Skip to main content
Log in

The Study of Human Body Segment Parameters in Biomechanics

An Historical Review and Current Status Report

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

The history of the techniques used to assess body segment parameters for biomechanical analysis has been reviewed. Three time periods of research were defined, based on the predominant instrumentation used, leading up to the modern era of computed tomography and magnetic resonance imagery. Organised in this manner, the significant techniques and findings were discussed.

Current databases are deficient in several aspects: the small number of study participants used for development of standards, the potential inaccuracy of cadaver data compared with that of living humans, and the relative lack of study of diverse populations. Future efforts should be directed towards addressing these weaknesses in body segment parameter information, in order to improve biomechanical investigation in the clinical, ergonomic and sport environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lorini G, Bossi D, Specchia N. The concept of movement prior to Giovanni Alfonso Borelli. In: Cappozzo A, Marchetti M, Tosi V, editors. Biolocomotion: a century of research using moving pictures. Rome: Promograph, 1992: 23–32

    Google Scholar 

  2. Cappozzo A, Marchetti M. Borelli’s heritage. In: Cappozzo A, Marchetti M, Tosi V, editors. Biolocomotion: a century of research using moving pictures. Rome: Promograph, 1992: 33–47

    Google Scholar 

  3. Duchenne de Boulogne GB. Physiologie der Bewegungen. Cassel: Verlag von Theodor Fischer, 1885

    Google Scholar 

  4. Marey EJ. La machine animale. Paris: F. Alcan, 1873

    Google Scholar 

  5. Braune W, Fischer O. Uber den Schwerpunkt des menschlichen Körpers, mit Rucksicht auf die Austrüstung des deutschen Infanteristen. Abhandl Mathematische-Physikalischen Classe Königl Sachsischen Ges Wissenschaft 1889; 26: 561–672

    Google Scholar 

  6. Braune W, Fischer O. Bestimmung der Trägheitsmomente des menschlichen Körpers and seiner Glieder. Abhandl Mathematische-Physikalischen Classe Königl Sashsischen Ges Wissenschaft 1892; 18 (8): 409–92

    Google Scholar 

  7. Jensen RK. Human morphology: its role in the mechanics of movement. J Biomech 1993; 26 Suppl. 1: 81–94

    PubMed  Google Scholar 

  8. Clauser CE, McConville JT, Young JW. Weight, volume and center of mass of segments of the human body. AMRL Technical Report (TR-69-70). Wright-Patterson Air Force Base, 1969

    Google Scholar 

  9. Davis BL. Uncertainty in calculating joint movements during gait [abstract]. In: Cappozzo A, editor. Abstracts of European Society of Biomechanics Conference, 1992: 276

    Google Scholar 

  10. Zatsiorsky V, Seluyanov V, Chugunova L. In vivo body segment inertial parameters determination using a gamma-scanner method. In: Berme N, Capozzo A, editors. Biomechanics of human movement: application in rehabilitation, sports and ergonomics. Worthington: Bertec Corporation, 1990: 186–202

    Google Scholar 

  11. Dempster WT. Space requirements of the seated operator. WADC Technical Report (TR-55-159). Wright-Patterson Air Force Base, 1955

    Google Scholar 

  12. Chandler RF, Clauser CE, McConville JT, et al. Investigation of inertial properties of the human body. Technical Report (AMRL-TR-74-137). Wright-Patterson Air Force Base, 1975

    Google Scholar 

  13. Drillis R, Contini R. Body segment parameters. PB 174 945; Technical Report 1166.03. New York: School of Engineering and Science, New York University, 1966

    Google Scholar 

  14. Plagenhoef S, Evans FG, Abdelnour T. Anatomical data for analyzing human motion. Res Q Exerc Sport 1983; 54 (2): 169–78

    Google Scholar 

  15. Jensen RK. Estimation of the biomechanical properties of three body types using a photogrammetric method. J Biomech 1978; 11: 349–58

    PubMed  CAS  Google Scholar 

  16. Young JW, Chandler RF, Snow CC, et al. Anthropometric and mass distribution characteristics of the adult female. Technical Report. Oklahoma City: FAA Civil Aeromedical Institute, 1983

    Google Scholar 

  17. Ae M, Tang H, Yokoi T. Body segment parameters of Japanese adults. Proceedings of the 12th Annual Meeting of SOBIM Japan. SOBIM: Japan, 1991: 191–202

    Google Scholar 

  18. Reynolds E, Lovett RW. A method for determining the position of the center of gravity in its relation to certain bony landmarks in the erect position. Am J Physiol 1909; 24: 286–93

    Google Scholar 

  19. Bouisset S, Pertuzon E. Experimental determination of the moments of inertia of limb segments. In: Wartenweiler J, editor. Biomechanics I. New York: Karger, 1968: 106–9

    Google Scholar 

  20. Cavanagh P, Gregor R. The quick-release method for estimating the moment of inertia of the shank and foot. In: Nelson RC, Morehouse CA, editors. Biomechanics IV. University Park: University Park Press, 1974: 524–30

    Google Scholar 

  21. Hatze H. A new method for the simultaneous measurement of the moment of inertia, the damping coefficient and the location of the centre of mass of a body segment. Eur J Appl Physiol 1975; 34: 217–26

    CAS  Google Scholar 

  22. Allum JHJ, Young LR. The relaxed oscillation technique for the determination of the moment of inertia of limb segments. J Biomech 1976; 9: 21–5

    PubMed  CAS  Google Scholar 

  23. Zatsiorsky V, Seluyanov V. The mass and inertial characteristics of the main segments of the human body. In: Matsui H, Kobayashi K, editors. Biomechanics VIII-B. Champaign: Human Kinetics, 1983: 1152–9

    Google Scholar 

  24. Zatsiorsky V, Seluyanov V. Estimation of the mass and inertia characteristics of the human body by means of the best predictive regression equations. In: Winters DA, Norman RW, Wells RP, et al., editors. Biomechanics IX-B. Champaign: Human Kinetics, 1985: 233–9

    Google Scholar 

  25. Huang HK, Suarez FR. Evaluation of cross-sectional geometry and mass density distributions of humans and laboratory animals using computerized tomography. J Biomech 1983; 16 (10): 821–32

    PubMed  CAS  Google Scholar 

  26. Reid JG. Physical properties of the human trunk as determined by computed tomography. Arch Phys Med Rehab 1984; 65: 246–50

    CAS  Google Scholar 

  27. Mungiole M, Martin PE. Estimating segment inertial properties: comparison of magnetic resonance imaging with existing methods. J Biomech 1990; 23 (10): 1039–46

    PubMed  CAS  Google Scholar 

  28. Matsuo A, Fukunaga T, Uchino S. Estimation of volume, density, mass and location of CG by means of MRI method [abstract]. XIIIth International Congress on Biomechanics. Perth: University of Western Australia, 1991: 379–80

    Google Scholar 

  29. Hay JG. The center of gravity of the human body. Kinesiology HI. Washington: American Association for Health, Physical Education and Recreation, 1973: 20–44

    Google Scholar 

  30. Hay JG. Moment of inertia of the human body. Kinesiology IV. Washington: American Association for Health, Physical Education and Recreation, 1974: 43–52

    Google Scholar 

  31. Reid JG, Jensen RK. Human body segment inertia parameters: a survey and status report. Exerc Sports Sci Rev 18: 1990; 225–41

    CAS  Google Scholar 

  32. Drillis R, Contini R, Bluestein M. Body segment parameters: a survey of measurement techniques. Artificial Limbs 1964; 8: 44–66

    Google Scholar 

  33. Miller DI, Nelson RC. Biomechanics of sport. Philadelphia: Lea & Febiger, 1973; 88–118

    Google Scholar 

  34. Borelli GA. De motu animalium, puos posthumum. Pars altera. Rome: A. Bernabò, 1681

    Google Scholar 

  35. Weber W, Weber E. Mechanik der menschlichen Göttingen, 1836

    Google Scholar 

  36. Meyer H. The changing locations of the center of gravity in the human body: a contribution to plastic anatomy [in German]. Leipzig: Engelmann, 1853

    Google Scholar 

  37. Demeny G. Etude der déplacements du centre de gravité dans le corps de l’homme pendant les actes de le locomotion. C R Hebdom Seances Acad Sci 1887; 105: 679–82

    Google Scholar 

  38. Haycroft JB. Animal mechanics. In: Schafer EA, editor. Textbook in physiology. Edinburgh: Young J. Pentland, 1900: 228–73

    Google Scholar 

  39. Croskey MI, Dawson PM, Alma C, et al. The height of the center of gravity in man. Am J Physiol 1922; 61: 171–85

    Google Scholar 

  40. Klausen K, Rasmussen B. On the location of the line of gravity in relation to L5 in standing. Acta Physiol Scand 1968; 72: 45–52

    PubMed  CAS  Google Scholar 

  41. Harless E. Die statischen Momente der menschlichen Gliedmassen. Abhandl Mathematische-Physikalischen Classe Königl Bayerischen Akad Wissenschaft 1860; 8: 69–96, 257–94

    Google Scholar 

  42. Meeh C. Volummessungen des menschlichen Körpers und seiner einzelnen Teile in den verschiedenen Altersstufen. ZtschrBiol 1895; 13: 125–47

    Google Scholar 

  43. Fischer O. Theoretische Grundlagen für Cine Mechanick der lebenden Körper mit speziellen Anwendungen auf den Menschen, sowie auf einige Bewegungs-Vorgänge an Machinen. Berlin: BG Teubner, 1906

    Google Scholar 

  44. Spivak CD. Methods of weighing parts of the living human body. JAMA 1915; 65: 1707–8

    Google Scholar 

  45. Zook DE. The physical growth of boys. Am J Disabled Children 1932; 43: 1347–432

    Google Scholar 

  46. Bernstein NA, Salzgeber OA, Pavlenko PP, et al. Determination of location of the centers of gravity and mass of the limbs of the living human body [in Russian]. Moscow: All-Union Institute of Experimental Medicine, 1936

    Google Scholar 

  47. Du Bois-Reymond R. Die Grenzen der Unterstutzungfläche beim Stehen. Archiv Anat Physiol 1900; 23: 562–4

    Google Scholar 

  48. Palmer CE. Studies of the center of gravity in the human body. Child Develop 1944; 15 (2–3): 99–180

    Google Scholar 

  49. Swearingen JJ. Determinations of centers of gravity in man. Report 62-14. Oklahoma City: Civil Aeromedical Research Institute, Federal Aviation Agency, 1962

    Google Scholar 

  50. Willems E, Swalus P. Apparatus for dtermining the center of gravity of the human body. Biomechanics I. New York: Karger, 1968: 72–7

    Google Scholar 

  51. Plagenhoef S. Patterns of human motion. Englewood Cliffs, Prentice-Hall, 1971: 18–27

    Google Scholar 

  52. Weinbach AP. Contour maps, center of gravity, moment of inertia and surface area of the human body. Human Biol 1938; 10: 356–71

    Google Scholar 

  53. Wild T. Simplified volume measurement with the polar planimeter. Surveying Mapping 1954; 14, 218–22

    Google Scholar 

  54. Cleveland HG. The determination of the center of gravity of segments of the human body [dissertation]. Los Angeles: University of California, 1955

    Google Scholar 

  55. Barter JT. Estimation of the mass of body segments. Technical Report (TR-57-260). Wright-Patterson Air Force Base, 1957

    Google Scholar 

  56. Mori M, Yamamoto T. Die Massenanteile der einzelnen Körperabschnitte der Japaner. Acta Anatom 1959; 37 (4): 385–8

    CAS  Google Scholar 

  57. Parks JL. An electromyographic and mechanical analysis of selected abdominal exercises [thesis]. Michigan: University of Michigan, 1959

    Google Scholar 

  58. Kulwicki PV, Schlei EJ, Vergamini PL. Weightless man: self-rotation techniques. AMRL Technical Documentary Report (TR-62-129), 1962

    Google Scholar 

  59. Whitsett CE. Some dynamic response characteristics of weight-less man [thesis] (AMRL-TR-63-18, AD 412 541). US Air Force Institute of Technology, Wright-Patterson Air Force Base, 1962

    Google Scholar 

  60. Fujikawa K. The center of gravity in the parts of the human body. Okajimas Folia Anatomica Japonica 1963; 39: 117–25

    PubMed  CAS  Google Scholar 

  61. Hanavan EP. A mathematical model of the human body. Technical Report, Aerospace Medical Research Laboratory (TR-64-102). Wright-Patterson Air Force Base, 1964

    Google Scholar 

  62. Tieber JA, Lindemuth RW. An analysis of the inertial properties and performance of the astronaut maneuvering system [thesis]. US Air Force Institute of Technology, Wright-Patterson Air Force Base, 1965

    Google Scholar 

  63. Liu YK, Wickstrom JK. Estimation of the inertial property distribution of the human torso from segmented cadaver data. In: Kenedi RM, editor. Perspectives in biomedical engineering. Baltimore: University Park Press, 1973; 203–13

    Google Scholar 

  64. Liu YK, Laborde JM, Van Buskirk WC. Inertial properties of a segmented cadaver trunk: their implications in acceleration injuries. Aerospace Med 1971; 42 (6): 650–7

    PubMed  CAS  Google Scholar 

  65. Herron RE, Cuzzi JR, Goulet DV, et al. Experimental determination of mechanical features of adults and children. DOT-HS-231-2-397. Washington, DC: US Department of Transportation, 1974

    Google Scholar 

  66. Herron RE. A biomedical perspective in stenographic anthropometry. In: Thomas FD, Sellers E, editors. Biomedical instrumentation. Vol 6. Pittsburgh: Instrument Society of America, 1969

    Google Scholar 

  67. Herron RE. Stereiophotogrammetry in biology and medicine. Photogram Appl Sci Technol Med 1970; 5: 26–35

    Google Scholar 

  68. Brooks CB, Jacobs AM. The gamma mass scanning technique for inertial anthropometric measurement. Med Sci Sports Exerc 1975; 7 (4): 290–4

    CAS  Google Scholar 

  69. Casper RM, Jacobs AM, Kennedy ES, et al. On the use of gamma ray images for determination of body segment parameters. Paper presented at Quantitative Imagery in Biomedical Sciences, Houston, Texas, 1971

    Google Scholar 

  70. Clarys JP, Marfell-Jones MJ. Anatomical segmentation in humans and the prediction of segmental masses from intra-seg-mental anthropometry. Human Biol 1986; 58: 771–82

    PubMed  CAS  Google Scholar 

  71. Matsuo A, Fukunaga T, Uchino S. The estimation of segment weight of human extremites form serial cross-sectional areas and densities of tissues. Proc Dept Sports Sci Uni Tokyo 1990; 24: 55–64

    Google Scholar 

  72. Hinrichs RN. Regression equations to predict segmental moments of inertia from anthropometric measurements: an extension of the data of Chandler et al. J Biomech 1985; 18 (8): 621–4

    PubMed  CAS  Google Scholar 

  73. Morlock M, Yeadon MR. Regression equations for segment inertia parameters. In: Allard P, Gagnon M, editors. Human Locomotion IV Montreal: Canadian Society for Biomechanics, 1986: 231–32

    Google Scholar 

  74. Hinrichs RN. Adjustments to the segment center of mass proportions of Clauser et al. (1969). J Biomech 1990; 23 (9): 949–51

    PubMed  CAS  Google Scholar 

  75. Forwood MR, Neal RJ, Wilson B. Scaling segmental moments of inertia for individual subjects. J Biomech 1985; 18 (10): 755–61

    PubMed  CAS  Google Scholar 

  76. Stijnen VV, Willems EJ, Spaepen AJ, et al. A modified release method for measuring the moment of inertia of the limbs. In: Matsui H, Kobayashi K, editors. Biomechanics VIII-B, Champaign: Human Kinetics, 1983: 1152–9

    Google Scholar 

  77. Peyton AJ. Determination of the moment of inertia of limb segments by a simple method. J Biomech 1986; 19 (5): 405–10

    PubMed  CAS  Google Scholar 

  78. Hatze H. A mathematical model for the computational determination of parameter values of anthropomorphic segments. J Biomech 1980; 13: 833–43

    PubMed  CAS  Google Scholar 

  79. Schneider K, Zernicke RF, Ulrich BD, et al. Understanding movement control in infants through the analysis of limb intersegmental dynamics. J Motor Behav 1990; 22: 493–520

    CAS  Google Scholar 

  80. Tupling SJ, Pierrynowski MR, Forsyth RD. Anthropometric estimates of the human body using photogrammetry. In: Thornton-Trump AB, editor. Human Locomotion III. Winnipeg: Canadian Society for Biomechanics, 1984

    Google Scholar 

  81. Chandler RF, Snow CC, Young JW. Computation of mass distribution characteristics of children. In: Coblentz AM, Herron RE, editors. Proc Soc Photo-Optical Instrument Engineers 1978; 166: 158–61

    Google Scholar 

  82. Yokoi T, Shibukawa K, Ae M. Body segment parameters of Japanese children. Jpn J Phys Educ 1986; 31 (1): 53–66

    Google Scholar 

  83. Ackland TR, Blanksby BA, Bloomfield J. Inertial characteristics of adolescent male body segments. J Biomech 1988; 21 (4): 319–28

    PubMed  CAS  Google Scholar 

  84. Jensen RK. Changes in segment inertia proportions between four and twenty years. J Biomech 1989; 22: 529–36

    PubMed  CAS  Google Scholar 

  85. Sun H, Jensen RK. Body segment growth during infancy [abstract]. In: Draganich L, Wells R, Bechtold J, editors. Abstracts, 2nd North American Congress on Biomechanics, Chicago, 1992: 65–6

    Google Scholar 

  86. McConville JT, Clauser CE. Anthropometric assessment of the mass distribution characteristics of the living human body. Proc 6th Congress International Ergonomics Association. College Park, Maryland: Human Factors Society, 1976: 379–83

    Google Scholar 

  87. McConville JT, Churchill TD, Kaleps I, et al. Anthropometric relationships of body and body segments moments of inertia. Aerospace Medical Research Laboratory Report (AFAMRL-TR-80-119). Wright-Patterson Air Force Base, 1980

    Google Scholar 

  88. Finch CA. Estimation of body segment parameters of college age females using a mathematical model [thesis]. Windsor: University of Windsor, 1985

    Google Scholar 

  89. Jensen RK, Fletcher P. Distribution of mass to the segments of elderly males and females. J Biomech 1994; 27: 89–96

    PubMed  CAS  Google Scholar 

  90. Sheffer D, Schaer A, Baumann J. Stereophotogrammetric mass distribution parameter determination of the lower body segments for use in gait analysis. In: Baumann JE, Herron RE, editors. Biostereometrics ’88, SPIE Vol 1030. Washington: International Society for Optical Engineering, 1989; 361–8

    Google Scholar 

  91. Jensen RK, MacDonald K. A modelling approach to growth curves for body segments during pregnancy [abstract]. Abstracts, Canadian Association of Sports Sciences Meeting, October 1991, Kingston, Ontario. Kingston: Canadian Association of Sports Sciences, 1991

    Google Scholar 

  92. Duval-Beaupere G, Robain G. Visualization on full spine radiographs of the anatomical connections of the centres of the segmental body mass supported by each vertebra and measured in vivo. Int Orthop 1987; 11: 261–9

    PubMed  CAS  Google Scholar 

  93. Huang HK, Wu SC. The evaluation of mass densities of the human body in vivo from CT scans. J Biomech 1976; 6: 337–43

    CAS  Google Scholar 

  94. Rodrigue D, Gagnon M. Validation of Weinbach’s and Hanavan’s models for computation of physical properties of the forearm. Res Q Exerc Sports 1984; 55 (3): 272–7

    Google Scholar 

  95. Brown GA, Tello RJ, Rowell D, et al. Determination of body segment inertial parameters. In: Steele RD, Gerrey W, editors. RESNA ’87. Vol 7. Washington: RESNA (Association for the Advancement of Rehabilitation Technology), 1987: 299–301

    Google Scholar 

  96. Henson PW, Ackland T, Fox RA, Tissue density measurement using CT scanning. Aust Phys Eng Sci Med 1987; 10: 162–6

    CAS  Google Scholar 

  97. Ackland TR, Henson PW, Bailey DA. The uniform density assumption: its effect upon the estimation of body segment inertial parameters. Int J Sports Biomech 1988; 4: 146–55

    Google Scholar 

  98. Pearsall DJ, Livingston L, Reid JG. Center of mass of trunk segments relative to the spine as determined by computed tomography [abstract]. In: Draganich L, Wells R, Bechtold J, editors. Abstracts, 2nd North American Congress on Biomechanics, Chicago, 1992: 77–8

  99. Zheng Z. A new method to determine inertial parameters of the segments of the human body [abstract]. Beijing: Asian Games Scientific Congress, 1990

    Google Scholar 

  100. Mungiole M, Martin PE. Estimating segmental inertial properties: magnetic resonance imaging versus existing methods. In: Allard P, Gagnon M, editors. Human Locomotion IV. Montreal: Canadian Society for Biomechanics, 1986; 229–30

    Google Scholar 

  101. Moran DW, Yamaguchi GT. Determining subject-specific musculoskeletal geometric and mass properties from magnetic resonance images [abstract]. In: Draganich L, Wells R, Bechtold J, editors. Abstracts, 2nd North American Congress on Biomechanics, Chicago, 1992: 89–90

  102. Zhu XP, Checkley DR, Hickey DS, et al. Accuracy of area measurements made from MR images compared with computed tomography. J Comput Assisted Tomography 1986; 10 (1): 96–102

    CAS  Google Scholar 

  103. Martin PE, Mungiole M, Marzke MW, et al. The use of magnetic resonanace imaging for measuring segment inertial properties. J Biomech 1989; 22 (4): 367–76

    PubMed  CAS  Google Scholar 

  104. Pearsall DJ, Reid JG. Comparison of CT and MRI estimates of inertial properties of the human trunk. Proceedings of American Society of Biomechanics, Iowa City, 1993

    Google Scholar 

  105. Jensen RK. The effect of a 12-month growth period on the body moments of inertia of children. Med Sci Sports Exerc 1981; 13 (4): 238–42

    PubMed  CAS  Google Scholar 

  106. Rodrigue D, Gagnon M. The evaluation of forearm density with axial tomography. J Biomech 1983; 16: 907–13

    PubMed  CAS  Google Scholar 

  107. Gagnon M, Rodrigue D. Determination of the forearm parameters by anthropometry, immersion and photography methods. Res Q Exerc Sport 1979; 50 (2): 188–98

    CAS  Google Scholar 

  108. Kaleps I, Clauser CE, Young JW, et al. Investigation into the mass distribution properties of the human body and its segments. Ergonomics 1984; 27 (12): 1225–37

    PubMed  CAS  Google Scholar 

  109. Lephart SA. Measuring the inertial properties of cadaver segments. J Biomech 1984; 17 (7): 537–43

    PubMed  CAS  Google Scholar 

  110. Yokio T, Shibukawa K, Ae M, et al. Body-segment parameters of Japanese children. In: Winter DA, Norman RW, Wells RP, et al., editors. Biomechanics IX-B. Champaign: Human Kinetics Publishers, 1985: 227–32

  111. Yeadon MR, Morlock M. The appropriate use of regression equations for the estimation of segment inertia parameters. J Biomech 1989; 22: 683–9

    PubMed  CAS  Google Scholar 

  112. Sprigings EJ, Burko DB, Watson LG, et al. An evaluation of three segmental methods used to predict the location of the total body CG for human airborne movements. J Human Movement Studies 1987; 13: 57–68

    Google Scholar 

  113. Jensen RK. The growth of children’s moment of inertia. Med Sci Sports Exerc 1986; 18: 440–5

    PubMed  CAS  Google Scholar 

  114. Jensen RK. Body segment mass, radius and radius of gyration proportions of children. J Biomech 1986; 19: 359–68

    PubMed  CAS  Google Scholar 

  115. Jensen RK. Growth of estimated segment masses between four and sixteen years. Human Biol 1987; 59: 173–89

    PubMed  CAS  Google Scholar 

  116. Jensen RK, Nassas G. A mixed longitudinal description of body shape growth. In Coblentz AM, Herron RE, editors. Biostereometrics ’85. SPIE Vol 602. Washington: International Society for Optical Engineering, 1986: 130–5

    Google Scholar 

  117. Jensen RK, Nassas G. Growth of segment principal moments of inertia between four and twenty years. Med Sci Sports Exerc 1988; 20 (5): 594–604

    PubMed  CAS  Google Scholar 

  118. Jensen RK, Abraham C. Assumed segment densities for the elderly and the effect of changes in body shape. In: Richards CL, editor. Human Locomotion VI. Quebec: Canadian Society for Biomechanics, 1990: 117–8

    Google Scholar 

  119. Schneider K, Zernicke RF. Mass, center of mass and moment of inertia estimates for infant limb segments. J Biomech 1992; 25: 145–8

    PubMed  CAS  Google Scholar 

  120. Erdmann WS, Gos T. Density of trunk tissues of young and medium age people. J Biomech 1990; 23: 945–7

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearsall, D.J., Reid, G. The Study of Human Body Segment Parameters in Biomechanics. Sports Med. 18, 126–140 (1994). https://doi.org/10.2165/00007256-199418020-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199418020-00005

Keywords

Navigation