Advertisement

Sports Medicine

, Volume 18, Issue 1, pp 10–21 | Cite as

Haemorrheology and Long Term Exercise

  • D. Neuhaus
  • P. Gaehtgens
Review Article

Summary

In general, the small number of haemorrheological studies concerning acute changes in long term exercise reveals remarkably small effects, given the substantial changes of pertinent cardiorespiratory parameters. To a large extent, this appears to result from careful maintenance of extra- and intravascular water balance and adequate control of electrolytes.

Haemorrheological alterations during long term exercise depend on haematological parameters, especially haematocrit and plasma protein levels, which are acutely changed. During exercise, only small deviations of haematocrit from resting values are seen in the short term. This is explained by the usually constant plasma volume which depends on the amount of fluid intake during exercise. In contrast, the exercise-induced elevation of total intravascular protein content significantly increases the levels of plasma proteins, with the exception of fibrinogen. Although this leads to an increase of plasma viscosity, the absence of substantial haematocrit changes accounts for the remarkably small alterations, if any, of blood viscosity which are observed during long term exercise.

Endurance training causes haemodilution by expansion of plasma volume, thus resulting in a reduction of blood and plasma viscosity. Red cell deformability is variable with training as well as during exercise. This appears to be related to methodological problems of measurement as well as to the type of endurance exercise performed. Physiological considerations suggest that the importance, for aerobic work capacity, of haemorrheological changes occurring in long term (subaximal) exercise may be limited. By contrast, this may be different during maximal exercise activity, when the entire cardiovascular reserve has been fully recruited.

Keywords

Shear Rate Endurance Training Blood Viscosity Plasma Viscosity Marathon Running 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hollmann W, Hettinger T, editors. Sportmedizin — Arbeits- und Trainingsgrundlagen. 3rd ed. Stuttgart: Schattauer, 1990Google Scholar
  2. 2.
    Martini P, Pierach A, Schreyer E. Die Strömung des Blutes in engen Gefäßen. Eine Abweichung vom Poiseuille’sehen Gesetz. Dtsch Arch Klin Med 1930; 169: 212–2Google Scholar
  3. 3.
    Fahraeus R, Lindqvist T. The viscosity of the blood in narrow capillary tubes. Am J Physiol 1931; 96: 562–8Google Scholar
  4. 4.
    Gaehtgens P. Flow of blood through narrow capillaries: Theological mechanisms determining capillary hematocrit and apparent viscosity. Biorheology 1980; 17: 183–9PubMedGoogle Scholar
  5. 5.
    Gerbstädt H, Vogtmann C, Rüth P, et al. Die Scheinviskosität von Blut in Kapillaren kleinster Durchmesser. Naturwissenschaften 1966; 53: 526PubMedCrossRefGoogle Scholar
  6. 6.
    Pries AR, Neuhaus D, Gaehtgens P. Blood viscosity in tube flow: dependence on diameter and hematocrit. Am J Physiol 1992; 263: H1770–8PubMedGoogle Scholar
  7. 7.
    Reinke W, Gaehtgens P, Johnson PC. Blood viscosity in small tubes: effect of shear rate, aggregation and sedimentation. Am J Physiol 1987; 253: H540–7PubMedGoogle Scholar
  8. 8.
    Neuhaus D, Behn C, Gaehtgens P. Haemorrheology and exercise: intrinsic flow properties of blood in marathon running. Int J Sports Med 1992; 13: 506–11PubMedCrossRefGoogle Scholar
  9. 9.
    Reinke W, Johnson PC, Gaehtgens P. Effect of shear rate variation on apparent viscosity of human blood in tubes of 29 to 94 μm diameter. Circ Res 1986; 59: 124–32PubMedCrossRefGoogle Scholar
  10. 10.
    Lipowsky HH, Kovalcheck S, Zweifach BW. The distribution of blood rheological parameters in the microvasculature of cat mesentery. Circ Res 1978; 43: 738–49PubMedCrossRefGoogle Scholar
  11. 11.
    Whittaker RF, Winton FR. The apparent viscosity of blood flowing in the isolated hindlimb of the dog and its variation with corpuscular concentration. J Physiol (Lond) 1933; 78: 339–69Google Scholar
  12. 12.
    Cokelet GR. The rheology of human blood. In: Fung YC, Perrone N, Anliker M, editors. Biomechanics: its foundations and objectives. Englewood Cliffs, NJ: Prentice-Hall, 1972: 63–103Google Scholar
  13. 13.
    Gaehtgens P, Schickendantz S. Rheological properties of maternal and neonatal blood. Bibl Anat 1975; 13: 107–8PubMedGoogle Scholar
  14. 14.
    Neuhaus D, Fedde MR, Gaehtgens P. Changes in haemorrheology in the racing greyhound as related to oxygen delivery. Europ J Appl Physiol 1992; 65: 278–85CrossRefGoogle Scholar
  15. 15.
    Schmid-Schönbein H, Wells RE. Rheological properties of human erythrocytes and their influence upon the ’anomalous’ viscosity of blood. Ergebn Physiol 1971; 63: 146–219PubMedCrossRefGoogle Scholar
  16. 16.
    Chien S. Biophysical behaviour of red cells in suspensions. In: Surgenor DMN, editor. The red blood cell. Vol. 2. New York: Academic Press, 1975: 1031–133Google Scholar
  17. 17.
    Snyder LM, Fortier NL, Trainor J, et al. Effect of hydrogen peroxide exposure on normal human erythrocyte deform-ability, morphology, surface characteristics, and spectrin-haemoglobin cross-linking. J Clin Invest 1985; 76: 1971–7PubMedCrossRefGoogle Scholar
  18. 18.
    Dormandy J, Flute P, Matrai A, et al. The new St. George’s Filtrometer. Clin Hemorheol 1985; 5: 973–83Google Scholar
  19. 19.
    Jackson DM, Nutt ME. The effect of carbon dioxide on relative red cell volume. J Physiol (Lond) 1954; 123: 367–76Google Scholar
  20. 20.
    Ernst E, Schmidlechner C, Schmid M. Konträre hämorheologische Effekte von körperlicher Akut- und Dauerbelastung. Dtsch Zschr Sportmed 1985; 36: 259–64Google Scholar
  21. 21.
    Gueguen-Duchesne M, Durand F, Beillot J, et al. Effect of maximal physical exercise on haemorrheological parameters in top level sportsmen. Clin Hemorheol 1989; 9: 625–32Google Scholar
  22. 22.
    Letcher RL, Pickering TG, Chien S, et al. Effects of exercise on plasma viscosity in athletes and sedentary normal subjects. Clin Cardiol 1981; 4: 172–9PubMedCrossRefGoogle Scholar
  23. 23.
    Martin DG, Ferguson EW, Wigutoff S, et al. Blood viscosity responses to maximal exercise in endurance-trained and sedentary female subjects. J Appl Physiol 1985; 59: 348–53PubMedGoogle Scholar
  24. 24.
    Small M, Tweddel AC, Burns P, et al. The effects of maximal exercise on blood rheology in normal males with and without β-adrenoceptor antagonists. Clin Hemorheol 1985; 5: 281–9Google Scholar
  25. 25.
    Galea G, Davidson RJL. Hemorheology of marathon running. Int J Sports Med 1985; 6: 136–8PubMedCrossRefGoogle Scholar
  26. 26.
    Wood SC, Doyle MP, Appenzeller O. Effects of endurance training and long-distance running on blood viscosity. Med Sci Sports Exercise 1991; 3: 1265–9Google Scholar
  27. 27.
    Reinhart WH, Stäubli M, Straub PW Impaired red cell filterability with elimination of old red blood cells during a 100-km race. J Appl Physiol 1983; 54: 827–30PubMedGoogle Scholar
  28. 28.
    Lacombe C, Bucherer C, Lelièvre JC, et al. Effets hémorhéologiques consécutifs à des exercices physiques contrÔlés sur ergocycle. J Malad Vasc 1991; 16: 279–82Google Scholar
  29. 29.
    Vandewalle H, Lacombe C, Lelièvre JC, et al. Blood viscosity after a 1-h submaximal exercise with and without drinking. Int J Sports Med 1988; 9: 104–7PubMedCrossRefGoogle Scholar
  30. 30.
    Röcker L, Kirsch K, Wicke HJ, et al. Role of proteins in the regulation of plasma volume during heat stress and exercise. Israel J Med Sci 1976; 12: 840–3PubMedGoogle Scholar
  31. 31.
    Stäubli M, Roessler B. The mean red cell volume in long distance runners. Europ J Appl Physiol 1986; 55: 49–53CrossRefGoogle Scholar
  32. 32.
    Costill DL, Fink WJ. Plasma volume changes following exercise and thermal dehydration. J Appl Physiol 1974; 37: 521–5PubMedGoogle Scholar
  33. 33.
    Deitrick RW. Intravascular haemolysis in the recreational runner. Br J Sports Med 1991; 25: 183–6PubMedCrossRefGoogle Scholar
  34. 34.
    Maughan RJ, Whiting PH, Davidson RJL. Estimation of plasma volume changes during marathon running. Br J Sports Med 1985; 19: 138–41PubMedCrossRefGoogle Scholar
  35. 35.
    Pivarnik JM, Leeds EM, Wilkerson JE. Effects of endurance exercise on metabolic water production and plasma volume. J Appl Physiol 1984; 56: 613–8PubMedGoogle Scholar
  36. 36.
    Weber K. Das Verhalten verschiedener Plasmaproteine nach extremen Dauerlaufleistungen über die Marathonstrecke sowie über 100km [dissertation]. Köln: Universität zu Köln, 1977Google Scholar
  37. 37.
    Davidson RJL, Robertson JD, Galea G, et al. Hematological changes associated with marathon running. Int J Sports Med 1987; 8: 19–25PubMedCrossRefGoogle Scholar
  38. 38.
    Kolka MA, Stephenson LA, Wilkerson JE. Erythrocyte indices during a competitive marathon. J Appl Physiol 1982; 52: 168–72PubMedGoogle Scholar
  39. 39.
    Wells CL, Stern JR, Kohrt WM, et al. Fluid shifts with successive running and bicycling performance. Med Sci Sports Exercise 1987; 19: 137–42Google Scholar
  40. 40.
    Cohen RJ, Epstein SE, Cohen LS, et al. Alterations of fibrinolysis and blood coagulation induced by exercise, and the role of β-adrenergic receptor stimulation. Lancet 1968; 2: 1264–6PubMedCrossRefGoogle Scholar
  41. 41.
    Collen D, Semeraro N, Tricot JP, et al. Turnover of fibrinogen, plasminogen and prothrombin during exercise in man. J Appl Physiol 1977; 42: 865–73PubMedGoogle Scholar
  42. 42.
    Iatridis SG, Ferguson JH. Effect of physical exercise in blood clotting and fibrinolysis. J Appl Physiol 1963; 18: 337–44PubMedGoogle Scholar
  43. 43.
    Poortmans JR. Influence of physical exercise on proteins in biological fluids. In: Poortmans JR, editor. Biochemistry of exercise. Medicine and Sport. Vol. 3. Basel, New York: Karger, 1969: 312–27Google Scholar
  44. 44.
    Van Beaumont W. Evaluation of hemoconcentration from hematocrit measurements. J Appl Physiol 1972; 31: 712–3Google Scholar
  45. 45.
    Dill DB, Costill DL. Calculation of percentage changes in volumes of blood, plasma and red cells in dehydration. J Appl Physiol 1974; 37: 247–8PubMedGoogle Scholar
  46. 46.
    Senay Jr LC, Pivarnik JM. Fluid shifts during exercise. Exercise Sports Sci Rev 1985; 13: 335–87Google Scholar
  47. 47.
    Sparling PB, Nieman DC, O’Connor PJ. Selected scientific aspects of marathon racing. Sports Med 1993; 15: 116–32PubMedCrossRefGoogle Scholar
  48. 48.
    Behn C, Bauer M, Bühler H, et al. Red cell membrane protein changes in marathon running [abstract]. 8th International Biochemistry of Exercise Conference, Nagoya, Japan, 1991Google Scholar
  49. 49.
    Dickson DN, Wilkinson RL, Noakes TD. Effects of ultra-marathon training and racing on haematological parameters and serum ferritin levels in well-trained athletes. Int J Sports Med 1981; 3: 111–7CrossRefGoogle Scholar
  50. 50.
    Taylor C, Rogers G, Goodman C. Haematological, iron-related and acute phase protein responses to sustained strenuous exercise. J Appl Physiol 1987; 62: 464–9PubMedGoogle Scholar
  51. 51.
    O’Toole ML, Hiller WDB, Roalstad MS, et al. Hemolysis during triathlon races: its relation to race distance. Med Sci Sports Exerc 1988; 20: 272–5PubMedCrossRefGoogle Scholar
  52. 52.
    Selby GB, Eichner ER. Endurance swimming, intravascular hemolysis, anemia and iron depletion. Am J Med 1986; 81: 791–4PubMedCrossRefGoogle Scholar
  53. 53.
    Liesen H, Dufaux B, Hollmann W. Ausdauertraining und natürliche Proteinaseinhibitoren: Der Einfluß auf die Plasmavolumenregulation in Ruhe und bei dosierter körperlicher Belastung. Dtsch Zschr Sportmed 1978; 29: 37–44Google Scholar
  54. 54.
    Oscai LB, Williams BT, Hertig BA. Effect of exercise on blood volume. J Appl Physiol 1968; 24: 622–4PubMedGoogle Scholar
  55. 55.
    Charm SE, Paz H, Kurland GS. Reduced plasma viscosity among joggers compared with non-joggers. Biorheology 1979; 16: 185–9PubMedGoogle Scholar
  56. 56.
    Ernst E, Matrai A, Aschenbrenner E. Blood rheology in athletes. J Sports Med 1985; 25: 207–10Google Scholar
  57. 57.
    Ernst E, Stumvoll M, Matrai A. Blutrheologie bei Ausdauertrainierten. Dtsch Zschr Sportmed 1987; 38: 47–8Google Scholar
  58. 58.
    Lampe L, Wienhold K, Meyer G, et al. Der Einfluß unterschiedlicher Trainingsqualitäten auf die Blutfluidität. Dtsch Zschr Sportmed 1990; 41: 78–84Google Scholar
  59. 59.
    Dintenfass L, Lake B. Exercise fitness, cardiac work and blood viscosity factors in patients and normals. Eur Surg Res 1976; 8: 174–84PubMedCrossRefGoogle Scholar
  60. 60.
    Matrai A, Stöhr S, Paulsen F, et al. Zur Beziehung zwischen Hämorheologie und körperlicher Leistung bei untrainierten Freiwilligen. Zschr Physik Med 1986; 15: 424–6Google Scholar
  61. 61.
    Eichner ER. Runners’ macrocytosis: a clue to footstrike haemolysis. Runners’ anaemia as a benefit vs runners’ haemolysis as a detriment. Am J Med 1985; 78: 321–5PubMedCrossRefGoogle Scholar
  62. 62.
    Hunding A, Jordal R, Paulev PE. Runners’ anaemia and iron deficiency. Acta Med Scand 1981; 209: 315–8PubMedCrossRefGoogle Scholar
  63. 63.
    Johnson JM. Circulation of skeletal muscle. In: Patton HD, Fuchs AF, Hille B, et al., editors. Textbook of physiology. Vol. 2. Philadelphia: Saunders, 1989: 887–97Google Scholar
  64. 64.
    Stegemann J, editor. Leistungsphysiologie. Stuttgart: Thieme, 1977Google Scholar
  65. 65.
    Shepherd AP, Riedel GL. Optimal hematocrit for oxygenation of canine intestine. Circ Res 1982; 51: 233–40PubMedCrossRefGoogle Scholar
  66. 66.
    Guyton AC, Richardson TQ. Effect of haematocrit on venous return. Circ Res 1961; 9: 157–64PubMedCrossRefGoogle Scholar
  67. 67.
    Meßmer K, Sunder-Plassmann L, Klövekorn WP, et al. Circulatory significance of hemodilution: rheological changes and limitations. Adv Microcirc 1972; 4: 1–77Google Scholar
  68. 68.
    Murray JF, Gold P, Johnson BL Jr. Systemic oxygen transport in induced normovolemic anemia and polycythemia. Am J Physiol 1962; 203: 720–4PubMedGoogle Scholar
  69. 69.
    Stone HO, Thompson Jr HK, Schmid-Nielsen K. Influence of erythrocytes on blood viscosity. Am J Physiol 1968; 214: 913–8PubMedGoogle Scholar
  70. 70.
    Gaehtgens P, Kreutz F, Albrecht KH. Optimal hematocrit for canine skeletal muscle during rhythmic isotonic exercise. Eur J Appl Physiol 1979; 41: 27–39CrossRefGoogle Scholar
  71. 71.
    Brien AJ, Simon TL. The effects of red blood cell infusion on 10-km race time. JAMA 1987; 257: 2761–5PubMedCrossRefGoogle Scholar
  72. 72.
    Buick FJ, Gledhill N, Froese AB, et al. Effect of induced erythrocythemia on aerobic work capacity. J Appl Physiol 1980; 48: 636–42PubMedGoogle Scholar
  73. 73.
    Ekblom B, Wilson G, Astrand PO. Central circulation during exercise after venesection and reinfusion of red blood cells. J Appl Physiol 1976; 40: 379–83PubMedGoogle Scholar
  74. 74.
    Thomson JM, Stone JA, Ginsburg AD, et al. O2 transport during exercise following blood reinfusion. J Appl Physiol Respirat Environ Exercise Physiol 1982; 53: 1213–9Google Scholar

Copyright information

© Adis International Limited 1994

Authors and Affiliations

  • D. Neuhaus
    • 1
  • P. Gaehtgens
    • 1
  1. 1.Department of PhysiologyFreie Universität BerlinBerlin 33Germany

Personalised recommendations