase to t-butylhydroperoxide. Protective effects of ascorbate and desferal. Blood 79: 1992; 1334–41

    PubMed  CAS  Google Scholar 

  94. Pigeolet E, Remade J. Susceptibility of glutathione peroxidase to proteolysis after oxidative alteration by peroxides and hydroxyl radicals. Free Rad Biol Med 1991; 11: 191–5

    PubMed  CAS  Article  Google Scholar 

  95. Jain SK. Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells. J Biol Chem 1989; 264: 21340–5

    PubMed  CAS  Google Scholar 

  96. Birlouez-Aragon I. Scalbert-Menanteau P, Morawiec M, et al. Evidence for a relationship between protein glycation and red blood cell membrane fluidity. Biochem Biophys Res Commun 1990; 170: 1107–13

    PubMed  CAS  Article  Google Scholar 

  97. Hebbel RP. Beyond hemoglobin polymerization: the red blood cell membrane and sickle disease pathophysiology. Blood 1991; 77: 214–37

    PubMed  CAS  Google Scholar 

  98. Hebbel RP. Autoxidation and the sickle erythrocyte membrane: a possible model of iron decompartmentalization. In: Johnson JE, Walford R, Harmon D, et al., editors. Free radicals, aging and degenerative diseases. New York: Alan R. Liss, 1986: 395–424

    Google Scholar 

  99. Kuross SA, Rank BH, Hebbel RR Excess heme in sickle erythrocyte inside-out membranes: possible role of thiol oxidation. Blood 1988; 71: 876–82

    PubMed  CAS  Google Scholar 

  100. Kuross SA, Hebbel RP. Nonheme iron in sickle erythrocyte membranes: association with phospholipids and potential role in lipid peroxidation. Blood 1988; 72: 1278–85

    PubMed  CAS  Google Scholar 

  101. Kannon R, Labotka R, Low PS. Isolation and characterization of the hemichrome-stabilized membrane protein aggregates from sickle erythrocytes. J Biol Chem. 1988; 263: 13766–73

    Google Scholar 

  102. Lang CA, Naryshkin S, Schneider DL, et al. Low blood glutathione levels in healthy aging adults. J Lab Clin Med 1992; 120: 720–5

    PubMed  CAS  Google Scholar 

  103. Johnson RM, Ravindranath Y, El-Alfy M, et al. Oxidant damage to erythrocyte membrane in glucose-6-phosphate dehydrogenase deficiency: correlation with in vivo reduced glutathione concentration and membrane protein oxidation. Blood 1994; 83: 1117–23

    PubMed  CAS  Google Scholar 

  104. Chiu D, Lubin B, Shohet SB. Peroxidative reactions in red cell biology. Free Rad Biol 1982; 5; 115–60

    CAS  Google Scholar 

  105. Chiu D, Kuypers F, Lubin B. Lipid peroxidation in human red cells. Sem Hematol 1989; 26: 257–76

    CAS  Google Scholar 

  106. Johnston CS, Meyer CG, Srilakshmi JC. Vitamin C elevates red blood cell glutathione in healthy adults. Am J Clin Nutr 1993; 58: 103–5

    PubMed  CAS  Google Scholar 

  107. Sacchetta P, Battista P, Santarone S, et al. Purification of human erythrocyte proteolytic enzyme responsible for degradation of oxidant-damaged hemoglobin: evidence for identifying as a member of the multicatalytic proteinase family. Biochim Biophys Acta 1990; 107: 337–43

    Article  Google Scholar 

  108. Davies KJA. Protein modification by oxidants and the role of proteolytic enzymes. Biochem Soc Trans 1993; 21: 346–53

    PubMed  CAS  Google Scholar 

  109. Davies KJA, Goldberg AL. Proteins damaged by oxygen radicals are rapidly degraded in extracts of red blood cells. J Biol Chem 1987; 262: 8227–34

    PubMed  CAS  Google Scholar 

  110. Joshi W, Leb L, Piotrowski J, et al. Increased sensitivity of isolated alpha subunits of normal human hemoglobin to oxidative damage and crosslinking with spectrin. J Lab Clin Med 1983; 102: 46–52

    PubMed  CAS  Google Scholar 

  111. Jain SK. The neonatal erythrocyte and its oxidative susceptibility. Sem Hematol 1989; 26: 286–300

    CAS  Google Scholar 

  112. Witt E, Reznick A, Viguie CA, et al. Exercise, oxidative damage, and effects of antioxidant manipulation. J Nutr 1992; 122Suppl. 3: 766–73

    PubMed  CAS  Google Scholar 

  113. Gohil K, Viguie C, Stanley WC, et al. Blood glutathione oxidation during human exercise. J Appl Physiol 1988; 64: 115–9

    PubMed  CAS  Google Scholar 

  114. Viguie C, Frei B, Shigenaga MK, et al. Antioxidant status and indexes of oxidative stress during consecutive days of exercise. J Appl Physiol 1993; 75: 566–72

    PubMed  CAS  Google Scholar 

  115. Duthie GG, Robertson JD, Maughan RJ, et al. Blood antioxidant status and erythrocyte lipid peroxidation following distance running. Arch Biochem Biophys 1990; 282: 78–83

    PubMed  CAS  Article  Google Scholar 

  116. Kretzschmar M, Müller D, Hubscher J, et al. Influence of aging, training and acute physical exercise on plasma glutathione and lipid peroxides in man. Int J Sports Med 1991; 12: 218–22

    PubMed  CAS  Article  Google Scholar 

  117. Ohno H, Sato Y, Yamashita K, et al. The effect of brief physical exercise on free radical scavenging enzyme systems in human red blood cells. Can J Physiol Pharmacol 1986; 64: 1263–5

    PubMed  CAS  Article  Google Scholar 

  118. Ji LL, Katz A, Fu R, et al. Blood glutathione status during exercise: effect of carbohydrate supplementation. J Appl Physiol 1993; 74: 788–92

    PubMed  CAS  Google Scholar 

  119. Schofield D, Mei G. Braganza JM. Some pitfalls in the measurement of blood glutathione. Clin Sci 1993; 85: 213–8

    PubMed  CAS  Google Scholar 

  120. Garner M, Reglinski J, Smith WE, et al. Oxidation state of glutathione in the erythrocyte. Clin Sci 1992; 83: 637

    PubMed  CAS  Google Scholar 

  121. Smith JA, Kolbuch-Braddon M, Gillam I, et al. Effect of oxidative and osmotic stress on red blood cells following submaximal exercise. Eur J Appl Physiol. In press

  122. Pincemail J, Deby C, Gamus G, et al. Tocopherol mobilization during intensive exercise. Eur J Appl Physiol 1988; 57: 189–91

    CAS  Article  Google Scholar 

  123. Sumikawa K, Mu Z, Inoue T, et al. Changes in erythrocyte membrane phospholipid composition induced by physical training and physical exercise. Eur J Appl Physiol 1993; 67: 132–7

    CAS  Article  Google Scholar 

  124. Gleeson M, Robertson JD, Maughan RJ. Influence of exercise on ascorbic acid status in man. Clin Sci 1987; 73: 501–5

    PubMed  CAS  Google Scholar 

  125. Ohno H, Yahata Y, Sato Y, et al. Physical training and fasting erythrocyte activities of free radical scavenging enzyme activities in sedentary men. Eur J Appl Physiol 1988; 57: 173–6

    CAS  Article  Google Scholar 

  126. Evelo CTA, Palmen NGM, Artur Y, et al. Changes in blood glutathione concentrations, and in erythrocyte glutathione reductase and glutathione-S-transferase activity after running training and after participation in contests. Eur J Appl Physiol 1992; 64: 354–8

    CAS  Article  Google Scholar 

  127. Robertson JD, Maughan RJ, Duthie GG, et al. Increased blood antioxidant systems of runners in response to training load. Clin Sci 1991; 80: 611–8

    PubMed  CAS  Google Scholar 

  128. Mena P, Maynar M, Gutierrez JM, et al. Erythrocyte free radical scavenger enzymes in bicycle professional racers: adaptation to training. Int J Sports Med 1991; 12: 563–6

    PubMed  CAS  Article  Google Scholar 

  129. Gerli GC, Mongiat R, Sandri MT, et al. Antioxidant system and serum trace elements in α-thalassemia and haemoglobin lepore trait. Eur J Haematol 1987; 39: 23–7

    PubMed  CAS  Article  Google Scholar 

  130. Novelli GP, Bracciotti G, Falsini S. Spin-trappers and vitamin-E prolong endurance to muscle fatigue in mice. Free Rad Biol Med 1990; 8: 9–13

    PubMed  CAS  Article  Google Scholar 

  131. Novelli GP, Falsini S, Bracciotti G. Exogenous glutathione increases endurance to muscle effort in mice. Pharm Res 1991; 23: 149–55

    CAS  Article  Google Scholar 

  132. Simon-Schnass I, Korniszewski L.. The influence of vitamin-E on rheological parameters in high altitude mountaineers. Int J Vitam Nutr Res 1990; 60: 26–34

    PubMed  CAS  Google Scholar 

  133. Glass GA, Gershon D. Decreased enzymic protection and increased sensitivity to oxidative damage in erythrocytes as a function of cell and donar aging. Biochem J 1984; 218: 531–7

    PubMed  CAS  Google Scholar 

  134. Kark JA, Posey DM, Schumacher H, et al. Sickle-cell trait as a risk factor for sudden death in physical training. N Engl J Med 1987; 317: 781–7

    PubMed  CAS  Article  Google Scholar 

  135. Gozal D, Thiriet P, Mbala E, et al. Effect of different modalities of exercise and recovery on exercise performance in subjects with sickle cell trait. Med Sci Sports Exerc 1992; 24: 1325–31

    PubMed  CAS  Google Scholar 

  136. Konotey-Ahulu FID. The sickle cell diseases. Arch Intern Med 1974; 133: 611–9

    PubMed  CAS  Article  Google Scholar 

  137. Das SK, Hinds JE, Hardy RE, et al. Effects of physical stress on peroxide scavengers and sickle cell trait erythrocytes. Free Rad Biol Med 1993; 14: 139–47

    PubMed  CAS  Article  Google Scholar 

  138. Boucher JH, Lessin LS, McKeekin RR. Echinocytosis the cause of equine exertional diseases — a hypothesis. In: Boese A, editor. Dynamics of equine athletic performance. Lawrenceville, NJ: Veterinary Learning Systems, 1985: 97–112

    Google Scholar 

  139. Chien S. Red cell deformability and its relevance to blood flow. Annu Rev Physiol 1987; 49: 177–92

    PubMed  CAS  Article  Google Scholar 

  140. Stuart J, Ellory JC. Rheological consequences of erythrocyte dehydration. Br J Haematol 1988; 69: 1–4

    PubMed  CAS  Article  Google Scholar 

  141. Canham PB, Parkinson DR. The area and volume of single human erythrocytes during gradual osmotic swelling to hemolysis. Can J Physiol Pharmacol 1970; 48: 369–76

    PubMed  CAS  Article  Google Scholar 

  142. Buono MJ, Faucher PE. Intraerythrocyte and plasma osmolality during graded exercise inn humans. J Appl Physiol 1985; 58: 1069–72

    PubMed  CAS  Google Scholar 

  143. Van Beaumont W, Underkofler S, Van Beaumont S. Erythrocyte volume, plasma volume, and acid-base changes in exercise and heat dehydration. J Appl Physiol 1981; 50: 1255–62

    PubMed  Google Scholar 

  144. Staubli M, Roessler B. The mean red cell volume in long distance runners. Eur J Appl Physiol 1986; 55: 49–53

    CAS  Article  Google Scholar 

  145. Van Beaumont W, Rochelle, RH. Erythrocyte volume stability with plasma osmolarity changes in exercising man. Proc Soc Exp Biol Med 1974; 145: 240–3

    PubMed  Google Scholar 

  146. Bodemann HH, Irmer M, Schluter KJ, et al. Activation of sodium transport in human erythrocytes by β-adrenoceptor stimulation in vivo. Eur J Appl Physiol 1987; 56: 375–80

    CAS  Article  Google Scholar 

  147. Rasmussen H, Lake W, Allen JE. The effect of catecholamines and prostaglandins uponhuman and rat erythrocytes. Biochim Biophys Acta 1975; 411: 63–73

    PubMed  CAS  Article  Google Scholar 

  148. Poole RC, Halestrap AP. Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am J Physiol 1993; 264: C761–C782

    PubMed  CAS  Google Scholar 

  149. Usami S, Chien S, Gregersen MI. Viscometric behavior of young and aged erythrocytes. In: Hartlet HH, Copley AL, editors. Theoretical and clinical hemorheology. Berlin: Springer-Verlag, 1971: 266–70

    Chapter  Google Scholar 

  150. Brugnara C, Van Ha T, Tosteson DC. Acid pH induces formation of dense cells in sickle erythrocytes. Blood 1989; 74: 487–95

    PubMed  CAS  Google Scholar 

  151. Fabry ME, Romero JR, Buchanan ID, et al. Rapid increase in red blood cell density driven by K:C1 cotransport in a subset of sickle cell anemia reticulocytes and discocytes. Blood 1991; 78: 217–25

    PubMed  CAS  Google Scholar 

  152. Piatt OS, Lux SE, Nathan DC. Exercise-induced hemolysis in xerocytosis. J Clin Invest 1981; 68: 631–8

    Article  Google Scholar 

  153. Fischer TM, Meloni T, Pescarmona T, et al. Membrane cross bonding in red cells in favic crisis: a missing link in the mechanism of extravascular haemolysis. Br J Haematol 1985; 59: 159–69

    PubMed  CAS  Article  Google Scholar 

  154. Snyder LM, Sauberman N, Condara H, et al. Red cell membrane response to hydrogen peroxide-sensitivity in hereditary xerocytosis and in other abnormal red cells. Br J Haematol 1981; 48: 435–44

    PubMed  CAS  Article  Google Scholar 

  155. Jain SK, Ross JD, Levy GJ, et al. The accumulation of malonyldialdehyde, an end product of membrane lipid peroxidation, can cause potassium leak in normal and sickle red blood cells. Biochem Med Metabol Biol 1989; 42: 60–5

    CAS  Article  Google Scholar 

  156. Wilkerson JE, Gutin B, Horvath SM. Exercise-induced changes in blood, red cell, and plasma volumes in man. Med Sci Sports 1977; 9: 155–8

    PubMed  CAS  Article  Google Scholar 

  157. Wade CE. Response, regulation, and actions of vasopressin during exercise: a review. Med Sci Sports Exerc 1984; 16: 506–11

    PubMed  CAS  Article  Google Scholar 

  158. Hespel P, Lijnen P, Fiocchi R, et al. Cationic concentrations and transmembrane fluxes in erythrocytes of humans during exercise. J Appl Physiol 1986; 61: 37–43

    PubMed  CAS  Google Scholar 

  159. Evans E, Mohandas N, Leung A. Static and dynamic rigidities of normal and sickle erythrocytes: major influence of cell hemoglobin concentration. J Clin Invest 1984; 73: 477–88

    PubMed  CAS  Article  Google Scholar 

  160. Mairbaurl H, Humpeler E, Schwaberger G, et al. Training-dependent changes of red blood cell density and erythrocytic oxygen transport. J Appl Physiol 1983; 55: 1403–7

    PubMed  CAS  Google Scholar 

  161. Robertson JD, Maughan RJ, Davidson RJL. Changes in red cell density and related indices in response to distance running. Eur J Appl Physiol 1988; 57: 264–9

    CAS  Article  Google Scholar 

  162. Nicak A, Bohus B. Influence of long-distance running on red blood cell stability. Sports Med Training Rehab 1993; 4: 249–56

    Article  Google Scholar 

  163. Beutler E, Kuhl W, West C. The osmotic fragility of erythrocytes after prolonged liquid storage and after reinfusion. Blood 1982; 59: 1141–7

    PubMed  CAS  Google Scholar 

  164. Telford RD, Kolbuch-Braddon M, Weidemann MJ, et al. Red blood cell uptake of lactate during exercise alters their physical properties independently of pH [abstract]. Med Sci Sports Med 1994; 26Suppl. 1: A191

    Google Scholar 

  165. Shand BI. Changes in blood rheology induced by lactic acid. Proc Univ Otago Med Sch 1986; 64: 71–2

    Google Scholar 

  166. Brun JF, Fons C, Raynaud E., et al. Influence of circulating lactate on blood rheology during exercise in professional football players. Rev Port Haemorheol 1991; 5: 219–29

    Google Scholar 

  167. Van Beaumont W. Red cell volume with changes in plasma osmolarity during maximal exercise. J Appl Physiol 1973; 35: 47–50

    PubMed  Google Scholar 

  168. Klug BP, Lessin LS, Radice P Rheological aspects of sickle cell disease. Arch Intern Med 1974; 133: 577–90

    PubMed  CAS  Article  Google Scholar 

  169. Vallance P, Collier J, Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet 1989; 2: 997–1000

    PubMed  CAS  Article  Google Scholar 

  170. Borch FH, Werre JM, Schipper L, et al. Determinants of red blood cell deformability in relation to cell age. Eur J Haematol 1994; 52: 35–41

    Google Scholar 

  171. Sutera SP, Gardner RA, Boylan CW, et al. Age-related changes in deformability of human erythrocytes. Blood 1985; 65: 275–82

    PubMed  CAS  Google Scholar 

  172. Kamada T, Tokuda S, Aozaki S-I, et al. High levels of erythrocyte fluidity in sprinters and long-distance runners. J Appl Physiol 1993; 74: 354–8

    PubMed  CAS  Google Scholar 

  173. Morse PD, Warth JA. Direct measurement of the internal viscosity of sickle erythrocytes as a function of cell density. Biochim Biophys Acta 1990; 1053: 49–55

    PubMed  Article  Google Scholar 

  174. Nash GB, Meiselman HJ. Red cell and ghost viscoelasticity: effects of hemoglobin concentration and in vivo aging. Biophys J 1983; 43: 63–73

    PubMed  CAS  Article  Google Scholar 

  175. Chassis JA, Schrier SL. Membrane deformability and the capacity for shape change in the erythrocyte. Blood 1989; 74: 2562–8

    Google Scholar 

  176. Jain SK, Ross JD, Levy GJ, et al. The effect of malo-nyldialdehyde on viscosity of normal and sickle red blood cells. Biochem Med Metabol Biol 1990; 44: 37–41

    CAS  Article  Google Scholar 

  177. Kon K, Maeda N, Suda T, et al. Protective effect of α-tocopherol on the morphological and rheological changes of rat red cells. Acta Haematol 1983; 69: 111–6

    PubMed  CAS  Article  Google Scholar 

  178. Charm SE, Paz H, Kurland GE. Reduced plasma viscosity among joggers compared with non-joggers. Biorheology 1979; 16: 185–9

    PubMed  CAS  Google Scholar 

  179. Ernst E, Schmid M, Matrai A. Intraindividual changes of hemorheological and other variables by regular exercise. J Sports Cardiol 1985; 2: 50–4

    Google Scholar 

  180. Silva JM. Blood rheological adaptation to physical exercise. Rev Port Haemorheol 1988; 2: 63–7

    Google Scholar 

  181. Telford RD, Kovacic JC, Skinner, SL, et al. Resting whole blood viscosity of elite rowers is related to performance. Eur J Appl Physiol 1994; 68: 470–6

    CAS  Article  Google Scholar 

  182. Weed RI. The importance of erythrocyte deformability. Am J Med 1970; 49: 147–50

    PubMed  CAS  Article  Google Scholar 

  183. Reinhart WH, Chien S. Stomatocytic transformation of red blood cells after marathon running. Am J Hematol 1985; 19: 201–4

    PubMed  CAS  Article  Google Scholar 

  184. Reinhart WH, Staubli, M, Straub PW. Impaired red cell filter-ability with preferential elimination of old red blood cells during a 100 km race. J Appl Physiol 1983; 54: 827–33

    PubMed  CAS  Google Scholar 

  185. Costill DL, Fink WJ. Plasma volume changes following exercise and thermal dehydration. J Appl Physiol 1974; 37: 521–5

    PubMed  CAS  Google Scholar 

  186. Vandewalle H, Lacombe C, Lelievre JC, et al. Blood viscosity after a 1-h submaximal exercise with and without drinking. Int J Sports Med 1988; 9: 104–7

    PubMed  CAS  Article  Google Scholar 

  187. Guezennec CY, Nadaud JF, Satabin P, et al. Influence of polyunsaturated fatty acid diet on the hemorrheological response to physical exercise in hypoxia. Int J Sports Med 1989; 10: 286–91

    PubMed  CAS  Article  Google Scholar 

  188. Ernst E, Saradeth T, Achhammer G. Blood cell rheology influence of exercise and omego-3 fatty acids. Clin Hemorheol 1990; 10: 157–63

    Google Scholar 

  189. Freund BJ, Shizuru EV, Hashiro GM, et al. Hormonal, electrolyte, and renal responses to exercise are intensity dependent. J Appl Physiol 1991; 70: 900–6

    PubMed  CAS  Google Scholar 

  190. Zamir N, Tuvia S, Riven-Kreitman R, et al. Atrial natriuretic peptide: direct effects on human red blood cell dynamics. Biochem Biophys Res Commun 1992; 188: 1003–9

    PubMed  CAS  Article  Google Scholar 

  191. Follenius M, Candas V, Bothorel B, et al. Effect of rehydration on atrial natriuretic peptide release during exercise in the heat. J Appl Physiol 1989; 66: 2516–21

    PubMed  CAS  Google Scholar 

  192. Valensi P, Gaudey F, Parries J, et al. Glucagon and noradrenaline reduce erythrocyte deformability. Metabolism 1993; 42: 1169–72

    PubMed  CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smith, J.A. Exercise, Training and Red Blood Cell Turnover. Sports Med 19, 9–31 (1995). https://doi.org/10.2165/00007256-199519010-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199519010-00002

Keywords

  • Adis International Limited
  • Endurance Training
  • Sickle Cell Trait
  • Mean Cell Haemoglobin Concentration
  • Sport Anaemia