Skip to main content

Exercise and the Immune System

Natural Killer Cells, Interleukins and Related Responses

Summary

The main methods for the evaluation of natural killer (NK, CD16+ CD56+) cells, interleukins and related subsets of lymphocytes are briefly described. Moderate endurance exercise causes either no change or an increase in lymphocyte and NK cell counts, total T cell (CD3+) count, the ratio of T helper (CD3+ CD4+) to T suppressor (CD3+ CD8+) cells, mitogen-induced lymphocyte proliferation, serum immunoglobulin levels and in vitro immunoglobulin production. Plasma levels of interleukin-1 increase but interleukin-2 (IL-2) levels generally fall. Decreases in plasma IL-2 levels reflect increased expression of β (CD122) receptors for IL-2, and thus increased binding of IL-2, changes in cell distribution or a lesser production of IL-2 by peripheral blood mononuclear cells. Exercise to exhaustion induces adverse changes in many of these indices of immune function, particularly if the physical activity is accompanied by psychological or environmental stress. Moderate, appropriately graded training reduces the adverse reactions initially associated with a given bout of exhausting exercise, and cross-sectional comparisons show an increased expression of β IL-2 receptors on the peripheral blood mononuclear cells of trained individuals. However, excessive training, nutrient deficiency and/or muscle damage has adverse consequences for both the production of interleukins and the response of the immune system to these cytokines.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Brenner IKM, Shek PN, Shephard RJ. Acute infections and exercise. Sports Med 1994; 17: 86–107

    PubMed  CAS  Article  Google Scholar 

  2. 2.

    Nieman DC, Nehlsen-Cannarella SL. Exercise and infection. In: Watson RR, Eisinger M, editors. Exercise and disease. Boca Raton: CRC Press, 1992: 121–48

    Google Scholar 

  3. 3.

    Nieman DC, Johanssen LM, Lee JW, et al. Infectious episodes in runners before and after the Los Angeles marathon [abstract]. Med Sci Sports Exerc 1988; 20: S42

    Google Scholar 

  4. 4.

    Nieman DC, Johanssen LM, Lee JW, et al. Infectious episodes in runners before and after the Los Angeles marathon. J Sports Med Phys Fitness 1990; 30: 316–28

    PubMed  CAS  Google Scholar 

  5. 5.

    Nieman DC, Nehlsen-Cannarella SL, Markoff PA, et al. The effects of moderate exercise training on natural killer cells and acute upper respiratory infections. Int J Sports Med 1990; 11: 467–73

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    Shephard RJ, Shek PN. Infection and the athlete. Clin J Sports Med 1993; 3: 57–77

    Google Scholar 

  7. 7.

    Pober JS, Cotran RS. Cytokines and endothelial biology. Physiol Rev 1990; 70: 427–51

    PubMed  CAS  Google Scholar 

  8. 8.

    Shephard RJ. Exercise and cancer: an update. Sports Med 1993; 15: 258–80

    PubMed  CAS  Article  Google Scholar 

  9. 9.

    Whicher JT, Evans SW. Cytokines and disease. Clin Chem 1990; 36: 1269–81

    PubMed  CAS  Google Scholar 

  10. 10.

    Mackinnon LT. Exercise and natural killer cells: what is the relationship? Sports Med 1989; 7: 141–9

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    Mackinnon LT. Exercise and immunology. Champaign: Human Kinetics, 1992

    Google Scholar 

  12. 12.

    Shephard RJ, Verde TJ, Thomas SG, et al. Physical activity and the immune system. Can J Sport Sci 1991; 16: 163–85

    PubMed  CAS  Google Scholar 

  13. 13.

    Keast D, Morton AR. Long-term exercise and immune function. In: Watson RR, Eisinger M, editors. Exercise and disease. Boca Raton: CRC Publishing, 1992: 89–120

    Google Scholar 

  14. 14.

    Arai K, Lee F, Miyajima A, et al. Cytokines: coordinators of immune and inflammatory responses. Annu Rev Biochem 1990; 59: 783–836

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Cohen S. Lymphokines and the immune response. Boca Raton: CRC Press, 1990

    Google Scholar 

  16. 16.

    Hamblin AS. Lymphokines. Oxford: IRL Press, 1988

    Google Scholar 

  17. 17.

    Meager A. Cytokines. Buckingham: Open University Press, 1990

    Google Scholar 

  18. 18.

    Abbas AK, Lichtman AH, Pober JS. Cellular and molecular immunology. Philadelphia: Saunders, 1991

    Google Scholar 

  19. 19.

    Bazan J. Emerging families of cytokines and receptors. Curr Biol 1993; 3: 603–6

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    Simon HB. The immunology of exercise. JAMA 1984; 252: 2735–8

    PubMed  CAS  Article  Google Scholar 

  21. 21.

    diGiovine FS, Duff GW. Interleukin I: the first interleukin. Immunol Today 1990; 11: 13–20

    CAS  Article  Google Scholar 

  22. 22.

    Strober W, James SP. The interleukins. Pediatr Res 1988; 24: 549–57

    PubMed  CAS  Article  Google Scholar 

  23. 23.

    Tosato G, Jones KD. Interleukin-1 induces interleukin-6 production in peripheral blood monocytes. Blood 1990; 75: 1305–10

    PubMed  CAS  Google Scholar 

  24. 24.

    Wolpe SD, Cerami A. Macrophage inflammatory proteins 1 and 2: members of a novel superfamily of cytokines. FASEB J 1989; 3: 2565–73

    PubMed  CAS  Google Scholar 

  25. 25.

    Kline JN, Monick MM, Hunninghake GW. IL-1 receptor antagonist release is regulated differently in human alveolar macrophages than in monocytes. J Appl Physiol 1992; 73: 1686–92

    PubMed  CAS  Google Scholar 

  26. 26.

    Watson J, Mochizuki D. Interleukin-2: a class of T cells growth factors. Immunol Rev 1980; 51: 257–78

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Rocha B, Lembezat MP, Freitas A, et al. Interleukin 2 receptor expression and interleukin 2 production in exponentially growing T cells: major differences between in vivo and in vitro proliferating T lymphocytes. Eur J Immunol 1989; 19: 1137–45

    PubMed  CAS  Article  Google Scholar 

  28. 28.

    Gillis S, Smith KA. Long-term culture of tumor specific cytotoxic T cells. Nature 1977; 268: 154–6

    PubMed  CAS  Article  Google Scholar 

  29. 29.

    Raulet DH. Effect of IL-2 on thymocytes. Nature 1985; 314: 101–3

    PubMed  CAS  Article  Google Scholar 

  30. 30.

    Tsudo M, Uchiyama T, Uchino H. Expression of the Tac antigen on activated normal human B cells. J Exp Med 1984; 160: 612–7

    PubMed  CAS  Article  Google Scholar 

  31. 31.

    Farrar JJ, Benjamin WR, Hilfiker ML, et al. The biochemistry, biology and the role of IL-2 in the induction of cytotoxic T cell and antibody-forming B cell responses. Immunol Rev 1982; 63: 129–66

    PubMed  CAS  Article  Google Scholar 

  32. 32.

    Smith KA. Interleukin-2. Sci Am 1990; 262: 50–7

    PubMed  CAS  Article  Google Scholar 

  33. 33.

    Holter W, Goldman CK, Casabo L, et al. Expression of functional IL-2 receptors by lipopolysaccharide and inter-feron-γ stimulated human monocytes. J Immunol 1987; 138: 2917–22

    PubMed  CAS  Google Scholar 

  34. 34.

    Lanier LL, Benike CJ, Phillips JH, et al. Recombinant IL-2 enhanced natural killer cell mediated cytotoxicity in human lymphocyte subpopulations expressing the Leu 7 and Leu 11 antigens. J Immunol 1985; 134: 794–801

    PubMed  CAS  Google Scholar 

  35. 35.

    Wagner H, Hardt C, Heeg K, et al. NK/T cell interactions during cytotoxic T lymphocyte (CTL) responses. Immunol Rev 1980; 51: 215–55

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Weiss A, Littman DR. Signal transduction by lymphocyte antigen receptors. Cell 1994; 76: 263–74

    PubMed  CAS  Article  Google Scholar 

  37. 37.

    Mackay C, Imhof BA. Cell adhesion in the immune system. Immunol Today 1993; 14: 99–102

    PubMed  CAS  Article  Google Scholar 

  38. 38.

    Eck MJ, Shoelson SE, Harrison SC. Recognition of a high-affinity phosphotyrosyl peptide by the Src homology-2 domain of p56lck. Nature 1993; 362: 87–9

    PubMed  CAS  Article  Google Scholar 

  39. 39.

    Hume DA, Weidemann MJ. Mitogenic lymphocyte transformation. Amsterdam: Elsevier, 1980

    Google Scholar 

  40. 40.

    Eraser J, Strauss D, Weiss A. Signal transduction events leading to T cell lymphokine gene expression. Immunol Today 1993; 14: 357–62

    Article  Google Scholar 

  41. 41.

    Rao A. Signalling mechanism in T cells. CRC Crit Rev Immunol 1991; 10: 495–521

    CAS  Google Scholar 

  42. 42.

    Lindsten T, June CH, Ledbetter JA, et al. Regulation of lymphokine mesenger RNA stability by surface-mediated T cell activation pathway. Science 1989; 244: 339–43

    CAS  Article  Google Scholar 

  43. 43.

    Schwartz R. Costimulation of T-lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell 1992; 71: 1065–8

    PubMed  CAS  Article  Google Scholar 

  44. 44.

    Smith KA, Interleukin-2: inception, impact and implications. Science 1988; 240: 1169–76

    PubMed  CAS  Article  Google Scholar 

  45. 45.

    Davey B. Immunology: a foundation text. Engleside Cliffs: Prentice Hall, 1990

    Google Scholar 

  46. 46.

    Suzuki R, Handa K, Itoh K, et al. Natural killer (NK) cells as a responder to interleukin 2 (IL 2), I: proliferative response and establishment of cloned cells. J Immunol 1983; 130: 981–7

    PubMed  CAS  Google Scholar 

  47. 47.

    Talmadge JE, Schneider M, Meeker A, et al. In vitro and in vivo stimulation of murine lymphocytes by human recombinant IL-2. J Biol Response Modifiers 1985; 4: 18–34

    CAS  Google Scholar 

  48. 48.

    Lifson J, Raubitschek A, Benike C, et al. Purified IL-2 induces proliferation of fresh human lymphocytes in the emphasis of exogenous stimuli. J Biol Response Modifiers 1986; 5: 61–72

    CAS  Google Scholar 

  49. 49.

    Mookerjee BK, Pauly JL. Mitogenic effect of IL-2 on unstimulated human T cells: an editorial review. J Clin Lab Anal 1990; 4: 138–49

    PubMed  CAS  Article  Google Scholar 

  50. 50.

    Boom WH, Llano D, Abbas AK. Heterogeneity of helper/inducer T lymphocytes, II: effects of interleukin 4 and interleukin 2 producing T cell clones on resting B lymphocytes. J Exp Med 1988; 167: 1350–63

    PubMed  CAS  Article  Google Scholar 

  51. 51.

    Karasuyama H, Rolinck A, Melchers F. Recombinant interleukin 2 or 5 but not 3 or 4 induces maturation of resting mouse B lymphocytes and propagates proliferation of activated B cell blasts. J Exp Med 1988; 167: 1377–90

    PubMed  CAS  Article  Google Scholar 

  52. 52.

    Miyajima A, Kitamura T, Harada N, et al. Cytokine receptors and signal transduction. Annu Rev Immunol 1992; 10: 295–331

    PubMed  CAS  Article  Google Scholar 

  53. 53.

    Beaman KD, Barker WC, Marchalonis JJ. Antigen-specific T cell receptors and factors. Boca Raton: CRC Press, 1987

    Google Scholar 

  54. 54.

    Dower SK, Sims JE, Stanton JH, et al. Molecular heterogeneity of interleukin-1 receptors. Ann NY Acad Sci 1990; 594: 231–9

    PubMed  CAS  Article  Google Scholar 

  55. 55.

    Dower SK, Smith CA, Park LS. Human cytokine receptors. J Clin Immunol 1990; 10: 289–90

    PubMed  CAS  Article  Google Scholar 

  56. 56.

    Michiel D, Garcia GG, Evans GA, et al. Regulation of the IL-2 receptor complex tyrosine kinase activity in vitro. Cytokine 1991; 3: 428–38

    PubMed  CAS  Article  Google Scholar 

  57. 57.

    Cosman D, Lyman SD, Idzerda RL, et al. A new cytokine receptor superfamily. Trends Biochem Sci 1990; 15: 265–9

    PubMed  CAS  Article  Google Scholar 

  58. 58.

    Hatakeyama M, Tsudo M, Minamoto S, et al. Interleukin-2 receptor β chain gene generation of three receptor forms by cloned human α and β chain cDNAs. Science 1989; 244: 551–6

    PubMed  CAS  Article  Google Scholar 

  59. 59.

    D’Andrea AD, Fasman GD, Lodish HF. Erythropoietin receptor and IL-2 receptor β chain: a new receptor family. Cell 1989; 58: 1023–4

    PubMed  Article  Google Scholar 

  60. 60.

    Tsudo M, Kitamura F, Miyaska M. Characterization of IL-2 receptor beta chain using three distinct monoclonal antibodies. Proc Nad Acad Sci USA 1989; 86: 1982–6

    CAS  Article  Google Scholar 

  61. 61.

    Takeshita T, Goto Y, Tada K, et al. Monoclonal antibody defining a molecule possibly identical to the p75 subunit of IL-2 receptor. J Exp Med 1989; 169: 1323–32

    PubMed  CAS  Article  Google Scholar 

  62. 62.

    Takeshita T, Ohtani K, Asao H, et al. An associated molecule, p64, with IL-2 receptor β chain: its possible involvement in the formation of the functional intermediate-affinity IL-2 receptor complex. J Immunol 1992; 148: 2154–8

    PubMed  CAS  Google Scholar 

  63. 63.

    Verheul HAM, Verveld M, Bos ES. Immunotherapy through the IL-2 receptor. Immunol Res 1992; 11: 42–53

    PubMed  CAS  Article  Google Scholar 

  64. 64.

    Leonard WJ, Deeper JM, Crabtree GR, et al. Molecular cloning and expression of cDNAs for human IL-2 receptor. Nature 1984; 311: 626–31

    PubMed  CAS  Article  Google Scholar 

  65. 65.

    Robb RJ. Conversion of low affinity interleukin-2 receptors into a high affinity state following fusion of cell membranes. Proc Natl Acad Sci USA 1986; 83: 3992–6

    PubMed  CAS  Article  Google Scholar 

  66. 66.

    De Vos AM, Ultsch M, Kossiakoff AA. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 1992; 255: 306–12

    PubMed  Article  Google Scholar 

  67. 67.

    Kumar A, Moreau JL, Barau D, et al. Evidence for negative regulation of T cell growth by low affinity interleukin-2 receptors. J Immunol 1987; 138: 1485–93

    PubMed  CAS  Google Scholar 

  68. 68.

    Robb RJ, Greene WC. Internalization of IL-2 is mediated by the beta chain of the high affinity IL-2 receptor. J Exp Med 1987; 165: 1201–6

    PubMed  CAS  Article  Google Scholar 

  69. 69.

    Taniguchi T. Interleukin-2 and the IL-2 receptor. Encyclopedia of human biology. New York: Academic Press, 1991: 527–33

    Google Scholar 

  70. 70.

    Tigges MA, Casey LS, Koshland ME. Mechanism of IL-2 signalling: mediation of different outcomes by a single receptor and transduction pathway. Science 1989; 243: 781–6

    PubMed  CAS  Article  Google Scholar 

  71. 71.

    Nishikawa K, Saito S, Morii T, et al. Differential expression of the IL-2 receptor beta (p75) chain on human peripheral blood natural killer cells. Int Immunol 1990; 2: 481–6

    PubMed  CAS  Article  Google Scholar 

  72. 72.

    Jackson AL. Basic phenotyping of lymphocytes: selection and testing of reagents and interpretation. Clin Immunol Immunopathol 1990; 10: 43–55

    Google Scholar 

  73. 73.

    Le Mauff B, Gascan H, Olive D, et al. Parameters of interaction of a novel monoclonal antibody (33B3.1) with human IL-2 receptors: interrelationship between 33B3.1, anti-Tac, and IL-2 binding sites. Hum Immunol 1987; 19: 53–68

    PubMed  Article  Google Scholar 

  74. 74.

    Zola H, Purling RJ, Koh LY, et al. Expression of p70 chain of the IL-2 receptor on human lymphoid cells: analysis using a monoclonal antibody and high-sensitivity immunofluorescence. Immunol Cell Biol 1990; 68: 217–24

    PubMed  Article  Google Scholar 

  75. 75.

    Siegel JP, Sharon M, Smith PL, et al. The IL-2 receptor β chain (p70): role in mediating signals for LAK, NK and proliferative activities. Science 1987; 238: 75–8

    PubMed  CAS  Article  Google Scholar 

  76. 76.

    Ohashi Y, Takeshita T, Nagata K, et al. Differential expression of the interleukin-2 receptor subunits, p55 and p75, on various populations of primary peripheral blood mononuclear cells. J Immunol 1989; 143: 3548–55

    PubMed  CAS  Google Scholar 

  77. 77.

    Tsudo M, Kitamura F, Miyaska M, et al. Contribution of a p75 interleukin-2 binding peptide to a high affinity interleukin-2 receptor complex. Proc Natl Acad Sci USA 1987; 84: 4215–8

    PubMed  CAS  Article  Google Scholar 

  78. 78.

    Audrain M, Boeffard F, Soulillou J-P, et al. Synergistic action of monoclonal antibodies directed at p55 and p75 chains of the IL-2 receptor. J Immunol 1991; 146: 884–92

    PubMed  CAS  Google Scholar 

  79. 79.

    Zola H, Weedon H, Thompson GR, et al. Expression of IL-2 receptor p55 and p75 chains by human B lymphocytes: effects of activation and differentiation. Immunology 1991; 72: 167–73

    PubMed  CAS  Google Scholar 

  80. 80.

    Roitt I, Brostoff J, Male D. Immunology. 2nd ed. London: Gower Medical, 1989

    Google Scholar 

  81. 81.

    Shinkai S, Shore S, Shek PN, et al. Acute exercise and immune function. Int J Sport Med 1992; 13: 452–61

    CAS  Article  Google Scholar 

  82. 82.

    Herberman RB. Natural killer cells. Annu Rev Med 1986; 37: 347–52

    PubMed  CAS  Article  Google Scholar 

  83. 83.

    Westerman J, Pabst R. Distribution of lymphocyte subsets and natural killer cells in the human body. Clin Invest 1992; 70: 539–44

    Article  Google Scholar 

  84. 84.

    Tomizawa K, Ishizaka A, Kojima K, et al. IL-4 regulates the IL-2 receptors on human peripheral blood lymphocytes. Clin Exp Immunol 1991; 83: 492–6

    PubMed  CAS  Article  Google Scholar 

  85. 85.

    Janeway CJ, Carding S, Jones B, et al. CD4+ T cells: specificity and function. Immunol Rev 1988; 101: 39–80

    PubMed  CAS  Article  Google Scholar 

  86. 86.

    Noelle RJ, Snow CE. T-helper cell dependent B cell activation. FASEB J 1991; 5: 2770–6

    PubMed  CAS  Google Scholar 

  87. 87.

    Metlay JP, Puré E, Steinman RM. Control of the immune response at the level of the antigen presenting cells: a comparison of the function of dendritic cells and B lymphocytes. Adv Immunol 1989; 47: 45–116

    PubMed  CAS  Article  Google Scholar 

  88. 88.

    Myers CD. Role of B cell antigen processing and presentation in the humoral immune response. FASEB J 1992; 5: 2547–53

    Google Scholar 

  89. 89.

    Alberola-Ila J, Places L, de la Calle O, et al. Stimulation through the TCR/CD3 complex upregulates the CD2 surface expression of human T lymphocytes. J Immunol 1991; 146: 1085–92

    PubMed  CAS  Google Scholar 

  90. 90.

    June CH, Ledbetter JA, Linsley PS, et al. Role of the CD8 receptor in T cell activation. Immunol Today 1990; 11: 211–6

    PubMed  CAS  Article  Google Scholar 

  91. 91.

    Hodgkin PD, Yamashita LC, Coffman RL, et al. Separation of methods mediating B cell proliferation and Ig production by using T cell membranes and lymphokines. J Immunol 1990; 145: 2025–34

    PubMed  CAS  Google Scholar 

  92. 92.

    Noelle RJ, Daum J, Bartlett WC, et al. Cognate interactions between helper T cells and B cells, V: reconstitution of helper T cells function using purified plasma membranes from activated Th1 and Th2 helper T cells and lymphokines. J Immunol 1990; 146: 1118–24

    Google Scholar 

  93. 93.

    Hoffman-Goetz L, Keir R, Thorne R, et al. Chronic exercise stress in mice depresses splenic T lymphocyte mitogenesis in vitro. Clin Exp Immunol 1986; 66: 551–7

    PubMed  CAS  Google Scholar 

  94. 94.

    Landmann RMA, Muller FB, Perini CH, et al. Changes of immuno-regulatory cells induced by psychological and physical stress: relationship to catecholamine. Clin Exp Imunol 1984; 58: 127–35

    CAS  Google Scholar 

  95. 95.

    Bloom BR, Salagme P, Diamond B. Revisiting and revising suppressor T cells. Immunol Today 1992; 13: 131–6

    PubMed  CAS  Article  Google Scholar 

  96. 96.

    Fitzgerald L. Exercise and the immune system. Immunol Today 1988; 9: 337–9

    PubMed  CAS  Article  Google Scholar 

  97. 97.

    Via CS, Shearer GM. T-cell interactions in autoimmunity: insights from a murine model of graft versus host disease. Immunol Today 1988; 9: 207–13

    PubMed  CAS  Article  Google Scholar 

  98. 98.

    Yagita H, Nakata M, Azuma A, et al. Activation of peripheral blood T cells via the p75 interleukin-2 receptor. J Exp Med 1989; 170: 1445–50

    PubMed  CAS  Article  Google Scholar 

  99. 99.

    Berke G. The cytolytic T lymphocyte and its mode of action. Immunol Lett 1989; 20: 169–78

    PubMed  CAS  Article  Google Scholar 

  100. 100.

    Dorf ME, Kuchroo VK, Collins M. Suppressor T cells: some answers but more questions. Immunol Today 1992; 13: 241–3

    PubMed  CAS  Article  Google Scholar 

  101. 101.

    Jondal M. The human NK cell — a short overview and an hypothesis on NK recognition. Clin Exp Immunol 1987; 70: 255–62

    PubMed  CAS  Google Scholar 

  102. 102.

    Lotzova E, Ades W. Natural killer cells: definition, heterogeneity, lytic mechanisms, functions and clinical application. Nat Immun Cell Growth Reg 1989; 8: 1–9

    CAS  Google Scholar 

  103. 103.

    Oldham RK. Natural killer cells: history, relevance and clinical applications. Nat Immun Cell Growth Reg 1990; 9: 297–312

    CAS  Google Scholar 

  104. 104.

    Robertson MJ, Ritz J. Biology and clinical relevance of human natural killer cells. J Am Soc Hematol 1990; 76: 2421–38

    CAS  Google Scholar 

  105. 105.

    Hannel I, Erkeller-Yuksel F, Lydyard P, et al. Developmental and maturational changes in human blood lymphocyte sub-populations. Immunol Today 1992; 13: 215–8

    Article  Google Scholar 

  106. 106.

    Krensky AM, Lanier LL, Engleman EG. Lymphocyte subsets and surface molecules in man. Clin Immunol Rev 1985; 4: 95–138

    PubMed  CAS  Google Scholar 

  107. 107.

    Herberman RB, Holden H. Natural killer cells as antitumour effector cells. J Natl Cancer Inst 1979; 62: 441–5

    PubMed  CAS  Google Scholar 

  108. 108.

    Thiele DL, Lipsky PE. The role of cell surface recognition structures in the initiation of MHC-restricted ‘promiscuous’ killing by T cells. Immunol Today 1989; 10: 375–81

    PubMed  CAS  Article  Google Scholar 

  109. 109.

    Moretta L, Ciccone E, Moretta A, et al. Allorecognition by NK cells: nonself or no self? Immunol Today 1992; 13: 300–6

    PubMed  CAS  Article  Google Scholar 

  110. 110.

    Schimpff R-M, Repellin A-M. Production of interleukin-1α and interleukin-2α by mononuclear cells in healthy adults in relation to different experimental conditions and to the presence of growth hormone. Hormone Res 1990; 33: 171–6

    PubMed  CAS  Article  Google Scholar 

  111. 111.

    Henney DS, Kuribayashi K, Kern DE, et al. Interleukin-2 augments natural killer cell activity. Nature 1981; 291: 335–8

    PubMed  CAS  Article  Google Scholar 

  112. 112.

    Bonavida B, Wright SC. Multistage model of natural killer cell mediated cytotoxicity involving NKCF as soluble cytotoxic mediators. Adv Cancer Res 1987; 49: 169–87

    PubMed  CAS  Article  Google Scholar 

  113. 113.

    Kerhl JH, Dukovich M, Whalen G, et al. Novel IL-2 receptor appears to mediate IL-2 induced activation of NK cells. J Clin Invest 1988; 81: 200–5

    Article  Google Scholar 

  114. 114.

    Ortaldo JR, Fry J, Takeshita T, et al. egulation of CD3− lymphocyte function with an antibody against the IL-2Rβ chain receptor: modulation of NK and LAK activity and production of IFN-γ. Eur Cytokine Netw 1990; 1: 27–34

    PubMed  CAS  Google Scholar 

  115. 115.

    Nagler A, Lanier LL, Phillips JH. Constitutive expression of high-affinity IL-2 receptors on human CD16-natural killer cells in vivo. J Exp Med 1990; 171: 1527–33

    PubMed  CAS  Article  Google Scholar 

  116. 116.

    Graham HMH, Douglas RM, Ryan P. Stress and acute respiratory infection. Am J Epidemiol 1986; 124: 389–401

    PubMed  CAS  Google Scholar 

  117. 117.

    Gabriel H, Schwarz L, Born P, et al. Differential mobilization of leucocyte and lymphocyte subpopulations into the circulation during endurance exercise. Eur J Appl Physiol 1992b; 65: 529–34

    CAS  Article  Google Scholar 

  118. 118.

    Allsop P, Peters AM, Arnot RN, et al. Intrasplenic blood cell kinetics in man before and after brief maximal exercise. Clin Sci 1992; 83: 47–54

    PubMed  CAS  Google Scholar 

  119. 119.

    Maisel AS, Harris T, Rearden CA, et al. β-Adrenergic receptors in lymphocyte subsets after exercise. Circulation 1990; 82: 2003–10

    PubMed  CAS  Article  Google Scholar 

  120. 120.

    Van Tits LJ, Michel MC, Grosse-Wilde H, et al. Catecholamines increase lymphocyte β2-adrenergic, spleen-dependent processes. Am J Physiol 1990; 258: E191–E202

    PubMed  Google Scholar 

  121. 121.

    Blalock JE. A molecular basis for bidirectional communication between the immune and neuroendocrine systems. Physiol Rev 1989; 69: 1–32

    PubMed  CAS  Google Scholar 

  122. 122.

    Neveu PJ, LeMoal M. Physiological basis for neuroimmunomodulation. Fund Clin Pharmacol 1990; 4: 281–305

    CAS  Article  Google Scholar 

  123. 123.

    O’Leary A. Stress, emotion and human immune function. Psychol Bull 1990; 108: 363–82

    PubMed  Article  Google Scholar 

  124. 124.

    Steptoe A, Moses J, Mathews A, et al. Aerobic fitness, physical activity and psychophysiological reactions to mental tasks. Psychophysiology 1990; 27: 264–74

    PubMed  CAS  Article  Google Scholar 

  125. 125.

    Khansari DN, Murgo AJ, Faith RE. Effects of stress on the immune system. Immunol Today 1990; 11: 170–5

    PubMed  CAS  Article  Google Scholar 

  126. 126.

    Pabst R, Binns RM. Heterogeneity of lymphocyte homing physiology: several mechanisms operate in the control of migration to lymphoid and non-lymphoid organs in vivo. Immunol Rev 1989; 108: 83–109

    PubMed  CAS  Article  Google Scholar 

  127. 127.

    Hedfors E, Holm G, Ohnell B. Variations of blood lymphocytes during work studied by cell surface markers, DNA synthesis and cytotoxicity. Clin Exp Immunol 1976; 24: 328–35

    PubMed  CAS  Google Scholar 

  128. 128.

    Keast D, Cameron K, Morton AR. Exercise and immune responses. Sports Med 1988; 5: 248–67

    PubMed  CAS  Article  Google Scholar 

  129. 129.

    Muir AL, Cruz M, Martin BA, et al. Leukocyte kinetics in the human lung: role of exercise and catecholamine. J Appl Physiol 1984; 57: 711–9

    PubMed  CAS  Google Scholar 

  130. 130.

    Tønnesen E, Christensen MJ, Brinksløv MM. Natural killer cell activity during Cortisol and adrenaline infusion in healthy volunteers. Eur J Clin Invest 1987; 17: 497–503

    PubMed  Article  Google Scholar 

  131. 131.

    Fauci AS. Mechanisms of corticosteroids on lymphocyte subpopulations, II: differential effect of in vivo hydrocortisone, prednisone and dexamethasone on in vitro expression of lymphocyte function. Clin Exp Immunol 1976; 224: 54–64

    Google Scholar 

  132. 132.

    Gillis S, Crabtree GR, Smith KA. Gluco-corticoid-induced inhibition of T cell growth factor production, I: the effect of mitogen-induced lymphocyte proliferation. J Immunol 1979; 123: 1624–31

    PubMed  CAS  Google Scholar 

  133. 133.

    Saxon A, Stevens RH, Ramer SJ, et al. Glucocorticoids administered in vivo inhibit human suppressor T lymphocyte function and diminish B lymphocyte responsiveness in in vivo immunoglobulin synthesis. J Clin Invest 1978; 61: 922–30

    PubMed  CAS  Article  Google Scholar 

  134. 134.

    Dinarello CA, Mier JW. Lymphokines. New Engl J Med 1987; 317: 940–5

    PubMed  CAS  Article  Google Scholar 

  135. 135.

    Payan DG, McGillis JP, Renold FK, et al. Neuropeptide modulation of leucocyte function. Ann NY Acad Sci 1987; 496: 182–91

    PubMed  CAS  Article  Google Scholar 

  136. 136.

    Rey DA, Besdeovsky H, Sorkin E, et al. Interleukin-1 and glucocorticoid hormones integrate an immunoregulatory feedback circuit. Ann NY Acad Sci 1987; 496: 85–90

    PubMed  Article  Google Scholar 

  137. 137.

    Weicker H, Werle E. Interaction between hormones and the immune system. Int J Sports Med 1991; 12: S30–S37

    PubMed  Article  Google Scholar 

  138. 138.

    Werle E, Jost J, Koglin J, et al. Modulation der zellularen Immunabwehr auf Rezeptorrebene während akuter körperlicher Belastung. Dtsch Zeitschr Sportmed 1990; 40(11): 14–22

    Google Scholar 

  139. 139.

    Barone J, Herbert JR, Reddy MM. Dietary fat and natural killer cell activity. Am J Clin Nutr 1989; 50: 861–7

    PubMed  CAS  Google Scholar 

  140. 140.

    Tavadia HB, Fleming KA, Hume PD, et al. Circadian rhythmicity of human plasma Cortisol and PHA-induced lymphocyte transformation. Clin Exp Immunol 1975; 22: 190–3

    PubMed  CAS  Google Scholar 

  141. 141.

    Verde T. Short-term exercise and immune function. In: Watson RR, Eisinger M, editors. Exercise and disease. Boca Raton: CRC Press, 1992: 72–88

    Google Scholar 

  142. 142.

    Isakov N, Altman A. Lymphocyte activation and immune regulation. Immunol Today 1986; 7: 155–7

    Article  Google Scholar 

  143. 143.

    Maurer HR. Potential pitfalls of 3H thymidine techniques to measure cell proliferation. Cell Tissue Kin 1981; 14: 111–20

    CAS  Google Scholar 

  144. 144.

    Pollack A, Bagwell CB, Irwin GL, et al. The kinetics of the formation of a G2 block from tritiated thymidine in phytohe-magglutinin-stimulated human lymphocytes. Cytometry 1980; 1: 57–66

    PubMed  CAS  Article  Google Scholar 

  145. 145.

    Sasvari-Szekely M, Szabo G, Straub M. Discrepancies between flow cytometric analysis and 3H-thymidine incorporation in stimulated lymphocytes. Biochim Biophys Acta 1983; 762: 452–7

    PubMed  CAS  Article  Google Scholar 

  146. 146.

    Suez D, Hayward AR. Phenotyping of proliferating cells in cultures of human lymphocytes. J Immunol Methods 1985; 78: 49–57

    PubMed  CAS  Article  Google Scholar 

  147. 147.

    Tvede N, Pedersen NK, Hansen FR, et al. Effect of physical exercise on blood mononuclear cell subpopulations and in vitro proliferative response. Scand J Immunol 1989; 29: 383–9

    PubMed  CAS  Article  Google Scholar 

  148. 148.

    Weiss A. Lymphocyte activation. In: Paul WE, editor. Fundamental immunology. 2nd ed. New York: Raven Press, 1989: 359–84

    Google Scholar 

  149. 149.

    Weksler ME, Kunts MM. Use of mitogens in the evaluation of T-lymphocyte function. In: Litwin SD, Christian CL, Siskind GW, editors. Clinical evaluation of immune function in man. New York: Grune & Stratton, 1976: 151–75

    Google Scholar 

  150. 150.

    Cray B, Borysenko M, Sutherland DC, et al. Decrease in mitogen responsiveness of mononuclear cells from peripheral blood after epinephrine administration in humans. J Immunol 1983; 130: 694–7

    Google Scholar 

  151. 151.

    Kotani T, Aratke Y, Ishiguro R, et al. Influence of physical exercise on large granular lymphocytes: leu-7 bearing mononuclear cells and natural killer cell activity in peripheral blood NK cell and NK activity after exercise. Acta Haematol Jap 1987; 50: 1210–6

    CAS  Google Scholar 

  152. 152.

    Keller RH, Calvanico NJ. Suppressor macromolecules. Crit Rev Immunol 1982; 5: 149–99

    Google Scholar 

  153. 153.

    Sabiston BH, Myles WS, Radomski MW. Stress-induced changes in the immune system during prolonged physical work. Aerospace Med 1980; 51: 196–7

    Google Scholar 

  154. 154.

    Hudson L, Hay FC. Practical immunology. 3rd ed. London: Blackwell Scientific Publications, 1989

    Google Scholar 

  155. 155.

    Verde T, Thomas S, Shek PN, et al. The effects of heavy training on two in vitro assessments of cell-mediated immunity in conditioned athletes. Clin J Sports Med 1993; 3: 211–6

    Article  Google Scholar 

  156. 156.

    Ortaldo JR. Cytotoxicity by natural killer cells: analysis of large granular lymphocytes. Meth Enzymol 1986; 132: 445–57

    PubMed  CAS  Article  Google Scholar 

  157. 157.

    Müns G, Liesen H, Riedel H, et al. Influence of long distance running on IgA in nasal secretion and saliva. Dtsch Zeitschr Sportmed 1989; 40(11): 63–5

    Google Scholar 

  158. 158.

    Petrova KSN, Kurshakova TS, Susfalnotzskiti RS, et al. Neutrophil phagocytic activity and the humoral factors of general and local immunity under intensive physical loading. Zh Mikrobiol Epidemiol Immunobiol 1983; 12: 53–7

    PubMed  Google Scholar 

  159. 159.

    Tomasi TB, Trudeau FB, Czerwinksi D, et al. Immune parameters in athletes before and after strenuous exercise. J Clin Immunol 1982; 2: 173–8

    PubMed  CAS  Article  Google Scholar 

  160. 160.

    Weiss M, Fuhrmansky J, Lulay R, et al. Häufigkeit und Ursache von Immunoglobulinmangel bei Sportlern. Dtsch Zeitsch Sportmed 1985; 35(5): 146–53

    Google Scholar 

  161. 161.

    Green RG, Green ML. Relaxation increases salivary immunoglobulin AI. Psychol Rep 1987; 61: 623–9

    PubMed  CAS  Article  Google Scholar 

  162. 162.

    Mackinnon LT, The effect of exercise on secretory and natural immunity. Adv Exp Med 1988; 216A: 869–76

    Google Scholar 

  163. 163.

    Sprenger H, Jacobs C, Nain M, et al. Enhanced release of cytokines, interleukin-2 receptors and neopterin after longdistance running. Clin Immunol Immunopathol 1992; 63: 1188–95

    Article  Google Scholar 

  164. 164.

    Aarden L, Helle M. Biological assay of interleukins. In: Lefkowitz I, Pernis IB, editors. Immunological methods, IV. San Diego: Academic Press, 1990: 165–74

    Google Scholar 

  165. 165.

    Gillis S, Ferm MM, Ou W, et al. T cell growth factor: parameters of production and quantitative microassay for activity. J Immunol 1978; 120: 2027–32

    PubMed  CAS  Google Scholar 

  166. 166.

    Ho S, Abraham RT, Gillis S, et al. Differential bioassay of IL-2 and IL-4. J Immunol Methods 1987; 98: 99–104

    PubMed  CAS  Article  Google Scholar 

  167. 167.

    Zhou P, Quackenbush LJ, Zaleski MB. In vitro proliferation of murine spleen cells. Int Arch Allergy Appl Immunol 1989; 90: 162–8

    PubMed  CAS  Article  Google Scholar 

  168. 168.

    Spinas GA, Bloesch D, Kaufmann MT, et al. Induction of plasma inhibitors of interleukin-1 and TNF-α activity by endotoxin administration to normal humans. Am J Physiol 1990; 259: R993–R997

    PubMed  CAS  Google Scholar 

  169. 169.

    Abraham RT, Ho SN, McKean DJ. Bioassay of interleukins, J Tissue Cult Methodol 1986; 10: 93–9

    CAS  Article  Google Scholar 

  170. 170.

    Gearing AJH, Johnstone AP, Thorpe R, Production and assay of interleukins. J Immunol Methods 1985; 83: 1–27

    PubMed  CAS  Article  Google Scholar 

  171. 171.

    Devos R, Plaetinck G, Cheroutre H, et al. Molecular cloning of the human IL-2 cDNA and its expression in E. coli. Nucleic Acids Res 1983; 11: 4307–23

    PubMed  CAS  Article  Google Scholar 

  172. 172.

    Chard T. An introduction to radioimmunoassay and related techniques. In: Fallon A, Booth RFG, Bell LD, et al., editors. Applications of HPLC in biochemistry: laboratory techniques in biochemistry and molecular biology. 3rd ed. Amsterdam: Elsevier, 1986: 256–74

    Google Scholar 

  173. 173.

    Liesen H, Uhlenbruck G. Sports immunology. Sports Sci Rev 1992; 1: 94–116

    Google Scholar 

  174. 174.

    Hansen J-B, Wilsgard L, Osterud B. Biphasic changes in leucocytes induced by strenuous exercise. Eur J Appl Physiol 1991; 62: 157–61

    CAS  Article  Google Scholar 

  175. 175.

    Kendall A, Hoffman-Goetz L, Houston M, et al. Exercise and blood lymphocyte subset responses: intensity, duration and subject fitness effects. J Appl Physiol 1990; 69: 251–60

    PubMed  CAS  Google Scholar 

  176. 176.

    Ricken KH, Rieder T, Hauck G, et al. Changes in lymphocyte subpopulations after prolonged exercise. Int J Sports Med 1990; 11: 132–5

    PubMed  CAS  Article  Google Scholar 

  177. 177.

    Espersen GT, Elbaek A, Ernst E, et al. Effect of physical exercise on cytokines and lymphocyte populations in human peripheral blood. Acta Pathol Microbiol Immunol Scand 1990; 98: 395–400

    CAS  Google Scholar 

  178. 178.

    Ferry A, Picard F, Duvallet A, et al. Changes in blood leucocyte populations induced by acute maximal and chronic submaximal exercise. Eur J Appl Physiol 1990; 59: 435–42

    CAS  Article  Google Scholar 

  179. 179.

    Lewicki R, Tchorzewski H, Majewska E, et al. Effect of maximal physical exercise on T-lymphocyte subpopulations and on IL-1 and IL-2 production in vitro. Int J Sports Med 1988; 9: 114–7

    PubMed  CAS  Article  Google Scholar 

  180. 180.

    Gimenez M, Mohan-Kumar T, Hubert JC, et al. Leukocyte, lymphoctye and platelet response to dynamic exercise: duration or intensity effect? Eur J Appl Physiol 1986; 55: 465–70

    CAS  Article  Google Scholar 

  181. 181.

    Shek PN, Sabiston BH, Vidal D, et al. Immunological changes induced by exhaustive endurance exercise in conditioned athletes [abstract]. Proc Int Congr Immunol 1992; 8: 706

    Google Scholar 

  182. 182.

    Gmünder FK, Lorenzi G, Bechler B, et al. Effect of long-term physical exercise on lymphocyte reactivity: similarity to space flight reactions. Aviat Space Environ Med 1988; 59: 146–51

    PubMed  Google Scholar 

  183. 183.

    Nieman DC, Tan SA, Lee JW, et al. Complement and immunoglobulin levels in athletes and sedentary controls. Int J Sports Med 1989; 10: 124–8

    PubMed  CAS  Article  Google Scholar 

  184. 184.

    Vishnu-Moorthy A, Zimmerman SW, Human leukocyte response in an endurance race. Eur J Appl Physiol 1978; 38: 271–6

    Article  Google Scholar 

  185. 185.

    Berk LS, Nieman D, Tan SA, et al. Lymphocyte subset changes during acute maximal exercise [abstract]. Med Sci Sports Exerc 1986; 18: 706

    Article  Google Scholar 

  186. 186.

    Verde TJ, Thomas S, Shek PN, et al. Responses of lymphocyte subsets, mitogen-stimulated cell proliferation rates and immunoglobulin synthesis to vigorous exercise in the well-trained athlete. Clin J Sports Med 1992; 2: 87–92

    Article  Google Scholar 

  187. 187.

    Hedfors E, Holm G, Ivansen M, et al. Physiological variation of blood lymphocyte reactivity: T cell subsets, immunoglobulin production and mixed lymphocyte reactivity. Clin Immunol Immunopathol 1983; 27: 9–14

    PubMed  CAS  Article  Google Scholar 

  188. 188.

    Nieman DC, Nehlsen-Cannarella SL, Donohue KM, et al. The effects of acute moderate exercise on leukocyte and lymphocyte subpopulations. Med Sci Sports Exerc 1991; 23: 578–85

    PubMed  CAS  Google Scholar 

  189. 189.

    Oshida Y, Yamanouchi K, Hayamizu S, et al. Effect of acute physical exercise on lymphocyte subpopulations in trained and untrained subjects, Int J Sports Med 1988; 9: 137–40

    PubMed  CAS  Article  Google Scholar 

  190. 190.

    Deuster PA, Curiale AM, Cowan ML, et al. Exercise-induced changes in populations of peripheral blood mononuclear cells, Med Sci Sports Exerc 1988; 20: 276–80

    PubMed  CAS  Article  Google Scholar 

  191. 191.

    Robertson AJ, Ramesar KC, Potts RC, et al. The effect of strenuous physical exercise on circulating blood lymphocytes and circulating serum Cortisol levels, J Clin Lab Immunol 1981; 5: 53–7

    PubMed  CAS  Google Scholar 

  192. 192.

    Soppi E, Varjo P, Eskola J, et al. Effect of strenuous physical stress on circulating lymphocyte number and function before and after training, J Clin Lab Immunol 1982; 8: 43–6

    PubMed  CAS  Google Scholar 

  193. 193.

    Eskola J, Ruuskanen O, Soppi E, et al. Effect of sport stress on lymphocyte transformation and antibody formation, Clin Exp Immunol 1978; 32: 339–45

    PubMed  CAS  Google Scholar 

  194. 194.

    Fry RW, Morton AR, Keast D. Acute intensive interval training and T-lymphocyte function. Med Sci Sports Exerc 1992; 24: 339–45

    PubMed  CAS  Google Scholar 

  195. 195.

    Nieman DC, Nehlsen-Cannarella SL. Effects of endurance exercise on immune response. In: Shephard RJ, Astrand PO, editors. Endurance in sport. Oxford: Blackwell Scientific, 1992: 487–504

    Google Scholar 

  196. 196.

    MacNeil B, Hoffman-Goetz L, Kendall A, et al. Lymphocyte proliferation responses after exercise in men; fitness, intensity and duration effects. J Appl Physiol 1991; 70: 179–85

    PubMed  CAS  Google Scholar 

  197. 197.

    Pedersen BK, Tvede N, Klarlund K, et al. Indomethacin in vitro and in vivo abolishes post-exercise suppression of natural killer cell activity in peripheral blood. Int J Sports Med 1990; 11: 127–31

    PubMed  CAS  Article  Google Scholar 

  198. 198.

    Rhind S, Shek PN, Shephard RJ. Differential expression of interleukin-2 receptor alpha (p55) and beta (p70–75) chains in relation to natural killer cell subsets and aerobic fitness. Int J Sports Med 1994. In press

    Google Scholar 

  199. 199.

    Gabriel H, Schwarz L, Steffens G, et al. Immunoregulatory hormones, circulating leucocyte and lymphocyte subpopulations before and after endurance exercise of different intensities. Int J Sports Med 1992; 13: 359–66

    PubMed  CAS  Article  Google Scholar 

  200. 200.

    Hanson PG, Flaherty DK. Immunological responses to training in conditioned runners. Clin Sci 1981; 60: 225–8

    PubMed  CAS  Google Scholar 

  201. 201.

    Targan S, Britvan L, Dorey F. Activation of human NKCC by moderate exercise: increased frequency of NK cells with enhanced capability of effector-target interactions. Clin Exp Immunol 1981; 45: 352–60

    PubMed  CAS  Google Scholar 

  202. 202.

    Hirsen DJ, Malham LM. Effect of exercise on cytotoxic lymphocytes [abstract]. Fed Proc 1983; 42: 438

    Google Scholar 

  203. 203.

    Edwards AJ, Bacon TH, Elms CA, et al. Changes in the populations of lymphoid cells in human peripheral blood following physical exercise. Clin Exp Immunol 1984; 58: 420–7

    PubMed  CAS  Google Scholar 

  204. 204.

    Brahmi A, Thomas JE, Park M, et al. The effect of acute exercise on natural killer-cell activity of trained and sedentary human subjects. J Clin Immunol 1985; 5: 321–8

    PubMed  CAS  Article  Google Scholar 

  205. 205.

    Watson RR, Moriguchi S, Jackson JC, et al. Modification of cellular immune functions in humans by endurance training during β-adrenergic blockade with atenolol or propranolol. Med Sci Sports Exerc 1986; 18: 95–100

    PubMed  CAS  Google Scholar 

  206. 206.

    Fiatarone MA, Morley JE, Bloom ET, et al. Endogenous opioids and the exercise-induced augmentation of natural killer cell activity. J Lab Clin Med 1988; 112: 544–52

    PubMed  CAS  Google Scholar 

  207. 207.

    Crist DM, Mackinnon LT, Thompson RF, et al. Physical exercise increases natural cellular mediated tumor cytotoxicity in elderly women. Gerontology 1989; 35: 66–71

    PubMed  CAS  Article  Google Scholar 

  208. 208.

    Fiatarone MA, Morley JE, Bloom ET, et al. The effect of exercise on natural killer cell activity in young and old subjects. J Gerontol 1989; 44: M37–M45

    PubMed  CAS  Google Scholar 

  209. 209.

    Berk LS, Nieman DC, Youngberg WS, et al. The effect of long endurance running on natural killer cells in marathoners. Med Sci Sports Exerc 1990; 22: 207–12

    PubMed  CAS  Google Scholar 

  210. 210.

    Hoffman-Goetz L, Simpson RJ, Houston ME. Lymphocyte subset responses to repeated submaximal exercise in men. J Appl Physiol 1990; 68: 1069–74

    PubMed  CAS  Google Scholar 

  211. 211.

    Field CJ, Gougeon R, Marliss EB. Circulating mononuclear cells and function during intense exercise. J Appl Physiol 1991; 73: 1089–97

    Google Scholar 

  212. 212.

    Kappel M, Tvede N, Galbo H, et al. Evidence that the effect of physical exercise on NK cell activity is mediated by epinephrine. J Appl Physiol 1991; 70: 2530–4

    PubMed  CAS  Google Scholar 

  213. 213.

    Shinkai S, Shore S, Shek PN, et al. Acute exercise and immune function change, 1: relationship between lymphocyte activity and subset. Int J Sports Med 1993; 13: 452–61

    Article  Google Scholar 

  214. 214.

    Masuhara M, Kami K, Umebayasi K, et al. Influences of exercise on leukocyte count and size. J Sports Med Phys Fitness 1987; 27: 285–90

    PubMed  CAS  Google Scholar 

  215. 215.

    Pedersen BK. Influence of physical activity on the cellular immune system: mechanisms of action. Int J Sports Med 1991; 12: S23–S29

    PubMed  Article  Google Scholar 

  216. 216.

    Pedersen BK, Tvede N, Hansen FR, et al. Modulation of natural killer cell activity in peripheral blood by physical exercise. Scand J Immunol 1988; 27: 673–8

    PubMed  CAS  Article  Google Scholar 

  217. 217.

    Plaut M. Lymphocyte hormone receptors. Annu Rev Immunol 1987; 5: 621–9

    PubMed  CAS  Article  Google Scholar 

  218. 218.

    Cannon JG, Kluger MJ. Endogenous pyrogen activity in human plasma after exercise. Science 1983; 220: 617–9

    PubMed  CAS  Article  Google Scholar 

  219. 219.

    Cannon JG, Evans WJ, Hughes VA, et al. Physiological mechanisms contributing to increased interleukin-1 secretion. J Appl Physiol 1986; 61: 1869–74

    PubMed  CAS  Google Scholar 

  220. 220.

    Evans WJ, Meredith CN, Cannon JG, et al. Metabolic changes following eccentric exercise in trained and untrained men. J Appl Physiol 1986; 61: 1864–8

    PubMed  CAS  Google Scholar 

  221. 221.

    Cannon JG, Fielding RA, Fiatarone MA, et al. Increased interleukin-1β in human skeletal muscle after exercise. Am J Physiol 1989; 257: R451–R455

    PubMed  CAS  Google Scholar 

  222. 222.

    Cannon JG, Meydani SN, Fielding RA, et al. Acute phase response to exercise, II: associations between vitamin E, cytokines, and muscle proteolysis. Am J Physiol 1991; 260: R1235–40

    PubMed  CAS  Google Scholar 

  223. 223.

    Haahr PM, Pedersen BK, Fomsgaard A, et al. Effect of physical exercise on in vitro production of interleukin-1, interleukin-6, tumor necrosis factor-alpha, interleukin-2 and interferon-gamma. Int J Sports Med 1991; 12: 223–7

    PubMed  CAS  Article  Google Scholar 

  224. 224.

    Simpson JAR, Hoffman-Goetz L. Exercise, serum zinc, and interleukin-1 concentrations in man: some methodological considerations. Nutr Res 1991; 11: 309–23

    CAS  Article  Google Scholar 

  225. 225.

    Weight LM, Alexander D, Jacobs P. Strenuous exercise: analogous to the acute-phase response. Clin Sci 1991; 81: 677–83

    PubMed  CAS  Google Scholar 

  226. 226.

    Smith J, Telford RD, Baker MS, et al. Cytokine immunoreactivity in plasma does not change after moderate endurance exercise. J Appl Physiol 1992; 73: 1396–401

    PubMed  CAS  Google Scholar 

  227. 227.

    Schectman O, Elizondo R, Taylor M. Exercise augments interleukin-2 induction [abstract]. Med Sci Sports Exerc 1988; 20: S18

    Google Scholar 

  228. 228.

    Dufaux B, Order U. Plasma elastase-alpha-1-antitrypsin, neopterin, tumor necrosis factor, and soluble interleukin-2 receptor after prolonged exercise. Int J Sports Med 1989; 10: 434–8

    PubMed  CAS  Article  Google Scholar 

  229. 229.

    Papa S, Vitale M, Mazotti G, et al. Impaired lymphocyte stimulation induced by long-term training. Immunol Lett 1989; 22: 29–33

    PubMed  CAS  Article  Google Scholar 

  230. 230.

    Gmünder FK, Joller PW, Joller-Jemelka HI, et al. Effect of herbal yeast food and long distance running on immunological parameters. Br J Sports Med 1990; 24: 103–12

    PubMed  Article  Google Scholar 

  231. 231.

    Ciusani E, Grazzi L, Salmaggi A, et al. Role of physical training on the immune function: preliminary data. Int J Neurosci 1990; 51: 249–52

    PubMed  CAS  Article  Google Scholar 

  232. 232.

    Gray AB, Smart YC, Telford RD, et al. Anaerobic exercise causes transient changes in leukocyte subsets and IL-2R expression. Med Sci Sports Exerc 1992; 24: 1332–8

    PubMed  CAS  Google Scholar 

  233. 233.

    Rhind S, Shek PN, Shephard RJ. Effects of moderate endurance exercise and training on IL-2R α and β chain expression by lymphocyte subsets. In preparation

  234. 234.

    Shore S, Shinkai S, Shephard RJ, et al. The impact of a moderate aerobic training program on immune function in normal sedentary males. In preparation

  235. 235.

    Pahlavani MA, Cheung TH, Chesky JA, et al. Influence of exercise on the immune function of rats of various ages. J Appl Physiol 1988; 64: 1997–2001

    PubMed  CAS  Google Scholar 

  236. 236.

    Ferry A, Rieu P, Laziri F, et al. Effect of moderate exercise on rat T cells. Eur J Appl Physiol 1992; 65: 464–8

    CAS  Article  Google Scholar 

  237. 237.

    Nasrullah I, Mazzeo RS. Age-related immunosenescence in Fischer 344 rats: influence of exercise training. J Appl Physiol 1992; 73: 1932–8

    PubMed  CAS  Google Scholar 

  238. 238.

    Lin YS, Jan MS, Chen HI. The effect of chronic and acute exercise on immunity in rats. Int J Sports Med 1993; 14: 86–92

    PubMed  CAS  Article  Google Scholar 

  239. 239.

    Palacios R, Moller G. T cell growth factor (TCGF) abrogates concanavalin A-induced suppressor cell function. J Exp Med 1981; 153: 360–72

    Article  Google Scholar 

  240. 240.

    Cupps TR, Fauci AS. Corticosteroid mediated immunoregulation in man. Immunol Rev 1982; 65: 133–55

    PubMed  CAS  Article  Google Scholar 

  241. 241.

    Goodwin JS, Atluru D, Sierakowski S, et al. Mechanism of action of glucocorticosteroids. J Clin Invest 1986; 77: 1244–50

    PubMed  CAS  Article  Google Scholar 

  242. 242.

    Hirano T, Akira S, Taga T, et al. Biological and clinical aspects of interleukin-6. Immunol Today 1990; 11: 443–9

    PubMed  CAS  Article  Google Scholar 

  243. 243.

    Kishimoto T. The biology of interleukin-6. Blood 1989; 74: 1–10

    PubMed  CAS  Google Scholar 

  244. 244.

    Kunkel SL, Chensue SW, Phan SM. Prostaglandins as endogenous mediators of interleukin-1 production. J Immunol 1986; 136: 186–93

    PubMed  CAS  Google Scholar 

  245. 245.

    Gordon D, Henderson DC, Westwick J. Effects of prostaglandin E2 and I2 on human lymphocyte transformation 144 in the presence and the absence of inhibitors of prostaglandin synthesis. Br J Pharmacol 1979; 67: 17–22

    PubMed  CAS  Google Scholar 

  246. 246.

    Gemsa D, Leser FG, Deimann W, et al. Suppression of T lymphocyte proliferation during lymphoma growth in mice: role of PGE2-producing macrophages. Immunobiology 1982; 161: 385–91

    PubMed  CAS  Article  Google Scholar 

  247. 247.

    Goodwin JS, Messner R, Peake GL. Prostaglandin suppression of mitogen-stimulated lymphocytes in vitro: changes with mitogen dose and preincubation. J Clin Invest 1978; 62: 753–60

    PubMed  CAS  Article  Google Scholar 

  248. 248.

    Cameron KR, Morton AR, Keast D. T-cell subpopulations and polyclonal lymphocyte function in continuous and intermittent exercise. Aust J Sci Med Sport 1989; 21: 15–9

    Google Scholar 

  249. 249.

    Liesen H, Reidel H, Order U, et al. Reference values of leucocytes and lymphocyte subsets during a controlled moderate training period. Dtsch Zeitschr Sportmed 1989; 40(11): 4–14

    Google Scholar 

  250. 250.

    Green RL, Kaplan SS, Rabin BS, et al. Immune function in marathon runners. Ann Allergy 1981; 47: 73–5

    PubMed  CAS  Google Scholar 

  251. 251.

    Koivisto VA, Soman VR, Conrad P, et al. Insulin binding to monocytes in trained athletes: changes in resting state after exercise. J Clin Invest 1979; 64: 1011–5

    PubMed  CAS  Article  Google Scholar 

  252. 252.

    Kono I, Matsuda HKM, Haga S, et al. Weight reduction in athletes may adversely affect the phagocytic function of monocytes. Physician Sports Med 1988; 16(7): 56–65

    Google Scholar 

  253. 253.

    Pedersen BK, Tvede N, Christensen LD, et al. Natural killer cell activity in peripheral blood of highly trained and untrained persons. Int J Sports Med 1989; 10: 129–31

    PubMed  CAS  Article  Google Scholar 

  254. 254.

    Fry RW, Morton AR, Keast D. Overtraining in athletes: an update. Sports Medicine 1991; 12: 32–65

    PubMed  CAS  Article  Google Scholar 

  255. 255.

    Kuipers H, Keizer HA. Overtraining in elite athletes: review and directions for the future. Sports Med 1988; 6: 79–92

    PubMed  CAS  Article  Google Scholar 

  256. 256.

    Verde TJ, Thomas S, Moore RW, et al. Immune responses and increased training of the elite athlete. J Appl Physiol 1992; 73: 1494–9

    PubMed  CAS  Google Scholar 

  257. 257.

    Verde TJ, Thomas S, Shephard RJ. Potential markers of heavy training in highly trained distance runners. Br J Sports Med 1992; 26: 167–75

    PubMed  CAS  Article  Google Scholar 

  258. 258.

    Surkina ID. Stress and immunity among athletes. Sov Sports Rev 1981; 17: 198

    Google Scholar 

  259. 259.

    Hoffman-Goetz L, Thorne RJ, Simpson JAR, et al. Exercise stress alters murine lymphocyte subset distribution in spleen, lymph nodes and thymus. Clin Exp Immunol 1989; 76: 307–10

    PubMed  CAS  Google Scholar 

  260. 260.

    Tharp GD, Preuss TL. Mitogenic response of T-lymphocytes to exercise training and stress. J Appl Physiol 1991; 70: 2535–8

    PubMed  CAS  Google Scholar 

  261. 261.

    Nehlsen-Cannarella SL, Nieman DC, Balk-Lamberton AJ, et al. The effects of moderate exercise training on immune response. Med Sci Sports Exerc 1991; 23: 64–70

    PubMed  CAS  Google Scholar 

  262. 262.

    Völker K, Gracher M, Wibbels T, et al. Über die Notwendigkeit der Steuerung der Belastungsintensität im Beitensport. In: Franz JW, Mellerowicz H, editors. Training und Sport zur Prävention und Rehabilitation in der technisierten Umwelt. Berlin: Springer Verlag, 1985

    Google Scholar 

  263. 263.

    Hoffman-Goetz L, Thorne RJ, Houston ME. Splenic immune responses following treadmill exercise in mice. Can J Physiol Pharmacol 1988; 66: 1415–9

    PubMed  CAS  Article  Google Scholar 

  264. 264.

    Simpson JAR, Hoffman-Goetz L, Thorne R, et al. Exercise stress alters the percentage of splenic lymphocyte subsets in response to mitogens but not in response to IL-1. Brain Behav Immun 1989; 3: 119–28

    CAS  Article  Google Scholar 

  265. 265.

    Simpson JAR, Hoffman-Goetz L. Exercise stress and murine natural killer cell function. Proc Soc Exp Biol Med 1990; 195: 129–35

    PubMed  CAS  Google Scholar 

  266. 266.

    Liesen H, Kleiter K, Mücke S, et al. Leucocytes and lymphocyte subpopulations in players of the German field hockey team during the preparatory training period for the Olympic Games in 1988. Dtsch Zeitschr Sportmed 1989; 40(11): 41–52

    Google Scholar 

  267. 267.

    Parry-Billings M, Blomstrand E, McAndrew N, et al. A communicational link between skeletal muscle, brain and cells of the immune system. Int J Sports Med 1990; 11 (Suppl.): S122–S128

    PubMed  Article  Google Scholar 

  268. 268.

    Wallace C, Keast D. Glutamine and macrophage function. Metabolism 1992; 41: 1016–20

    PubMed  CAS  Article  Google Scholar 

  269. 269.

    Calder PC, Newsholme EA. Polyunsaturated fatty acids suppress human peripheral blood lymphocyte proliferation and interleukin-2 production. Clin Sci 1992; 82: 695–700

    PubMed  CAS  Google Scholar 

  270. 270.

    Griffiths M, Keast D. The effect of glutamine on murine splenic leukocyte responses to T- and B-cell mitogens. Immunol Cell Biol 1990; 68: 405–8

    PubMed  CAS  Article  Google Scholar 

  271. 271.

    Michel G, Vocke T, Fiehn W, et al. Bidirectional alteration of insulin receptor affinity by different forms of physical exercise. Am J Physiol 1984; 246: E153–E159

    PubMed  CAS  Google Scholar 

  272. 272.

    Ivanova NI, Talko VV. The effect of physical loads on the immune systems. Sov Sports Rev 1981; 16: 208

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Roy J. Shephard.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shephard, R.J., Rhind, S. & Shek, P.N. Exercise and the Immune System. Sports Med 18, 340–369 (1994). https://doi.org/10.2165/00007256-199418050-00006

Download citation

Keywords

  • Natural Killer Cell
  • Adis International Limited
  • Natural Killer Cell Activity
  • Natural Killer Activity
  • Cycle Ergometry