Szygula Z. Erythrocytic system under the influence of physical exercise and training. Sports Med 1990; 10: 181–97
PubMed
CAS
Article
Google Scholar
Weight LM. Sports anaemia: does it exist? Sports Med 1993; 16: 1–4
PubMed
CAS
Article
Google Scholar
Magnusson B, Hallberg L, Rossander L, et al. Iron metabolism and sports anaemia. Acta Med Scand 1984; 216: 157–64
PubMed
CAS
Article
Google Scholar
Hebbel RP, Eaton JW. Pathobiology of heme interaction with the erythrocyte membrane. Sem Hematol 1989; 26: 136–49
CAS
Google Scholar
Mairbaurl H. Red blood cell function in hypoxia at altitude and exercise. Int J Sports Med 1994; 15: 51–63
PubMed
CAS
Article
Google Scholar
Besa EC. Hematologic effects of androgens revisited: an alternative therapy in various hematologic conditions. Sem Hematol 1994; 31: 134–45
CAS
Google Scholar
Telford RD, Cunningham RB. Sex, sport, and body-size dependency of hematology in highly-trained athletes. Med Sci Sports Exerc 1991;23:788–94
PubMed
CAS
Google Scholar
Elgsaeter A, Mikkelsen A. Shapes and shape changes in vitro in normal red blood cells. Biochim Biophys Acta 1991; 1071: 273–90
PubMed
CAS
Article
Google Scholar
Waugh RE, Mohandas N, Jackson CW, et al. Rheologie properties of senescent erythrocytes: loss of surface area and volume with age. Blood 1992; 79: 1351–8
PubMed
CAS
Google Scholar
Aminoff D. The role of sialoglycoconjugates in the aging and sequestration of red cells from circulation. Blood Cells 1988; 14: 229–47
PubMed
CAS
Google Scholar
Piomelli S. Commentary to: the relationship of red cell enzymes to red cell life-span by E. Beutler. Blood Cells 1988; 14: 81–6
CAS
Google Scholar
Mohandas N, Phillips WM, Bessis M. Red blood cell deformability and haemolytic anemias. Sem Hematol 1979; 16: 95–114
CAS
Google Scholar
Clark MR. Senescence of red blood cells: problems and progress. Physiol Rev 1988; 68: 503–53
PubMed
CAS
Google Scholar
Kosower NS. Altered properties of erythrocytes in the aged. Am J Hematol 1993; 42: 241–7
PubMed
CAS
Article
Google Scholar
Beutler E. Isolation of the aged. Blood Cells 1988; 14: 1–5
PubMed
CAS
Google Scholar
Beutler E. The relationship of red cell enzymes to red cell life-span. Blood Cells 1988; 14: 69–75
PubMed
CAS
Google Scholar
Dale GL, Norenberg SL. Density fractionation of erythrocytes by percol/hypaque results in only a slight enrichment for aged cells. Biochim Biophys Acta 1990; 1036: 183–7
PubMed
CAS
Article
Google Scholar
Mueller TJ, Jackson CW, Dockter ME, et al. Membrane skeletal alterations during in vivo mouse red cell aging: increase in the band 4.1a: 4.1b ratio. J Clin Invest 1987; 79: 492–9
PubMed
CAS
Article
Google Scholar
Fortier N, Snyder LM, Garver F, et al. The relationship between in vivo generated hemoglobin skeleton protein complex and increased red cell membrane rigidity. Blood 1988; 71: 1427–31
PubMed
CAS
Google Scholar
Shiga T, Sekiy M, Maeda N, et al. Cell age-dependent changes in deformability and calcium accumulation of human erythrocytes. Biochim Biophys Acta 1985; 814: 289–99
PubMed
CAS
Article
Google Scholar
Beppu M, Mizukami A, Nagoya M, et al. Binding of anti-band 3 autoantibody to oxidatively-damaged erythrocytes. J Biol Chem 1990; 265:3226–33
PubMed
CAS
Google Scholar
Kay MMB, Bosman GJCGM, Johnson GJ, et al. Band-3 polymers and aggregates, and hemoglobin precipitates in red cell aging. Blood Cells 1988; 14: 275–89
PubMed
CAS
Google Scholar
Corbett JD, Golan DE. Band 3 and glycophorin are progressively aggregated in density-fractionated sickle and normal red blood cells. J Clin Invest 1993; 91: 208–17
PubMed
CAS
Article
Google Scholar
Fishelson Z, Marikovsky Y. Reduced CRl expression on aged erythrocytes: immunoelectron microscopic and functional analysis. Mech Ageing Dev 1993; 72: 25–35
PubMed
CAS
Article
Google Scholar
Lutz HU, Fasler S, Stammler P, et al. Naturally occurring anti-band 3 autoantibodies and complement in phagocytosis of oxidatively-stressed and in clearance of senescent red cells. Blood Cells 1988; 14: 175–95
PubMed
CAS
Google Scholar
Vlassara H, Valinsky J, Brownlea M, et al. Advanced glycosylation endproducts on erythrocyte cell surface induce receptor-mediated phagocytosis by macrophages: a model for turnover of aging cells. J Exp Med 1987; 166: 539–49
PubMed
CAS
Article
Google Scholar
Chiu D, Lubin B. Oxidative hemoglobin denaturation and RBC destruction: the effect of heme on red cell membranes. Sem Hematol 1989; 26: 128–35
CAS
Google Scholar
Danon D, Marikovsky Y. The aging of the red blood cell: a multifactor process. Blood Cells 1988; 14: 7–15
PubMed
CAS
Google Scholar
Nobes PR, Carter AB. Reticulocyte counting using flow cytometry. J Clin Pathol 1990; 43: 675–8
PubMed
CAS
Article
Google Scholar
Jennings LK, Brown LK, Dockter ME. Quantitation of protein 3 content of circulating erythrocytes at the single cell level. Blood 1985; 65: 1256–62
PubMed
CAS
Google Scholar
Rolfes-Curl A, Ogden LL, Omann GM, et al. Flow cytometric analysis of human erythrocytes, II: possible identification of senescent RBC with fluorescently labelled wheat-germ agglutinin. Exp Gerontol 1991; 26: 327–45
PubMed
CAS
Article
Google Scholar
Newhouse IJ, Clement DB. Iron status in athletes: an update. Sports Med 1988; 5: 337–52
PubMed
CAS
Article
Google Scholar
Selby GB, Eichner ER. Hematocrit and performance: the effect of endurance training on blood volume. Sem Hematol 1994; 31: 122–7
CAS
Google Scholar
Cook JD. The effect of endurance training on iron metabolism. Sem Hematol 1994; 31: 146–54
CAS
Google Scholar
O’Toole ML, Hiller WDB, Roalstad MS, et al. Hemolysis during triathlon races: its relation to race distance. Med Sci Sports Exerc 1988; 20: 272–5
PubMed
Article
Google Scholar
Green HJ, Sutton JR, Coates G, et al. Response of red cell and plasma volume to prolonged training in humans. J Appl Physiol 1991; 70: 1810–5
PubMed
CAS
Google Scholar
Schmidt W, Maassen N, Trost F, et al. Training-induced effects on blood volume, erythrocyte turnover, and haemoglobin oxygen-binding properties. Eur J Appl Physiol 1988; 57: 490–8
CAS
Article
Google Scholar
Smith EM, Hill RL, Lehman IR, et al. Principles of biochemistry: mammalian biochemistry. 7th ed. Auckland: McGraw-Hill, 1983
Google Scholar
Huebers HA, Finch CA. The physiology of transferrin and transferrin receptors. Physiol Rev 1987; 67: 520–82
PubMed
CAS
Google Scholar
Dallman PR. Biochemical basis for the manifestations of iron deficiency. Annu Rev Nutr 1993; 6: 13–40
Article
Google Scholar
Schacter B. Heme catabolism by heme oxygenase: physiology, regulation and mechanism of action. Seinm Hematol 1989; 25: 349–69
Google Scholar
Diess A. Iron metabolism in reticuloendothelial cells. Semin Hematol 1983; 20: 81–90
Google Scholar
Miller BJ, Pate RR, Burgess W. Foot impact force and intravascular hemolysis during distance running. Int J Sports Med 1988; 9: 56–60
PubMed
CAS
Article
Google Scholar
Casoni I, Borsetto C, Cavicchi A, et al. Reduced hemoglobin concentration and red cell hemoglobinization in Italian marathon and ultramarathon runners. Int J Sports Med 1985; 6: 176–9
PubMed
CAS
Article
Google Scholar
Lijnen P, Hespel P, Fagard R, et al. Indicators of cell breakdown in plasma during and after a marathon race. Int J Sports Med 1988; 9: 108–13
PubMed
CAS
Article
Google Scholar
Wolf PL, Lott JA, Nitti GJ, et al. Changes in serum enzymes, lactate, and haptoglobin following acute physical stress in international-class athletes. Clin Biochem 1987; 20: 73–7
PubMed
CAS
Article
Google Scholar
Witte DL. Can serum ferritin be effectively interpreted in the presence of the acute-phase response? Clin Chem 1991; 37: 484–5
PubMed
CAS
Google Scholar
Seiler D, Nagel D, Franz H, et al. Effects of long-distance running on iron metabolism and hematological parameters. Int J Sports Med 1989; 10: 357–62
PubMed
CAS
Article
Google Scholar
Kanaley JA, Ji LL. Antioxidant enzyme activity during prolonged exercise in amenorrheic and eumenorrheic athletes. Metabolism 1991; 40: 88–92
PubMed
CAS
Article
Google Scholar
Cook JD, Skikne BS, Baynes RD. Serum tranferrin receptor. Annu Rev Med 1993; 44: 63–74
PubMed
CAS
Article
Google Scholar
Selby GB, Eichner ER. Endurance swimming, intravascular hemolysis, anemia, and iron depletion: new perspective on athletes anemia. Am J Med 1986; 81: 791–4
PubMed
CAS
Article
Google Scholar
Schobersberger W, Tschann M, Hasibeder W, et al. Consequences of 6 weeks strength training on red cell O2 transport and iron status. Eur J Appl Physiol 1990; 60: 163–8
CAS
Article
Google Scholar
Dufaux B, Hoederath A, Streitberger I, et al. Serum ferritin, transferrin, haptoglobin, and iron in middle- and long-distance runners, elite rowers, and professional racing cyclists. Int J Sports Med 1981; 2: 43–6
PubMed
CAS
Article
Google Scholar
Pelliccia A, Di Nucci GB. Anemia in swimmers: fact or fiction? Study of hematologic and iron status in male and female top-level swimmers. Int J Sports Med 1987; 8: 227–30
PubMed
CAS
Article
Google Scholar
Berglund B, Birgegard G, Hemmingsson P. Serum erythropoietin in cross-country skiers. Med Sci Sports Exerc 1988; 20: 208–9
PubMed
CAS
Article
Google Scholar
Klausen T, Dela F, Hippe E, et al. Diurnal variations of serum erythropoietin in trained and untrained subjects. Eur J Appl Physiol 1993; 67: 545–8
CAS
Article
Google Scholar
Klausen T, Mohr T, Ghisler U, et al. Maximal oxygen uptake and erythropoietic responses after training at moderate altitude. Eur J Appl Physiol 1991; 62: 376–9
CAS
Article
Google Scholar
Weight LM, Byrne MJ, Jacobs P. Haemolytic effects of exercise. Clin Sci 1991; 81: 147–52
PubMed
CAS
Google Scholar
Landaw SA. Factors that accelerate or retard red blood cell senescence. Blood Cells 1988; 14: 47–67
PubMed
CAS
Google Scholar
Dacie JV, Lewis SM. Practical haematology. Edinburgh: Churchill-Livingstone, 1984
Google Scholar
Labbe RF, Rettmer RL. Zinc protoporphyrin: a product of iron-deficient erythropoiesis. Sem Hematol 1989; 26: 40–6
CAS
Google Scholar
Buysse AM, Delanghe JR, De Buyzere ML, et al. Enzymatic erythrocyte creatine determinations as an index for cell age. Clin Chim Acta 1990; 187: 155–62
PubMed
CAS
Article
Google Scholar
Schmidt W, Maassen N, Tegtbur U, et al. Changes in plasma volume and red cell formation after a marathon competition. Eur J Appl Physiol 1989; 58: 453–8
CAS
Article
Google Scholar
Yu BP. Cellular defenses against damage from reactive oxygen species. Physiol Rev 1994; 74: 139–62
PubMed
CAS
Google Scholar
Demopoulos HB, Santomier JP, Seligman ML, et al. Free radical pathology: rationale and toxicology of antioxidants and other supplements in sports medicine and exercise science. In: Katch FI, editor. Sport, health and nutrition, 1984 Olympic Scientific Congress Proceedings, vol 2. Champaign, Ill.: Human Kinetics, 1986: 139–89
Google Scholar
Halliwell B, Gutteridge JMC, Cross CE. Free radicals, antioxidants, and human disease: where are we now ? J Lab Clin Med 1992; 119: 598–620
PubMed
CAS
Google Scholar
Maiorino M, Coassin M, Roveri A, et al. Microsomal lipid peroxidation: effect of vitamin-E and its functional interaction with phospholipid hydroperoxide glutathione peroxidase. Lipids 1989; 24: 721–6
PubMed
CAS
Article
Google Scholar
Halliwell B, Gutteridge JMC. Role of free radicals and catalytic metal ions in human disease. In: Packer L, Glazer AN, editors. Oxygen radicals in biological systems, part B. Methods Enzymol 1990; 186: 1–85
PubMed
CAS
Article
Google Scholar
Gutteridge JMC, Halliwell B. The measurement and mechanism of lipid peroxidation in biologic systems. Trends Biochem Sci 1990; 15: 129–35
PubMed
CAS
Article
Google Scholar
Davies KJA, Goldberg AL. Oxygen radicals stimulate intracellular proteolysis and lipid peroxidation by independent mechanisms. J Biol Chem 1987; 262: 8220–6
PubMed
CAS
Google Scholar
Shechter Y, Burstein Y, Patchornik A. Selective oxidation of methionine residues in proteins. Biochemistry 1975; 14: 4497–503
PubMed
CAS
Article
Google Scholar
Baysal E, Sullivan SG, Stern A. Prooxidant and antioxidant effects of ascorbate on tBuOOH-induced erythrocyte membrane damage. Int J Biochem 1989; 21: 1109–13
PubMed
CAS
Article
Google Scholar
Dean RT, Gebicki J, Gieseg S, et al. Hypothesis: a damaging role in aging for reactive protein oxidation products. Mutat Res 1992; 275: 387–93
PubMed
CAS
Article
Google Scholar
Oliver CN, Ahn B, Moerman EJ, et al. Age-related changes in oxidized proteins. J Biol Chem 1987; 262: 5488–91
PubMed
CAS
Google Scholar
Gebicki S, Gebicki JM. Formation of peroxides in amino acids and proteins exposed to oxygen free radicals. Biochem J 1993; 289: 743–9
PubMed
CAS
Google Scholar
Krinsky NI. Mechanism of action of biological antioxidants. Proc Soc Exp Biol Med 1992; 200: 248–54
PubMed
CAS
Google Scholar
Frei B, Kim MC, Ames B. Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc Natl Acad Sci USA 1990; 87: 4879–83
PubMed
CAS
Article
Google Scholar
Constantinescu A, Han D, Packer L. Vitamin E recycling in human erythrocyte membranes. J Biol Chem 1993; 268: 10906–13
PubMed
CAS
Google Scholar
Hebbel RP. Erythrocyte antioxidants and membrane vulnerability. J Lab Clin Med 1986; 107: 401–4
PubMed
CAS
Google Scholar
Packer L. Protective role of vitamin E in biological systems. Am J Clin Nutr 1991; 53: 1050S–5S
PubMed
CAS
Google Scholar
Goldfarb AH. Antioxidants: role of supplementation to prevent exercise-induced oxidative stress. Med Sci Sports Exerc 1993; 25: 232–6
PubMed
CAS
Google Scholar
Traber MG. Determinants of plasma vitamin E concentrations. Free Rad Biol Med 1994; 16: 229–39
PubMed
CAS
Article
Google Scholar
Meister A. Glutathione-ascorbic acid antioxidant systems in animals. J Biol Chem 1994; 269: 9397–400
PubMed
CAS
Google Scholar
Miester A. On the antioxidant effects of ascorbic acid and glutathione. Biochem Pharmacol 1992; 44: 1905–15
Article
Google Scholar
Burton GW, Wronska U, Stone L, et al. Biokinetics of dietary RRR-α-tocopherol in the male guinea pig at three dietary levels of vitamin C and two levels of vitamin E. Evidence that vitamin C does not spare vitamin E in vivo. Lipids 1990; 25: 199–210
PubMed
CAS
Article
Google Scholar
Kretzschmar M, Müller D. Aging, training and exercise: a review of effects on plasma glutathione and lipid peroxides. Sports Med 1993; 15: 196–209
PubMed
CAS
Article
Google Scholar
Lu SC, Garcia-Ruiz C, Kuhlenkamp J, et al. Hormonal regulation of glutathione efflux. J Biol Chem 1990; 265: 16088–95
PubMed
CAS
Google Scholar
Sen CK, Rankinen T, Vaisanen S, Rauramaa R. Oxidative stress after human exercise: effect of N-acetylcysteine supplementation. J Appl Physiol 1994; 76: 2570–7
PubMed
CAS
Google Scholar
Mansouri A, Lurie AA. Methemoglobinemia. Am J Hematol 1993; 42: 7–12
PubMed
CAS
Article
Google Scholar
Winterbourn CC, Stern A. Human red cells scavenge extracellular hydrogen peroxide and inhibit formation of hypochlorous acid and hydroxyl radical. J Clin Invest 1987; 80: 1486–91
PubMed
CAS
Article
Google Scholar
Emlen W, Carl V, Burdick G. Mechanism of transfer of immune complexes from red blood cell CR 1 to monocytes. Clin Exp Immunol 1992; 89: 8–17
PubMed
CAS
Article
Google Scholar
Seppi C, Addolorata M, Minetti G, et al. Evidence for membrane oxidation during in vivo aging of human erythrocytes. Mech Ageing Dev 1991; 57: 247–58
PubMed
CAS
Article
Google Scholar
Moore RB, Hulgan TM, Green JW, et al. Increased susceptibility of the sickle cell membrane Ca2+ + Mg2+-ATPase to t-butylhydroperoxide. Protective effects of ascorbate and desferal. Blood 79: 1992; 1334–41
PubMed
CAS
Google Scholar
Pigeolet E, Remade J. Susceptibility of glutathione peroxidase to proteolysis after oxidative alteration by peroxides and hydroxyl radicals. Free Rad Biol Med 1991; 11: 191–5
PubMed
CAS
Article
Google Scholar
Jain SK. Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells. J Biol Chem 1989; 264: 21340–5
PubMed
CAS
Google Scholar
Birlouez-Aragon I. Scalbert-Menanteau P, Morawiec M, et al. Evidence for a relationship between protein glycation and red blood cell membrane fluidity. Biochem Biophys Res Commun 1990; 170: 1107–13
PubMed
CAS
Article
Google Scholar
Hebbel RP. Beyond hemoglobin polymerization: the red blood cell membrane and sickle disease pathophysiology. Blood 1991; 77: 214–37
PubMed
CAS
Google Scholar
Hebbel RP. Autoxidation and the sickle erythrocyte membrane: a possible model of iron decompartmentalization. In: Johnson JE, Walford R, Harmon D, et al., editors. Free radicals, aging and degenerative diseases. New York: Alan R. Liss, 1986: 395–424
Google Scholar
Kuross SA, Rank BH, Hebbel RR Excess heme in sickle erythrocyte inside-out membranes: possible role of thiol oxidation. Blood 1988; 71: 876–82
PubMed
CAS
Google Scholar
Kuross SA, Hebbel RP. Nonheme iron in sickle erythrocyte membranes: association with phospholipids and potential role in lipid peroxidation. Blood 1988; 72: 1278–85
PubMed
CAS
Google Scholar
Kannon R, Labotka R, Low PS. Isolation and characterization of the hemichrome-stabilized membrane protein aggregates from sickle erythrocytes. J Biol Chem. 1988; 263: 13766–73
Google Scholar
Lang CA, Naryshkin S, Schneider DL, et al. Low blood glutathione levels in healthy aging adults. J Lab Clin Med 1992; 120: 720–5
PubMed
CAS
Google Scholar
Johnson RM, Ravindranath Y, El-Alfy M, et al. Oxidant damage to erythrocyte membrane in glucose-6-phosphate dehydrogenase deficiency: correlation with in vivo reduced glutathione concentration and membrane protein oxidation. Blood 1994; 83: 1117–23
PubMed
CAS
Google Scholar
Chiu D, Lubin B, Shohet SB. Peroxidative reactions in red cell biology. Free Rad Biol 1982; 5; 115–60
CAS
Google Scholar
Chiu D, Kuypers F, Lubin B. Lipid peroxidation in human red cells. Sem Hematol 1989; 26: 257–76
CAS
Google Scholar
Johnston CS, Meyer CG, Srilakshmi JC. Vitamin C elevates red blood cell glutathione in healthy adults. Am J Clin Nutr 1993; 58: 103–5
PubMed
CAS
Google Scholar
Sacchetta P, Battista P, Santarone S, et al. Purification of human erythrocyte proteolytic enzyme responsible for degradation of oxidant-damaged hemoglobin: evidence for identifying as a member of the multicatalytic proteinase family. Biochim Biophys Acta 1990; 107: 337–43
Article
Google Scholar
Davies KJA. Protein modification by oxidants and the role of proteolytic enzymes. Biochem Soc Trans 1993; 21: 346–53
PubMed
CAS
Google Scholar
Davies KJA, Goldberg AL. Proteins damaged by oxygen radicals are rapidly degraded in extracts of red blood cells. J Biol Chem 1987; 262: 8227–34
PubMed
CAS
Google Scholar
Joshi W, Leb L, Piotrowski J, et al. Increased sensitivity of isolated alpha subunits of normal human hemoglobin to oxidative damage and crosslinking with spectrin. J Lab Clin Med 1983; 102: 46–52
PubMed
CAS
Google Scholar
Jain SK. The neonatal erythrocyte and its oxidative susceptibility. Sem Hematol 1989; 26: 286–300
CAS
Google Scholar
Witt E, Reznick A, Viguie CA, et al. Exercise, oxidative damage, and effects of antioxidant manipulation. J Nutr 1992; 122Suppl. 3: 766–73
PubMed
CAS
Google Scholar
Gohil K, Viguie C, Stanley WC, et al. Blood glutathione oxidation during human exercise. J Appl Physiol 1988; 64: 115–9
PubMed
CAS
Google Scholar
Viguie C, Frei B, Shigenaga MK, et al. Antioxidant status and indexes of oxidative stress during consecutive days of exercise. J Appl Physiol 1993; 75: 566–72
PubMed
CAS
Google Scholar
Duthie GG, Robertson JD, Maughan RJ, et al. Blood antioxidant status and erythrocyte lipid peroxidation following distance running. Arch Biochem Biophys 1990; 282: 78–83
PubMed
CAS
Article
Google Scholar
Kretzschmar M, Müller D, Hubscher J, et al. Influence of aging, training and acute physical exercise on plasma glutathione and lipid peroxides in man. Int J Sports Med 1991; 12: 218–22
PubMed
CAS
Article
Google Scholar
Ohno H, Sato Y, Yamashita K, et al. The effect of brief physical exercise on free radical scavenging enzyme systems in human red blood cells. Can J Physiol Pharmacol 1986; 64: 1263–5
PubMed
CAS
Article
Google Scholar
Ji LL, Katz A, Fu R, et al. Blood glutathione status during exercise: effect of carbohydrate supplementation. J Appl Physiol 1993; 74: 788–92
PubMed
CAS
Google Scholar
Schofield D, Mei G. Braganza JM. Some pitfalls in the measurement of blood glutathione. Clin Sci 1993; 85: 213–8
PubMed
CAS
Google Scholar
Garner M, Reglinski J, Smith WE, et al. Oxidation state of glutathione in the erythrocyte. Clin Sci 1992; 83: 637
PubMed
CAS
Google Scholar
Smith JA, Kolbuch-Braddon M, Gillam I, et al. Effect of oxidative and osmotic stress on red blood cells following submaximal exercise. Eur J Appl Physiol. In press
Pincemail J, Deby C, Gamus G, et al. Tocopherol mobilization during intensive exercise. Eur J Appl Physiol 1988; 57: 189–91
CAS
Article
Google Scholar
Sumikawa K, Mu Z, Inoue T, et al. Changes in erythrocyte membrane phospholipid composition induced by physical training and physical exercise. Eur J Appl Physiol 1993; 67: 132–7
CAS
Article
Google Scholar
Gleeson M, Robertson JD, Maughan RJ. Influence of exercise on ascorbic acid status in man. Clin Sci 1987; 73: 501–5
PubMed
CAS
Google Scholar
Ohno H, Yahata Y, Sato Y, et al. Physical training and fasting erythrocyte activities of free radical scavenging enzyme activities in sedentary men. Eur J Appl Physiol 1988; 57: 173–6
CAS
Article
Google Scholar
Evelo CTA, Palmen NGM, Artur Y, et al. Changes in blood glutathione concentrations, and in erythrocyte glutathione reductase and glutathione-S-transferase activity after running training and after participation in contests. Eur J Appl Physiol 1992; 64: 354–8
CAS
Article
Google Scholar
Robertson JD, Maughan RJ, Duthie GG, et al. Increased blood antioxidant systems of runners in response to training load. Clin Sci 1991; 80: 611–8
PubMed
CAS
Google Scholar
Mena P, Maynar M, Gutierrez JM, et al. Erythrocyte free radical scavenger enzymes in bicycle professional racers: adaptation to training. Int J Sports Med 1991; 12: 563–6
PubMed
CAS
Article
Google Scholar
Gerli GC, Mongiat R, Sandri MT, et al. Antioxidant system and serum trace elements in α-thalassemia and haemoglobin lepore trait. Eur J Haematol 1987; 39: 23–7
PubMed
CAS
Article
Google Scholar
Novelli GP, Bracciotti G, Falsini S. Spin-trappers and vitamin-E prolong endurance to muscle fatigue in mice. Free Rad Biol Med 1990; 8: 9–13
PubMed
CAS
Article
Google Scholar
Novelli GP, Falsini S, Bracciotti G. Exogenous glutathione increases endurance to muscle effort in mice. Pharm Res 1991; 23: 149–55
CAS
Article
Google Scholar
Simon-Schnass I, Korniszewski L.. The influence of vitamin-E on rheological parameters in high altitude mountaineers. Int J Vitam Nutr Res 1990; 60: 26–34
PubMed
CAS
Google Scholar
Glass GA, Gershon D. Decreased enzymic protection and increased sensitivity to oxidative damage in erythrocytes as a function of cell and donar aging. Biochem J 1984; 218: 531–7
PubMed
CAS
Google Scholar
Kark JA, Posey DM, Schumacher H, et al. Sickle-cell trait as a risk factor for sudden death in physical training. N Engl J Med 1987; 317: 781–7
PubMed
CAS
Article
Google Scholar
Gozal D, Thiriet P, Mbala E, et al. Effect of different modalities of exercise and recovery on exercise performance in subjects with sickle cell trait. Med Sci Sports Exerc 1992; 24: 1325–31
PubMed
CAS
Google Scholar
Konotey-Ahulu FID. The sickle cell diseases. Arch Intern Med 1974; 133: 611–9
PubMed
CAS
Article
Google Scholar
Das SK, Hinds JE, Hardy RE, et al. Effects of physical stress on peroxide scavengers and sickle cell trait erythrocytes. Free Rad Biol Med 1993; 14: 139–47
PubMed
CAS
Article
Google Scholar
Boucher JH, Lessin LS, McKeekin RR. Echinocytosis the cause of equine exertional diseases — a hypothesis. In: Boese A, editor. Dynamics of equine athletic performance. Lawrenceville, NJ: Veterinary Learning Systems, 1985: 97–112
Google Scholar
Chien S. Red cell deformability and its relevance to blood flow. Annu Rev Physiol 1987; 49: 177–92
PubMed
CAS
Article
Google Scholar
Stuart J, Ellory JC. Rheological consequences of erythrocyte dehydration. Br J Haematol 1988; 69: 1–4
PubMed
CAS
Article
Google Scholar
Canham PB, Parkinson DR. The area and volume of single human erythrocytes during gradual osmotic swelling to hemolysis. Can J Physiol Pharmacol 1970; 48: 369–76
PubMed
CAS
Article
Google Scholar
Buono MJ, Faucher PE. Intraerythrocyte and plasma osmolality during graded exercise inn humans. J Appl Physiol 1985; 58: 1069–72
PubMed
CAS
Google Scholar
Van Beaumont W, Underkofler S, Van Beaumont S. Erythrocyte volume, plasma volume, and acid-base changes in exercise and heat dehydration. J Appl Physiol 1981; 50: 1255–62
PubMed
Google Scholar
Staubli M, Roessler B. The mean red cell volume in long distance runners. Eur J Appl Physiol 1986; 55: 49–53
CAS
Article
Google Scholar
Van Beaumont W, Rochelle, RH. Erythrocyte volume stability with plasma osmolarity changes in exercising man. Proc Soc Exp Biol Med 1974; 145: 240–3
PubMed
Google Scholar
Bodemann HH, Irmer M, Schluter KJ, et al. Activation of sodium transport in human erythrocytes by β-adrenoceptor stimulation in vivo. Eur J Appl Physiol 1987; 56: 375–80
CAS
Article
Google Scholar
Rasmussen H, Lake W, Allen JE. The effect of catecholamines and prostaglandins uponhuman and rat erythrocytes. Biochim Biophys Acta 1975; 411: 63–73
PubMed
CAS
Article
Google Scholar
Poole RC, Halestrap AP. Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am J Physiol 1993; 264: C761–C782
PubMed
CAS
Google Scholar
Usami S, Chien S, Gregersen MI. Viscometric behavior of young and aged erythrocytes. In: Hartlet HH, Copley AL, editors. Theoretical and clinical hemorheology. Berlin: Springer-Verlag, 1971: 266–70
Chapter
Google Scholar
Brugnara C, Van Ha T, Tosteson DC. Acid pH induces formation of dense cells in sickle erythrocytes. Blood 1989; 74: 487–95
PubMed
CAS
Google Scholar
Fabry ME, Romero JR, Buchanan ID, et al. Rapid increase in red blood cell density driven by K:C1 cotransport in a subset of sickle cell anemia reticulocytes and discocytes. Blood 1991; 78: 217–25
PubMed
CAS
Google Scholar
Piatt OS, Lux SE, Nathan DC. Exercise-induced hemolysis in xerocytosis. J Clin Invest 1981; 68: 631–8
Article
Google Scholar
Fischer TM, Meloni T, Pescarmona T, et al. Membrane cross bonding in red cells in favic crisis: a missing link in the mechanism of extravascular haemolysis. Br J Haematol 1985; 59: 159–69
PubMed
CAS
Article
Google Scholar
Snyder LM, Sauberman N, Condara H, et al. Red cell membrane response to hydrogen peroxide-sensitivity in hereditary xerocytosis and in other abnormal red cells. Br J Haematol 1981; 48: 435–44
PubMed
CAS
Article
Google Scholar
Jain SK, Ross JD, Levy GJ, et al. The accumulation of malonyldialdehyde, an end product of membrane lipid peroxidation, can cause potassium leak in normal and sickle red blood cells. Biochem Med Metabol Biol 1989; 42: 60–5
CAS
Article
Google Scholar
Wilkerson JE, Gutin B, Horvath SM. Exercise-induced changes in blood, red cell, and plasma volumes in man. Med Sci Sports 1977; 9: 155–8
PubMed
CAS
Article
Google Scholar
Wade CE. Response, regulation, and actions of vasopressin during exercise: a review. Med Sci Sports Exerc 1984; 16: 506–11
PubMed
CAS
Article
Google Scholar
Hespel P, Lijnen P, Fiocchi R, et al. Cationic concentrations and transmembrane fluxes in erythrocytes of humans during exercise. J Appl Physiol 1986; 61: 37–43
PubMed
CAS
Google Scholar
Evans E, Mohandas N, Leung A. Static and dynamic rigidities of normal and sickle erythrocytes: major influence of cell hemoglobin concentration. J Clin Invest 1984; 73: 477–88
PubMed
CAS
Article
Google Scholar
Mairbaurl H, Humpeler E, Schwaberger G, et al. Training-dependent changes of red blood cell density and erythrocytic oxygen transport. J Appl Physiol 1983; 55: 1403–7
PubMed
CAS
Google Scholar
Robertson JD, Maughan RJ, Davidson RJL. Changes in red cell density and related indices in response to distance running. Eur J Appl Physiol 1988; 57: 264–9
CAS
Article
Google Scholar
Nicak A, Bohus B. Influence of long-distance running on red blood cell stability. Sports Med Training Rehab 1993; 4: 249–56
Article
Google Scholar
Beutler E, Kuhl W, West C. The osmotic fragility of erythrocytes after prolonged liquid storage and after reinfusion. Blood 1982; 59: 1141–7
PubMed
CAS
Google Scholar
Telford RD, Kolbuch-Braddon M, Weidemann MJ, et al. Red blood cell uptake of lactate during exercise alters their physical properties independently of pH [abstract]. Med Sci Sports Med 1994; 26Suppl. 1: A191
Google Scholar
Shand BI. Changes in blood rheology induced by lactic acid. Proc Univ Otago Med Sch 1986; 64: 71–2
Google Scholar
Brun JF, Fons C, Raynaud E., et al. Influence of circulating lactate on blood rheology during exercise in professional football players. Rev Port Haemorheol 1991; 5: 219–29
Google Scholar
Van Beaumont W. Red cell volume with changes in plasma osmolarity during maximal exercise. J Appl Physiol 1973; 35: 47–50
PubMed
Google Scholar
Klug BP, Lessin LS, Radice P Rheological aspects of sickle cell disease. Arch Intern Med 1974; 133: 577–90
PubMed
CAS
Article
Google Scholar
Vallance P, Collier J, Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet 1989; 2: 997–1000
PubMed
CAS
Article
Google Scholar
Borch FH, Werre JM, Schipper L, et al. Determinants of red blood cell deformability in relation to cell age. Eur J Haematol 1994; 52: 35–41
Google Scholar
Sutera SP, Gardner RA, Boylan CW, et al. Age-related changes in deformability of human erythrocytes. Blood 1985; 65: 275–82
PubMed
CAS
Google Scholar
Kamada T, Tokuda S, Aozaki S-I, et al. High levels of erythrocyte fluidity in sprinters and long-distance runners. J Appl Physiol 1993; 74: 354–8
PubMed
CAS
Google Scholar
Morse PD, Warth JA. Direct measurement of the internal viscosity of sickle erythrocytes as a function of cell density. Biochim Biophys Acta 1990; 1053: 49–55
PubMed
Article
Google Scholar
Nash GB, Meiselman HJ. Red cell and ghost viscoelasticity: effects of hemoglobin concentration and in vivo aging. Biophys J 1983; 43: 63–73
PubMed
CAS
Article
Google Scholar
Chassis JA, Schrier SL. Membrane deformability and the capacity for shape change in the erythrocyte. Blood 1989; 74: 2562–8
Google Scholar
Jain SK, Ross JD, Levy GJ, et al. The effect of malo-nyldialdehyde on viscosity of normal and sickle red blood cells. Biochem Med Metabol Biol 1990; 44: 37–41
CAS
Article
Google Scholar
Kon K, Maeda N, Suda T, et al. Protective effect of α-tocopherol on the morphological and rheological changes of rat red cells. Acta Haematol 1983; 69: 111–6
PubMed
CAS
Article
Google Scholar
Charm SE, Paz H, Kurland GE. Reduced plasma viscosity among joggers compared with non-joggers. Biorheology 1979; 16: 185–9
PubMed
CAS
Google Scholar
Ernst E, Schmid M, Matrai A. Intraindividual changes of hemorheological and other variables by regular exercise. J Sports Cardiol 1985; 2: 50–4
Google Scholar
Silva JM. Blood rheological adaptation to physical exercise. Rev Port Haemorheol 1988; 2: 63–7
Google Scholar
Telford RD, Kovacic JC, Skinner, SL, et al. Resting whole blood viscosity of elite rowers is related to performance. Eur J Appl Physiol 1994; 68: 470–6
CAS
Article
Google Scholar
Weed RI. The importance of erythrocyte deformability. Am J Med 1970; 49: 147–50
PubMed
CAS
Article
Google Scholar
Reinhart WH, Chien S. Stomatocytic transformation of red blood cells after marathon running. Am J Hematol 1985; 19: 201–4
PubMed
CAS
Article
Google Scholar
Reinhart WH, Staubli, M, Straub PW. Impaired red cell filter-ability with preferential elimination of old red blood cells during a 100 km race. J Appl Physiol 1983; 54: 827–33
PubMed
CAS
Google Scholar
Costill DL, Fink WJ. Plasma volume changes following exercise and thermal dehydration. J Appl Physiol 1974; 37: 521–5
PubMed
CAS
Google Scholar
Vandewalle H, Lacombe C, Lelievre JC, et al. Blood viscosity after a 1-h submaximal exercise with and without drinking. Int J Sports Med 1988; 9: 104–7
PubMed
CAS
Article
Google Scholar
Guezennec CY, Nadaud JF, Satabin P, et al. Influence of polyunsaturated fatty acid diet on the hemorrheological response to physical exercise in hypoxia. Int J Sports Med 1989; 10: 286–91
PubMed
CAS
Article
Google Scholar
Ernst E, Saradeth T, Achhammer G. Blood cell rheology influence of exercise and omego-3 fatty acids. Clin Hemorheol 1990; 10: 157–63
Google Scholar
Freund BJ, Shizuru EV, Hashiro GM, et al. Hormonal, electrolyte, and renal responses to exercise are intensity dependent. J Appl Physiol 1991; 70: 900–6
PubMed
CAS
Google Scholar
Zamir N, Tuvia S, Riven-Kreitman R, et al. Atrial natriuretic peptide: direct effects on human red blood cell dynamics. Biochem Biophys Res Commun 1992; 188: 1003–9
PubMed
CAS
Article
Google Scholar
Follenius M, Candas V, Bothorel B, et al. Effect of rehydration on atrial natriuretic peptide release during exercise in the heat. J Appl Physiol 1989; 66: 2516–21
PubMed
CAS
Google Scholar
Valensi P, Gaudey F, Parries J, et al. Glucagon and noradrenaline reduce erythrocyte deformability. Metabolism 1993; 42: 1169–72
PubMed
CAS
Article
Google Scholar