Skip to main content

Caffeine and Endurance Performance

Summary

Caffeine is consumed in many beverages and foods throughout the world. It is the most commonly used drug in North America and, probably, in many other countries. The short term consumption of caffeine may result in increased urination, gastrointestinal distress, tremors, decreased sleep, and anxiety symptoms in certain individuals. The long term consumption of caffeine at < 5 cups/day does not appear to increase the risk of cancer, cardiovascular disease, peptic ulcer disease or cardiac arrhythmias.

At the cellular level, caffeine is a competitive antagonist of adenosine receptors and probably acts directly on the ryanodine receptor (Ca++ release channel) to potentiate Ca++ release from skeletal muscle sarcoplasmic reticulum. As a result of these 2 cellular mechanisms of action, caffeine causes increased lipolysis, a facilitation of central nervous system transmission, a reduction in plasma potassium during exercise, an increased force of muscle contraction at lower frequencies of stimulation, and a sparing of muscle glycogen (partially or wholly due to an increase in free fatty acid oxidation). These mechanisms of action would predict that caffeine should be of ergogenic benefit during endurance exercise performance, especially when glycogen depletion would be rate limiting to performance. A review of the literature suggests that caffeine at doses of approximately 6 mg/kg is not of ergogenic benefit to high intensity exercise performance, but similar doses are ergogenic in endurance exercise performance. These doses (approximately 6 mg/kg) would result in urinary caffeine concentrations less than the current International Olympic Committee restricted level of 12 mg/L, and consideration should be given to lowering this level.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Graham DM. Caffeine: its identity, dietary sources, intake and biological effects. Nutr Rev 1978; 36: 99–102

    Google Scholar 

  2. 2.

    Curatolo PW, D Robertson. The health consequences of caffeine. Ann Intern Med 1983; 98: 641–53

    PubMed  CAS  Google Scholar 

  3. 3.

    Delbeke FT, M Debachere. Caffeine: use and abuse in sports. Int J Sports Med 1984; 5: 179–82

    PubMed  CAS  Google Scholar 

  4. 4.

    Boje O. Doping: Bulletin of the Health Organization of the League of Nations 1939; 8: 439–69

    Google Scholar 

  5. 5.

    Venerando A. Doping: pathology and ways to control it. Med dello Sport 1963; 3: 972–83

    Google Scholar 

  6. 6.

    Eichner ER. The caffeine controversy: effects on endurance and cholesterol. Physician Sportsmed 1986; 14: 124–32

    Google Scholar 

  7. 7.

    Government of Canada (Fitness and Amateur Sport). Banned and restricted doping classes and methods. Ottawa: Minister of Supply and Services Canada 1989; H93–H103

    Google Scholar 

  8. 8.

    Dodd SL, Herb RA, SK Powers. Caffeine and exercise performance: an update. Sports Med 1993; 15 (1): 14–23

    PubMed  CAS  Google Scholar 

  9. 9.

    Eichner ER. Ergolytic drugs in medicine and sports. Am J Med 1993; 94: 205–11

    PubMed  CAS  Google Scholar 

  10. 10.

    Goldstein A, Warren R, S Kaizer. Psychotropic effects of caffeine in man: I. Individual difference in sensitivity to caffeine-induced wakefulness. J Pharmacol Exp Ther 1965; 149: 156–9

    PubMed  CAS  Google Scholar 

  11. 11.

    Karacan I, Thornby JI, Anch AM, et al. Dose-related sleep disturbances induced by coffee and caffeine. Clin Pharmacol Ther 1976; 20: 682–9

    PubMed  CAS  Google Scholar 

  12. 12.

    Brezinova V. Effect of caffeine on sleep: EEG studies in middle aged people. Br J Clin Pharmacol 1974; 1: 203–6

    PubMed  CAS  Google Scholar 

  13. 13.

    Regestein QR. Pathologic sleepiness induced by caffeine. Am J Med 1989; 87: 586–8

    PubMed  CAS  Google Scholar 

  14. 14.

    Galletly DC, Fennelly M, Whitwam JG. Does caffeine withdrawal contribute to postanesthetic morbidity? Lancet 1989; 1: 1335

    PubMed  CAS  Google Scholar 

  15. 15.

    van Dusseldorp M, Katan MB. Headache caused by caffeine withdrawl among moderate coffee drinkers switched from ordinary to decaffeinated coffee: a 12 week double blind trial. BMJ 1990; 300: 1558–9

    PubMed  Google Scholar 

  16. 16.

    Persson CGA, Andersson KE, Kjellin G. Effects of enprofylline and theophylline may show the role of adenosine. Life Sci 1986; 38: 1057–72

    PubMed  CAS  Google Scholar 

  17. 17.

    Rall TW. Central nervous system stimulants. In: Goodman LS, Gilman AG, editors. The pharmacological basis of therapeutics. New York: MacMillan, 1985: 589–603

    Google Scholar 

  18. 18.

    Gordon NF, Myburgh JL, Kruger PE, et al. Effects of caffeine ingestion on thermoregulatory and myocardial function during endurance performance. S Afr Med J 1982; 62: 644–7

    PubMed  CAS  Google Scholar 

  19. 19.

    Falk B, Burstein R, Rosenblum J, et al. Effects of caffeine ingestion on body fluid balance and thermoregulation during exercise. Can J Physiol Pharmacol 1990; 68: 889–92

    PubMed  CAS  Google Scholar 

  20. 20.

    James JE, KD Stirling. Caffeine: a survey of some of the known and suspected deleterious effects of habitual use. Br J Addiction 1983; 78: 251–8

    CAS  Google Scholar 

  21. 21.

    Stillner V, Popkin MK, Pierce CM. Caffeine-induced delirium during prolonged competitive stress. Am J Psychiatry 1978; 135: 855–6

    PubMed  CAS  Google Scholar 

  22. 22.

    White BC, Lincoln CA, Pearce NW, et al. Anxiety and muscle tension as consequences of caffeine withdrawal. Science 1980; 209: 1547–8

    PubMed  CAS  Google Scholar 

  23. 23.

    Robertson D, Folich JC, Carr RK, et al. Effects of caffeine on plasma renin activity, catecholamines and blood pressure. N Engl J Med 1978; 298: 181–6

    PubMed  CAS  Google Scholar 

  24. 24.

    Robertson D, Hollister AS, Kincaid D, et al. Caffeine and hypertension. Am J Med 1984; 77: 54–9

    PubMed  CAS  Google Scholar 

  25. 25.

    Sung, BH, Lovallo WR, Pincomb GA, et al. Effect of caffeine on blood pressure response during exercise in normotensive healthy young men. Am J Cardiol 1990; 66: 909–13

    Google Scholar 

  26. 26.

    Robertson D, Wade D, Workman R, et al. Tolerance to the humoral and hemodynamic effects of caffeine. J Clin Invest 1981; 67: 1111–7

    PubMed  CAS  Google Scholar 

  27. 27.

    Rosenberg L, Slone D, Shapiro S, et al. Coffee drinking and myocardial infarction in young women. Am J Epidemiol 1980; 111: 675–81

    PubMed  CAS  Google Scholar 

  28. 28.

    LaCroix AZ, Mead LA, Liang KY, et al. Coffee consumption and the incidence of coronary heart disease. N Engl J Med 1986; 315: 977–82

    PubMed  CAS  Google Scholar 

  29. 29.

    Grobbee DE, Rimm EB, Giovannucci E, et al. Coffee, caffeine, and cardiovascular disease in men. N Engl J Med 1990; 323 (15): 1026–32

    PubMed  CAS  Google Scholar 

  30. 30.

    Rosmarin PC. Coffee and coronary heart disease: a review. Prog Cardiovasc Dis 1989; 32: 239–45

    PubMed  CAS  Google Scholar 

  31. 31.

    Stavric B. An update on research with coffee/caffeine (1989–1990). Fd Chem Toxic 1992; 30 (6): 533–55

    CAS  Google Scholar 

  32. 32.

    Chelsky LB, Cutler JE, Griffith K, et al. Caffeine and ventricular arrhythmias. An electicophysiological approach. JAMA 1990; 264: 2236–40

    PubMed  CAS  Google Scholar 

  33. 33.

    Graboys TB, Blatt CM, Lown B. The effect of caffeine on ventricular ectopic activity in patients with malignant ventricular arrhythmia. Arch Int Med 1989; 149: 637–9

    CAS  Google Scholar 

  34. 34.

    Heuch I, Kvale G, BK Jacobsen, et al. Use of alcohol, tobacco and coffee, and risk of pancreatic cancer. Br J Cancer 1983; 48: 637–43

    PubMed  CAS  Google Scholar 

  35. 35.

    Pozniak PC. The carcinogenicity of caffeine and coffee: a review. J Am Diet Assoc 1985; 85: 1127–32

    PubMed  CAS  Google Scholar 

  36. 36.

    IARC Working Group. IARC monographs in the evaluation of the carcinogenic risks to humans. Vol 51. Coffee, tea, mate, methylxanthines and methylglyoxal. Lyon: International Agency for Research on Cancer, 1991

    Google Scholar 

  37. 37.

    Elta GH, Behler EM, Colturi TJ. Comparison of coffee intake and coffee-induced symptoms in patients with duodenal ulcer, nonulcer dyspepsia, and normal controls. Am J Gastroenterol 1990; 85: 1339–42

    PubMed  CAS  Google Scholar 

  38. 38.

    Bunker ML, McWilliams M. Caffeine content of common beverages. J Am Diet Assoc 1989; 74: 28–32

    Google Scholar 

  39. 39.

    Bonati M, Latini R, Galletti F, et al. Caffeine disposition after oral doses. Clin Pharmacol Ther 1982; 32: 98–106

    PubMed  CAS  Google Scholar 

  40. 40.

    Powers SK, Byrd RJ, Tulley R, et al. Effects of caffeine ingestion and metabolism on performance during graded exercise. Eur J Appl Physiol 1983; 50: 301–7

    CAS  Google Scholar 

  41. 41.

    Patwardhan RV, Desmond PV, Johnson RF, et al. Impaired elimination of caffeine by oral contraceptive steroids. J Lab Clin Med 1980; 95: 603–8

    PubMed  CAS  Google Scholar 

  42. 42.

    Cheng WSC, Murphy TL, Smith MT, et al. Dose-dependent pharmacokinetics of caffeine in humans: relevance as a test of quantitative liver function. Clin Pharmacol Ther 1990; 47: 516–24

    PubMed  CAS  Google Scholar 

  43. 43.

    Caraco Y, Zylber-Katz E, Granit L, et al. Does restriction of caffeine intake affect mixed function oxidase activity and caffeine metabolism. Biopharm Drug Dispos 1990; 11: 639–43

    PubMed  CAS  Google Scholar 

  44. 44.

    Axelrod J, Reichenthal J. The fate of caffeine in man and a method for its estimation in biological material. J Pharm Exp Ther 1953; 107: 519–23

    CAS  Google Scholar 

  45. 45.

    Cornish HH, Christman AA. A study of the metabolism of theobromine, theophylline and caffeine in man. J Biol Chem 1957; 228: 315–23

    PubMed  CAS  Google Scholar 

  46. 46.

    Newton R, Broughton LJ, Lind MJ, et al. Plasma and salivary harmacokinetics of caffeine in man. Eur J Clin Pharmacol 1981; 21: 45–52

    PubMed  CAS  Google Scholar 

  47. 47.

    van der Merwe PJ, Luus HG, Barnard JG. Caffeine in sport. Influence of endurance exercise on the urinary caffeine concentration. Int J Sports Med 1992; 13 (1): 74–6

    PubMed  Google Scholar 

  48. 48.

    Graham TE, LL Spriet. Performance and metabolic responses to a high caffeine dose during prolonged exercise. J Appl Physiol 1991; 71 (6): 2292–8

    PubMed  CAS  Google Scholar 

  49. 49.

    Wagner JC. How much caffeine is too much in athletes? [correspondence]. Am J Hosp Pharmacy 1990; 47: 303

    Google Scholar 

  50. 50.

    Duthel JM, Vallon JJ, Martin G, et al. Caffeine and sport: role of physical exercise upon elimination. Med Sci Sports Exerc 1991; 23 (8): 980–5

    PubMed  CAS  Google Scholar 

  51. 51.

    Fain JN. Cyclic nucleotides in adipose tissue. In: Cramer H, Schultz J, editors. Cyclic 3′,5′-nucleotides: mechanisms of action. London: J Wiley & Sons, 1977: 207–28

    Google Scholar 

  52. 52.

    Zhang Y, Wells J. The effects of chronic caffeine administration on peripheral adenosine receptors. J Pharmacol Exp Ther 1990; 757–63

    Google Scholar 

  53. 53.

    Daly JW, Bruns RF, Snyder SH. Adenosine receptors in the central nervous system: relationship to the central actions of methylxanthines. Life Sci 1981; 28: 2083–97

    PubMed  CAS  Google Scholar 

  54. 54.

    Guthrie JR, Nayler WG. Interaction between caffeine and adenosine on calcium exchangeability in mammalian atria. Arch Int Pharmacol Ther 1967; 170: 249–55

    CAS  Google Scholar 

  55. 55.

    Coffin V, Spealman R. Behavioural and cardiovascular effects of analogs of adenosine in cynomogous monkeys. J Pharmacol Exp Ther 1987; 241: 76–83

    PubMed  CAS  Google Scholar 

  56. 56.

    Holtzman S, Mante S, Minneman K. Role of adenosine receptors in caffeine tolerance. J Pharmacol Exp Ther 1991; 256: 62–8

    PubMed  CAS  Google Scholar 

  57. 57.

    Fredholm B. On the mechanism of action of theophylline and caffeine. Acta Med Scand 1985; 217: 149–53

    PubMed  CAS  Google Scholar 

  58. 58.

    Scholfield CN. Depression of evoked potentials in brain slices by adenosine compounds. Br J Pharmacol 1978; 63: 239–44

    PubMed  CAS  Google Scholar 

  59. 59.

    Phillis JW, Wu PH. The role of adenosine and its nucleotides in central synaptic transmission. Prog Neurosci 1981; 16: 187–239

    CAS  Google Scholar 

  60. 60.

    Howell S, Jones DA, Mayor SJ. The action of caffeine and related compounds on skeletal muscle. Proc Physiol Soc 1981; 41: 24P–25P

    Google Scholar 

  61. 61.

    Kramer GL, JN Wells. Xanthines and skeletal muscle: lack of relationship between phosphodiesterase inhibition and increased twitch tension in rat diaphragms. Mol Pharmacol 1980; 17: 73–8

    PubMed  CAS  Google Scholar 

  62. 62.

    Lai FA, Erickson HP, Rousseau E, et al. Purification and reconstitution of the calcium release channel from skeletal muscle. Nature 1988; 331 (28): 315–9

    PubMed  CAS  Google Scholar 

  63. 63.

    Frank GB. Pharmacological studies of excitation-contraction coupling in skeletal muscle. Can J Physiol Pharmacol 1987; 65: 711–6

    PubMed  CAS  Google Scholar 

  64. 64.

    Fabiato A, Fabiato F. Dependence of the contractile activation of seived cardiac cells on the sarcomere length. Nature 1975; 256: 54–6

    PubMed  CAS  Google Scholar 

  65. 65.

    Weber A, Herz R. The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum. J Gen Physiol 1968; 52: 750–9

    PubMed  CAS  Google Scholar 

  66. 66.

    Connett RJ, Ugol LM, Hammack MJ, et al. Twitch potentiation and caffeine contractures in isolated rat soleus muscle. Comp Biochem Physiol 1983; 74C: 349–54

    CAS  Google Scholar 

  67. 67.

    Macintosh BR, Kupsh CC. Staircase, fatigue, and caffeine in skeletal muscle in situ. Muscle Nerve 1987; 10: 717–22

    PubMed  CAS  Google Scholar 

  68. 68.

    Weber A. The mechanism of the action of caffeine on sarcoplasmic reticulum. J Gen Physiol 1968; 52: 760–72

    PubMed  CAS  Google Scholar 

  69. 69.

    Fryer MW, Neering IR. Actions of caffeine on fast- and slow-twitch muscles of the rat. J Physiol 1989; 416: 435–54

    PubMed  CAS  Google Scholar 

  70. 70.

    Block BM, Barry SR, Faulkner JA. Aminophylline increases submaximal power but not intrinsic velocity of shortening of frog muscle. J Appl Physiol 1992; 73 (1): 71–4

    PubMed  CAS  Google Scholar 

  71. 71.

    Zavecz JH, Anderson WMcD. Role of extracellular Ca2+ in diaphragmatic contraction: effects of oubain, monensin, and ryanodine. J Appl Physiol 1992; 73 (1): 30–5

    PubMed  CAS  Google Scholar 

  72. 72.

    Penner R, Neher E, Takeshima H, et al. Functional expression of the calcium release channel from skeletal muscle ryanodine receptor cDNA. FEBS Lett 1989; 259 (1): 217–20

    PubMed  CAS  Google Scholar 

  73. 73.

    Gulati J, Babu A. Contraction kinetics of intact and skinned frog fibres and degree of activation. J Gen Physiol 1985; 86: 479–500

    PubMed  CAS  Google Scholar 

  74. 74.

    Wendt I, Stevenson D. Effects of caffeine on calcium activated force production in skinned cardiac and skeletal muscle fibers of the rat. Pflugers Archiv 1983; 398: 210–6

    PubMed  CAS  Google Scholar 

  75. 75.

    Palmer BM, Moore RL. Myosin light chain phosphorylation and tension potentiation in mouse skeletal muscle. Am J Physiol 1989; 257 (26): C1012–C1019

    PubMed  CAS  Google Scholar 

  76. 76.

    Ruff RL. Calcium sensitivity of fast- and slow-twitch human muscle fibers. Muscle Nerve 1989; 12: 32–7

    PubMed  CAS  Google Scholar 

  77. 77.

    Tarnopolsky MA, Brittain M. Neuromuscular effects of caffeine in habitual and non-habitual caffeine consumers. Can J Sport Sci 1989; 14 (4): 139P

    Google Scholar 

  78. 78.

    Westerblad H, Duty S, Allen DG. Intracellular calcium concentration during low-frequency fatigue in isolated single fibers of mouse skeletal muscle. J Appl Physiol 1993; 75 (1): 382–8

    PubMed  CAS  Google Scholar 

  79. 79.

    Lindinger MI, Graham TE, Spriet LL. Caffeine attenuates the exercise-induced increase in plasma [K+] in humans. J Appl Physiol 1993; 74 (3): 1149–55

    PubMed  CAS  Google Scholar 

  80. 80.

    Clausen T, Flatman JA. The effect of catecholamines on Na-K transport and membrane potential in rat soleus muscle. J Physiol 1977; 270: 383–414

    PubMed  CAS  Google Scholar 

  81. 81.

    Rogus EM, Cheng LC, Zierler K. ß-Adrenergic effect on Na+-K+ transport in rat skeletal muscle. Biochim Biophysica Acta 1977; 464: 347–55

    CAS  Google Scholar 

  82. 82.

    Lindinger MI, Heigenhauser GJF. The roles of ion fluxes in skeletal muscle fatigue. Can J Physiol Pharmacol 1991; 69: 246–53

    PubMed  CAS  Google Scholar 

  83. 83.

    Sjogaard G. Exercise-induced muscle fatigue: the significance of potassium. Acta Physiol Scand 1990; 593 Suppl.: 1–63

    CAS  Google Scholar 

  84. 84.

    Green HJ, Chin ER, Ball-Burnett M, et al. Increases in human muscle Na+-K+-ATPase concentration with short-term training. Am J Physiol 1993; 264 (33): C1538–C1541

    PubMed  CAS  Google Scholar 

  85. 85.

    Rennie MJ, Winder WW, Holloszy JO. A sparing effect of in-creased plasma free fatty acids on muscle and liver glycogen content in the exercising rat. Biochem J 1976; 156: 647–55

    PubMed  CAS  Google Scholar 

  86. 86.

    Rennie MJ, Holloszy JO. Inhibition of glucose uptake and glycogenosis by availability of oleate in well-oxygenated perfused skeletal muscle. Biochem J 1977; 168: 161–70

    PubMed  CAS  Google Scholar 

  87. 87.

    Costill DL, Coyle E, Dalsky G, et al. Effects of elevated plasma FFA and insulin on muscle glycogen usage during exercise. J Appl Physiol 1977; 43: 695–9

    PubMed  CAS  Google Scholar 

  88. 88.

    Hultman E. Nutritional effects on work performance. Am J Clin Nutr 1989; 49: 949–57

    PubMed  CAS  Google Scholar 

  89. 89.

    O’Brien MJ, Viguie CA, Mazzeo RS, et al. Carbohydrate dependence during marathon running. Med Sci Sports Exerc 1993; 25 (9): 1009–17

    PubMed  Google Scholar 

  90. 90.

    Ravussin E, Bogardus C, Scheidegger K, et al. Effect of elevated FFA on carbohydrate and lipid oxidation during prolonged exercise in humans. J Appl Physiol 1986; 60 (3): 893–900

    PubMed  CAS  Google Scholar 

  91. 91.

    Hargreaves M, Kiens B, Richter EA. Effect of increased plasma free fatty acid concentrations on muscle metabolism in exercising men. J Appl Physiol 1991; 70 (1): 194–201

    PubMed  CAS  Google Scholar 

  92. 92.

    Costill DL, Dalsky GP, Fink WJ. Effects of caffeine ingestion on metabolism and exercise performance. Med Sci Sports 1978; 10: 155–8

    PubMed  CAS  Google Scholar 

  93. 93.

    Ivy JL, Costill DL, Fink WJ, et al. Influence of caffeine and carbohydrate feedings on endurance performance. Med Sci Sports Exerc 1979; 11: 6–11

    CAS  Google Scholar 

  94. 94.

    Giles D, MacLaren D. Effects of caffeine and glucose ingestion on metabolic and respiratory functions during prolonged exercise. J Sports Sci 1984; 2: 35–46

    Google Scholar 

  95. 95.

    Fisher SM, McMurray RG, Berry M, et al. Influence of caffeine on exercise performance in habitual caffeine users. Int J Sports Med 1986; 7: 276–80

    PubMed  CAS  Google Scholar 

  96. 96.

    Sasaki H, Maeda J, Usui S, et al. Effect of sucrose and caffeine ingestion on performance of prolonged strenuous running. Int J Sports Med 1987; 8: 261–5

    PubMed  CAS  Google Scholar 

  97. 97.

    Sasaki H, Takaoka I, Ishiko T. Effects of sucrose or caffeine ingestion on running performance and biochemical responses to endurance running. Int J Sports Med 1987; 8: 203–7

    PubMed  CAS  Google Scholar 

  98. 98.

    Chad K, Quigley B. The effects of substrate utilization, manipulated by caffeine, on post-exercise oxygen consumption in untrained female subjects. Eur J Appl Physiol 1989; 59: 48–54

    CAS  Google Scholar 

  99. 99.

    Tarnopolsky MA, Atkinson SA, MacDougall JD, et al. Physiological responses to caffeine during endurance exercise in habitual caffeine users. Med Sci Sports Exerc 1989; 21 (4): 418–24

    PubMed  CAS  Google Scholar 

  100. 100.

    Doubt TJ, Hsieh SS. Additive effects of caffeine and cold water during submaximal leg exercise. Med Sci Sports Exerc 1991; 23 (4): 435–42

    PubMed  CAS  Google Scholar 

  101. 101.

    Donelly K, McNaughton L. The effects of two levels of caffeine ingestion on postexercise oxygen consumption in untrained women. Eur J Appl Physiol 1992; 65: 459–63

    CAS  Google Scholar 

  102. 102.

    Essig D, Costill DL, Van Handel PJ. Effects of caffeine ingestion on utilization of muscle glycogen and lipid during the ergometer cycling. Int J Sports Med 1980; 1: 86–90

    CAS  Google Scholar 

  103. 103.

    Bangsbo J, Jacobsen K, Nordberg N, et al. Acute and habitual caffeine ingestion and metabolic responses to steady-state exercise. J Appl Physiol 1992; 72 (4): 1297–303

    PubMed  CAS  Google Scholar 

  104. 104.

    Spriet LL, MacLean DA, Dyck DJ, et al. Caffeine ingestion and muscle metabolism during prolonged exercise in humans. Am J Physiol 1990; 262 (25): E891–E898

    Google Scholar 

  105. 105.

    Knapik JJ, Jones BH, Toner MM. Influence of caffeine on serum substrate changes during running in trained and untrained individuals. Biochem Exerc 1983; 13: 514–9

    CAS  Google Scholar 

  106. 106.

    Weir J, Noakes TD, Myburgh K, et al. A high carbohydrate diet negates the metabolic effects of caffeine during exercise. Med Sci Sports Exerc 1987; 19: 100–5

    PubMed  CAS  Google Scholar 

  107. 107.

    Erickson MA, Schwarzkopf RJ, RD McKenzie. Effects of caffeine, fructose, and glucose ingestion on muscle glycogen utilization during exercise. Med Sci Sports Exerc 1987; 19: 579–83

    PubMed  CAS  Google Scholar 

  108. 108.

    Titlow LW, Ishee JH, Riggs CE. Failure of caffeine to affect metabolism during 60 min submaximal exercise. J Sports Sci 1991; 9: 15–22

    PubMed  CAS  Google Scholar 

  109. 109.

    Dodd SL, Brooks E, Powers SK, et al. The effects of caffeine on graded exercise performance in caffeine naive versus habituated subjects. Eur J Appl Physiol 1991; 62: 424–9

    CAS  Google Scholar 

  110. 110.

    Casal DC, Leon AS. Failure of caffeine to affect substrate utilization during prolonged running. Med Sci Sports Exerc 1985; 17: 174–9

    PubMed  CAS  Google Scholar 

  111. 111.

    Oscai LB, Palmer WK. Muscle lipolysis during exercise: an update. Sports Med 1988; 6: 23–8

    PubMed  CAS  Google Scholar 

  112. 112.

    Hurley BF, Nemeth PM, Martin III WH, et al. Muscle triglyceride utilization during exercise: effect of training. J Appl Physiol 1986; 60 (2): 562–7

    PubMed  CAS  Google Scholar 

  113. 113.

    Romijn JA, Klein S, Coyle EF, et al. Strenuous endurance training increases lipolysis and triglyceride-fatty acid cycling at rest. J Appl Physiol 1993; 75 (1): 108–13

    PubMed  CAS  Google Scholar 

  114. 114.

    Lopes JM, Jardim AJ, Aranda JV, et al. Effect of caffeine on skeletal muscle function before and after fatigue. J Appl Physiol: Respirat Environ Exerc Physiol 1983; 54: 1303–5

    CAS  Google Scholar 

  115. 115.

    Jacobson BH, Edwards SW. Effects of ingested doses of caffeine on neuromuscular reflex response time in man. Int J Sports Med 1990; 11: 194–7

    PubMed  CAS  Google Scholar 

  116. 116.

    Tarnopolsky MA, Hicks A, Cupido C, et al. Caffeine and neuromuscular function in humans: no effects of tolerance. Physiologist 1992; 35 (4): 201 (A30.15)

    Google Scholar 

  117. 117.

    Edwards RHT, Hill DK, Jones DA, et al. Fatigue of long duration in human skeletal muscle after exercise. J Physiol 1977; 272: 769–78

    PubMed  CAS  Google Scholar 

  118. 118.

    Moussavi RS, Lehman SL, Miller RG. Dantrolene sodium and fatigue of long duration. Muscle Nerve 1992; 15: 384–9

    PubMed  CAS  Google Scholar 

  119. 119.

    Cupido CM, Hicks AL, Martin J. Neuromuscular fatigue during repetitive stimulation in elderly and young adults. Eur J Appl Physiol 1992; 65: 567–72

    CAS  Google Scholar 

  120. 120.

    Grimby L, Hannerz J. Firing rate and recruitment order of toe extensor motor units in different modes of voluntary contraction. J Physiol 1977; 264: 865–79

    PubMed  CAS  Google Scholar 

  121. 121.

    Aubier M, DeTroyer A, Sampson M, et al. Aminophylline improves diaphragmatic contractility. N Engl J Med 1981; 305: 249–52

    PubMed  CAS  Google Scholar 

  122. 122.

    Supinski GS, Deal Jr EC, Kelsen SG. The effects of caffeine and theophylline on diaphragm contractility. Am Rev Respir Dis 1984; 130: 429–33

    PubMed  CAS  Google Scholar 

  123. 123.

    Supinski GS, Levin S, Kelsen SG. Caffeine effect on respiratory muscle endurance and sense of effort during loaded breathing. J Appl Physiol 1986; 60: 2040–7

    PubMed  CAS  Google Scholar 

  124. 124.

    D’Urzo AD, Jhirad R, Jenne H, et al. Effect of caffeine on ventilatory responses to hypercapnia, hypoxia, and exercise in humans. J Appl Physiol 1990; 68 (1): 322–8

    PubMed  Google Scholar 

  125. 125.

    Sutton JR, Reeves JT, Wagner PD, et al. Operation Everest II: oxygen transport during exercise at extreme simulated altitude. J Appl Physiol 1988; 64 (4): 1309–21

    PubMed  CAS  Google Scholar 

  126. 126.

    Kivity S, Aharon YB, Man A, et al. The effect of caffeine on exercise-induced bronchoconstriction. Chest 1990; 97: 1083–5

    PubMed  CAS  Google Scholar 

  127. 127.

    Clubley M, Bye CE, Henson TA, et al. Effects of caffeine and cyclizine alone and in combination in human performance, subjective effects and EEG activity. Br J Clin Pharmacol 1979; 7: 157–63

    CAS  Google Scholar 

  128. 128.

    Borg GA. Perceived exertion: a note on history and methods. Med Sci Sports Exerc 1973; 5: 90–3

    CAS  Google Scholar 

  129. 129.

    Parry-Billings M, Bloomstrand E, McAndrew N, et al. A communicational link between skeletal muscle, brain, and cells of the immune system. Int J Sports Med 1990; 11 Suppl. 2: S122–S128

    PubMed  Google Scholar 

  130. 130.

    Wagenmakers AJM, Brookes JH, Coakley JH, et al. Exercise-induced activation of the branched-chain 2-oxo acid dehydrogenase in human muscle. Eur J Appl Physiol 1989; 59: 159–67

    CAS  Google Scholar 

  131. 131.

    Arushanyan EB, Belozertsev YA, Aivazov KG. Comparative effect of amphetamine and caffeine on spontaneous activity of sensomotor cortical units and their responses to stimulation of the caudate nucleus. Bull Exp Biol Med 1975; 77: 776–9

    PubMed  CAS  Google Scholar 

  132. 132.

    Waldeck B. Sensitization by caffeine of central catecholamine receptors. J Neural Transm 1973; 34: 61–72

    PubMed  CAS  Google Scholar 

  133. 133.

    Oldendorf WH. Brain uptake of metabolites and drugs following carotid artery injections. Trans Am Neuro Assoc 1971; 96: 46–50

    CAS  Google Scholar 

  134. 134.

    Berglund B, Hemmingsson P. Effects of caffeine ingestion on exercise performance at low and high altitudes in cross-country skiers. Int J Sports Med 1982; 3: 234–6

    PubMed  CAS  Google Scholar 

  135. 135.

    Perkins R, Williams MH. Effect of caffeine upon maximal muscular endurance of females. Med Sci Sports Exerc 1975; 7: 221–4

    CAS  Google Scholar 

  136. 136.

    Tamopolsky MA, Atkinson SA, MacDougall JD, et al. Whole body leucine metabolism during and after resistance exercise in fed humans. Med Sci Sports Exerc 1991; 23 (3): 326–33

    Google Scholar 

  137. 137.

    Conlee RK. Amphetamine, caffeine, and cocaine. In: Lamb, Murray, editors. Perspectives in exercise science and sports medicine. New York: Benchmark Press, 1990; 2: 285–310

    Google Scholar 

  138. 138.

    Sackett DL, Haynes RB, Tugwell P. Clinical epidemiology: a basic science for clinical medicine. Boston: Little, Brown & Co, 1985

    Google Scholar 

  139. 139.

    Tamopolsky LJ, MacDougall JD, Atkinson SA, et al. Gender differences in substrate for endurance exercise. J Appl Physiol 1990; 68 (1): 302–8

    Google Scholar 

  140. 140.

    Phillips S, Atkinson SA, Tamopolsky MA, et al. Gender differences in leucine kinetics and nitrogen balance in endurance athletes. J Appl Physiol 1994; 75 (5): In press

    Google Scholar 

  141. 141.

    Williams JH. Caffeine, neuromuscular function and high-intensity exercise performance. J Sports Med Phys Fitness 1991; 31: 481–9

    PubMed  CAS  Google Scholar 

  142. 142.

    Toner MM, Kirkendall DT, Delio DJ, et al. Metabolic and cardiovascular responses to exercise with caffeine. Ergonomics 1982; 25: 1175–83

    PubMed  CAS  Google Scholar 

  143. 143.

    Gaesser GA, Rich RG. Influence of caffeine on blood lactate responses during incremental exercise. Int J Sports Med 1985; 6: 207–11

    PubMed  CAS  Google Scholar 

  144. 144.

    Bond V, Adams R, Balkissoon B, et al. Effects of caffeine on cardiorespiratory function and glucose metabolism during rest and graded exercise. J Sports Med 1987; 27: 47–52

    CAS  Google Scholar 

  145. 145.

    Flinn S, Gregory J, McNaughton LR, et al. Caffeine ingestion prior to incremental cycling to exhaustion in recreational cyclists. Int J Sports Med 1990; 11 (3): 188–93

    PubMed  CAS  Google Scholar 

  146. 146.

    Anselme F, Collomp K, Mercier B, et al. Caffeine increases maximal anaerobic power and blood lactate concentration. Eur J Appl Physiol 1992; 65: 188–91

    CAS  Google Scholar 

  147. 147.

    Collomp K, Ahmaidi S, Audran M, et al. Effects of caffeine ingestion on performance and anaerobic metabolism during the Wingate test. Int J Sports Med 1991; 12 (5): 439–43

    PubMed  CAS  Google Scholar 

  148. 148.

    Collomp K, Ahmidi S, Chatard JC, et al. Benefits of caffeine ingestion on sprint performance in trained and untrained swimmers. Eur J Appl Physiol 1992; 64: 377–80

    CAS  Google Scholar 

  149. 149.

    Cadarette BS, Levine L, Beruhe CL, et al. Effects of varied dosages of caffeine on endurance exercise to fatigue. Biochem Exerc 1983; 13: 871–7

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mark A. Tarnopolsky.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tarnopolsky, M.A. Caffeine and Endurance Performance. Sports Med. 18, 109–125 (1994). https://doi.org/10.2165/00007256-199418020-00004

Download citation

Keywords

  • Caffeine
  • Sarcoplasmic Reticulum
  • Endurance Exercise
  • Muscle Glycogen
  • Respiratory Exchange Ratio