Skip to main content

The Effects of Early Mobilisation and Immobilisation on the Healing Process Following Muscle Injuries

Summary

The biological processes following muscle injury include 2 competitive events; regeneration of muscle fibres and the simultaneous production of granulation tissue. We have studied the effects of early mobilisation and immobilisation on the healing of rat gastrocnemius muscle fol-lowing partial rupture by a controlled contusion mechanism. Muscle fibre regeneration is inhibited by the formation of dense connective tissue scar. Immobilisation following injury limits the size of the connective tissue area formed within the site of injury; the penetration of muscle fibres through the connective tissue is prominent but their orientation is complex and not parallel with the uninjured muscle fibres. Immobilisation for longer than 1 week is followed by marked atrophy of the injured gastrocnemius muscle.

Mobilisation started immediately after injury is followed by a dense scar formation in the injury area prohibiting muscle regeneration. When mobilisation is started after a short period of immobilisation a better penetration of muscle fibre through the connective tissue is found and the orientation of regenerated muscle fibres is aligned with the uninjured muscle fibres. Although a little delay in healing processes in muscles mobilised after short immobilisation was found morphologically, the gain in strength and energy absorption capacity was quite similar and as good as that of muscles treated by early mobilisation alone.

This is a preview of subscription content, access via your institution.

References

  • Allbrook D. Skeletal muscle regeneration. Muscle and Nerve 4: 234–245, 1981

    PubMed  Article  CAS  Google Scholar 

  • Allbrook DB, W de Baker C, Kirkaldy-Willis WH. Muscle regeneration in experimental animals and in man. Journal of Bone and Joint Surgery 48B: 153–169, 1966

    Google Scholar 

  • Almekinders LC, Gilbert JA. Healing of experimental muscle strains and the effects of nonsteroidal anti-inflammatory medication. American Journal of Sports Medicine 14: 303–308, 1986

    PubMed  Article  CAS  Google Scholar 

  • Bailey AJ, Bazin S, Delaunay A. Changes in the nature of the collagen during development and resorption of granulation tissue. Biochemica et Biophysica Act 328: 283–390, 1973

    Google Scholar 

  • Bailey AJ, Shellswell GB, Duance VC. Identification and change of collagen types in differentiating myoblasts and developing chick muscle. Nature 278: 67–69, 1979

    PubMed  Article  CAS  Google Scholar 

  • Bailey AJ, Sims TJ. Chemistry of the collagen cross-links: nature of the cross-links in the polymorphic forms of dermal collagen during development. Biochemical Journal 153: 211–215, 1976

    PubMed  CAS  Google Scholar 

  • Bailey AJ, Sims TJ. Meat tenderness: distribution of molecular species of collagen in bovine muscle. Journal of the Science of Food and Agriculture (London) 28: 565–570, 1977

    Article  CAS  Google Scholar 

  • Barfred T. Experimental rupture of the Achilles tendon. Acta Orthopaedica Scandinavica 42: 406–423, 1971

    Article  Google Scholar 

  • Bosco C. Stretch-shortening cycle in skeletal muscle function: with special reference to elastic energy and potentiation of myoelectrical activity. Thesis, University of Jyväskylä, Finland, 1982

    Google Scholar 

  • Caplan A, Carlson B, Faulkner J, Fischman J, Garrett Jr W. Skeletal muscle. In Woo & Buckwalter, pp. 213–291. American Academy of Orthopaedic Surgeons Symposium, Savannah, 1988

    Google Scholar 

  • Carlson BM. Regeneration of the completely excised gastrocnemius muscle in the frog and rat from minced muscle fragments. Journal of Morphology 125: 447–472, 1968

    PubMed  Article  CAS  Google Scholar 

  • Carlson BM. Histological observations on the regeneration of mammalian and amphibian muscle. In Mauro A, et al. (Eds) Regeneration of striated muscle and myogenesis, Excerpta Medica, Amsterdam, 1970

    Google Scholar 

  • Carlson BM. The regeneration of skeletal muscle. A review. American Journal of Anatomy 137: 119–150, 1973

    PubMed  Article  CAS  Google Scholar 

  • Carlson BM, Faulkner JA. The regeneration of skeletal muscle fibers following injury. A review. Medicine and Science in Sports and Exercise 15: 187–198, 1983

    PubMed  Article  CAS  Google Scholar 

  • Cavagna GA, Dusman B, Margaria R. Positive work done by a previously stretched muscle. Journal of Applied Physiology 24: 21–32, 1968

    PubMed  CAS  Google Scholar 

  • Corrigan AB. The immediate treatment of muscle injuries in sportmen. Medical Journal of Australia 1: 926–928, 1965

    PubMed  CAS  Google Scholar 

  • Corrigan AB. Rehabilitation of injured football players. Medical Journal of Australia 4: 441–442, 1967

    Google Scholar 

  • Denny-Brown D. The influence of tension and innervation on the regeneration of skeletal muscle. Journal of Neuropathology and Experimental Neurology 10: 94–96, 1951

    PubMed  CAS  Google Scholar 

  • Duance VC, Restall DJ, Beard H, Bourne FJ, Bailey AJ. The location of three collagen types in skeletal muscle. FEBS Letters 79: 248–252, 1977

    PubMed  Article  CAS  Google Scholar 

  • Franke K. Verletzungen und Fehlbelastungsfolgen im Bereich der Sehnenansätze, Sehnen und Muskeln. In Franke K (Ed.) Traumatologic des Sports, VEB Verlag Volk und Gesundheit, Berlin, 1980

    Google Scholar 

  • Friedrich H, Biener K. Handballsportunfalle. Sportarzt und Sportmedizin 24: 236–249, 1973

    Google Scholar 

  • Garrett EW, Safran MR, Seaber AV, Glisson RR, Ribbeck BM. Biochemical comparison of stimulated and non-stimulated skeletal muscle pulled to failure. American Journal of Sports Medicine 15: 448–454, 1987

    PubMed  Article  Google Scholar 

  • Gay S, Viljanto J, Raekallio J, Penttinen R. Collagen types in early phases of wound healing in children. Acta Chirurgica Scandinavica 144: 205–211, 1978

    PubMed  CAS  Google Scholar 

  • Grinnell F, Billingh R, Burgess L. Distribution of fibronectin during wound healing in vivo. Journal of Investigative Dermatology 76: 181–189, 1981

    PubMed  Article  CAS  Google Scholar 

  • Hinrichsen K. Injuries in football. Journal of Sports Medicine 3: 31–36, 1963

    CAS  Google Scholar 

  • Hudlicka O. Muscle metabolism and blood flow. In Hudlicka O (Ed.) Muscle blood flow. Swets & Zeirlinger, BW, Amsterdam, 1973

    Google Scholar 

  • Hunt TK, Pai MP. The effect of ambient oxygen tensions on wound metabolism and collagen synthesis. Surgery, Gynecology and Obstetrics 135: 561–567, 1972

    PubMed  CAS  Google Scholar 

  • Hurme T, Kalimo H. Adhesion in skeletal muscle during regeneration. Muscle and Nerve 15: 432–439, 1992

    Article  Google Scholar 

  • Hurme T, Kalimo H, Lento M, Järvinen M. Healing of a skeletal muscle injury. An ultrastructural and immunohistochemical study. Medicine and Science in Sports and Exercise 23: 801–810, 1991a

    PubMed  CAS  Google Scholar 

  • Hurme T, Kalimo H, Sandberg M, Lehto M, Vuorio E. Localization of type I and III collagen and fibronectin production in injured gastrocnemius muscle. Laboratory Investigation 64: 76–84, 1991b

    PubMed  CAS  Google Scholar 

  • Hurme T, Lehto M, Falck B, Tainio H, Kalimo H. Electromyography and morphology during regeneration of muscle injury in rat. Acta Physiologica Scandinavica 142: 443–456, 1991c

    PubMed  Article  CAS  Google Scholar 

  • Järvinen M. Healing of a crush injury in rat striated muscle. 2. A histological study of the effect of early mobilization and immobilization on the repair processes. Acta Pathologica et Microbiologica Scandinavica A 83: 269–282, 1975

    Google Scholar 

  • Järvinen M. Healing of a crush injury in rat striated muscle. 3. A microangiographical study of the effect of early mobilization and immobilization of capillary ingrowth. Acta Pathologica et Microbiologica Scandinavica A. 84: 85–94, 1976a

    Google Scholar 

  • Järvinen M. Healing of a crush injury in rat striated muscle. 4. Effect of early mobilization and immobilization on the tensile properties of gastrocnemius muscle. Acta Chirurgica Scandinavica 142: 47–56, 1976b

    PubMed  Google Scholar 

  • Järvinen M. Healing of a crush injury in rat striated muscle. With special reference to treatment by early mobilization and immobilization. Thesis, University of Turku, Finland 1976c

    Google Scholar 

  • Järvinen M. Immobilization effect of the tensile properties of striated muscle. An experimental study in the rat. Archives of Physical Medicine and Rehabilitation 58: 123–127, 1977

    PubMed  Google Scholar 

  • Järvinen M, Aho AJ, Lehto M, Toivonen H. Age-dependent repair of muscle rupture: a histological and microangiographical study in rats. Acta Orthopaedica Scandinavica 54: 64–74, 1983

    PubMed  Article  Google Scholar 

  • Järvinen M, Sorvari T. Healing of a crush injury in rat striated muscle. 1. Description and testing of a new method of inducing a standard injury to the calf muscles. Acta Pathologica et Microbiologica Scandinavica A 83: 259–265, 1975

    Google Scholar 

  • Järvinen M, Sorvari T. A histochemical study of the effect of mobilization and immobilization on the metabolism of healing muscle injury. In Landry F & Orban WAR Sports medicine, pp. 177–181. Symposia Specialists Inc., Miami, 1978

    Google Scholar 

  • Järvinen M, Lehto M, Sorvari T, Mikola A. Effects of some anti-inflammatory agents on the healing of striated muscle: an experimental study in rats. Journal of Sports Traumatology 14: 19–28, 1992

    Google Scholar 

  • Jozsa L, Järvinen M, Kvist M, Lehto M, Mikola A. Capillary density of tenotomized skeletal muscles. European Journal of Applied Physiology 44: 175–181, 1980

    Article  CAS  Google Scholar 

  • Jozsa L, Reffy A, Demel Z, Szilagyi I. Alterations of oxygen and carbon dioxide tensions in crush-injured calf muscles of rat. Zeitschrift fur Experimentelle Chirurgie 13: 91–94, 1980

    PubMed  CAS  Google Scholar 

  • Kellett J. Acute soft tissue injuries. A review of the literature. Medicine and Science in Sports and Exercise 18: 489–500, 1986

    PubMed  CAS  Google Scholar 

  • Knight KL. Guidelines for rehabilitation of sports injuries. Clinics in Sports Medicine 4: 405–416, 1985

    PubMed  CAS  Google Scholar 

  • Komi PV, Bosco C. Utilization of stored elastic energy in leg-extensor muscles by men and women. Medicine and Science in Sports 10: 261–265, 1978

    PubMed  CAS  Google Scholar 

  • Kurkinen M, Vaheri A, Roperts P, Stenman S. Sequential appearance of fibronectin and collagen in experimental granulation tissue. Laboratory Investigation 43: 47–51, 1980

    PubMed  CAS  Google Scholar 

  • Kvist H, Järvinen M, Sorvari T. Effect of mobilization and immobilization on the healing of contusion injury in muscle. Scandinavian Journal of Rehabilitation Medicine 6: 134–140, 1974

    PubMed  CAS  Google Scholar 

  • Kvist M, Järvinen M. Zur Epidemiologie von Sportverletzungen und Fehlbelastungsfolgen. Medizin und Sport 20: 373–378, 1980

    Google Scholar 

  • Lehto M. Collagen and fibronectin in a healing skeletal muscle injury. An experimental study in rats under variable states of physical activity. Thesis, University of Turku, Finland, 1983

    Google Scholar 

  • Lehto M, Alanen A. Healing of a muscle trauma-correlation of sonographical and histological findings. Journal of Ultrasound Medicine 6: 425–429, 1987

    CAS  Google Scholar 

  • Lehto M, Duance VC, Restall D. Collagen and fibronectin in a healing skeletal muscle injury: an immunohistochemical study of the effects of physical activity on the repair of injured gastrocnemius muscle in the rat. Journal of Bone and Joint Surgery 67-B: 820–827, 1985

    Google Scholar 

  • Lehto M, Järvinen M. Collagen and glycosaminoglycan synthesis of injured gastrocnemius muscle in rat. European Surgical Research 17: 179–185, 1985

    PubMed  Article  CAS  Google Scholar 

  • Lehto M, Järvinen M, Nelimarkka O. Scar formation in a healing skeletal muscle injury: a histological and autoradiographical study in rats. Archives of Orthopaedic and Trauma Surgery 104: 366–370, 1986

    Article  CAS  Google Scholar 

  • Lehto M, Sims TJ, Bailey AJ. Skeletal muscle injury — molecular changes in the collagen during healing. Research and Experimental Medicine 185: 95–106, 1985

    Article  CAS  Google Scholar 

  • Millar AP. Strains of the posterior calf musculature (‘tennis leg’). American Journal of Sports Medicine 3: 172–174, 1979

    Google Scholar 

  • Millar AP, Salmon J. Muscle tears. Australian Journal of Sports Medicine 2: 435–438, 1967

    Google Scholar 

  • Mosher DF. Cross-linking of cold-insoluble globulin by fibrin stabilizing factor. Journal of Biological Chemistry 250: 6614–6621, 1975

    PubMed  CAS  Google Scholar 

  • Niinikoski J. Cellular and nutritional interactions in healing wounds. Medical Biology 58: 303–309, 1980

    PubMed  CAS  Google Scholar 

  • Nicholau PK, MacDonald BL, Glisson RR, Seaber AV, Garrett WE. Biochemical and histological evaluation of muscle after controlled strain injury. American Journal of Sports Medicine 15: 9–14, 1987

    Article  Google Scholar 

  • O’Donoghue H (Ed.) Treatment of injuries to athletes, H.W.B. Saunders Company, Philadelphia, 1970

    Google Scholar 

  • Peterson L, Renström P. Sports injuries: their prevention and treatment, Martin Dunitz, London, 1986

    Google Scholar 

  • Plaghi L. Regeneration et myogenese du muscle strie. Journal de Physiologie (Paris) 80: 51–110, 1985

    Google Scholar 

  • Reznik M. Current concepts of skeletal muscle regeneration. In Pearson CM & Mostofi FK (Eds). The striated muscle, Williams & Wilkins, Baltimore 1973

    Google Scholar 

  • Ryan AJ. Quadriceps strain, rupture and charlie horse. Medicine and Science in Sports 2: 106–111, 1969

    Google Scholar 

  • Sasse J, von der Mark K, von der Mark H. AB collagen: a new marker for studies of muscle differentiation. Journal of Cell Biology 79: 323, 1978

    Google Scholar 

  • Shick G, Jerusalem F. Ultrastrukture Befunden in der fruhen Regenerationsphase des denervierten Rattenmuskels., Beitrage Zur Pathologie 148: 127–140, 1973

    Article  Google Scholar 

  • Schmalbruch H. The morphology of regeneration of skeletal muscles in the rat. Tissue and Cell 8: 673–692, 1976

    PubMed  Article  CAS  Google Scholar 

  • Schoefl GI. Studies on inflammation. III. Growing capillaries: their structure and permeability. Virchows Archiv A 337: 97–141, 1963

    Article  CAS  Google Scholar 

  • Sloper JC, Pegrum GD. Regeneration of crushed mammalian skeletal muscle and effects of steroids. Journal of Pathology and Bacteriology 93: 47–63, 1967

    PubMed  Article  CAS  Google Scholar 

  • Snow MH. Metabolic activity during the degenerative and early regenerative stages on skeletal muscle. Anatomical Record 176: 185–204, 1973

    PubMed  Article  CAS  Google Scholar 

  • Thorndike A. Athletic injuries, 4th ed., Lea & Febiger, Philadelphia, 1956

    Google Scholar 

  • Timpl R, Wick G, Gay S. Antibodies to distinct types of collagens and procollagens and their application in immunohistology. Journal of Immunological Methods 18: 165–182, 1977

    PubMed  Article  CAS  Google Scholar 

  • Tipton CM, James SL, Mergner W, Tcheng TK. Influence of exercise on the strength of the medial collateral knee ligament of dogs. American Journal of Physiology 218: 894–902, 1970

    PubMed  CAS  Google Scholar 

  • Tipton CM, Matthes RD, Maynard JA, Carey RA. The influence of physical activity on ligaments and tendons. Medicine and Science in Sports 7: 165–175, 1975

    PubMed  CAS  Google Scholar 

  • Tittel K, Otto H. Der Einfluss eines Lauftrainings unterschied-lichen Dauer und Intensitat auf die Hypertrophic, Zugfestig-keit und Dehnungsfahigkeit des straffen kollagenen Bindegew-ebes (am Beispiel der Achillessehne). Medizin und Sport 10: 308, 1970

    Google Scholar 

  • van Linge B. The response of muscle to strenuous exercise. Journal of Bone and Joint Surgery 44-B: 711–721, 1962

    Google Scholar 

  • Viidik A. Tensile strength properties of Achilles tendon systems in trained and untrained rabbit. Acta Orthopaedica Scandinavica 40: 261, 1969

    PubMed  Article  CAS  Google Scholar 

  • Viljanto J. Biochemical basis of tensile strength in wound healing: an experimental study with viscose cellulose sponges in rats. Acta Chirurgica Scandinavica (Suppl. 333): 1–101, 1964

    Google Scholar 

  • Viljanto J, Penttenen R, Raekallio J. Fibronectin in early phases of wound healing in children. Acta Chirurgica Scandinavica 147: 7–13, 1981

    PubMed  CAS  Google Scholar 

  • Welsh RP, Macnab I, Riley V. Biochemical studies of rabbit tendon. Clinical Orthopaedics 81: 171, 1971

    Article  CAS  Google Scholar 

  • Wiedeman H, Chung E, Fujii E, Miller EJ, Kuhn K. Comparative electron-microscope studies on type III and type I collagen. European Journal of Biochemistry 51: 363–368, 1975

    Article  Google Scholar 

  • Woodard C. What is active treatment? In Woodward C (Ed.) Sport injuries, Max Parrish & Co., London, 1954

    Google Scholar 

  • Zarins B, Ciullo JV. Acute muscle and tendon injuries in athletes. Clinics in Sports Medicine 2: 167–182, 1983

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Järvinen, M.J., Lehto, M.U.K. The Effects of Early Mobilisation and Immobilisation on the Healing Process Following Muscle Injuries. Sports Medicine 15, 78–89 (1993). https://doi.org/10.2165/00007256-199315020-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199315020-00002

Keywords

  • Gastrocnemius Muscle
  • Muscle Injury
  • Injured Area
  • Crush Injury
  • Energy Absorption Capacity