Skip to main content

Changes in β-Endorphin Levels in Response to Aerobic and Anaerobic Exercise

Summary

Exercise-induced increases in the peripheral β-endorphin concentration are mainly associated both with changes in pain perception and mood state and are possibly of importance in substrate metabolism. A more precise understanding of opioid function during exercise can be achieved by investigating the changes in β-endorphin concentrations dependent upon intensity and duration of physical exercise and in comparison to other stress hormones. Published studies reveal that incremental graded and short term anaerobic exercise lead to an increase in β-endorphin levels, the extent correlating with the lactate concentration. During incremental graded exercise β-endorphin levels increase when the anaerobic threshold has been exceeded or at the point of an overproportionate increase in lactate. In endurance exercise performed at a steady-state between lactate production and elimination, blood β-endorphin levels do not increase until exercise duration exceeds approximately 1 hour, with the increase being exponential thereafter. β-Endorphin and ACTH are secreted simultaneously during exercise, followed by a delayed release of Cortisol. It is not yet clear whether a relationship exists between the catecholamines and β-endorphin.

These results support a possible role of β-endorphin in changes of mood state and pain perception during endurance sports. In predominantly anaerobic exercise the behaviour of β-endorphin depends on the degree of metabolic demand, suggesting an influence of endogenous opioids on anaerobic capacity or acidosis tolerance. Further investigations are necessary to determine the role of β-endorphin in exercise-mediated physiological and psychological events.

This is a preview of subscription content, access via your institution.

References

  1. Allan EH, Green IC, Titheradge MA. The stimulation of glycogenosis and gluconeogenesis in isolated hepatocytes by opioid peptides. Biochemical Journal 216: 507–510, 1983

    PubMed  CAS  Google Scholar 

  2. Allen M. Activity-generated endorphins: a review of their roles in sports science. Canadian Journal of Applied Sport Sciences 8: 115–133, 1983

    CAS  Google Scholar 

  3. Arentz T, Meierleir K, Hollmann W. Die Rolle der endogenen opioiden Peptide während Fahrradergometerarbeit. Deutsche Zeitschrift für Sportmedizin 37: 210–219, 1986

    CAS  Google Scholar 

  4. Barron JL, Noakes TD, Levy W, Smith C, Millar RP. Hypothalamic dysfunction in overtrained athletes. Journal of Clinical Endocrinology and Metabolism 60: 803, 1985

    PubMed  Article  CAS  Google Scholar 

  5. Berkenbosch F, Vermes I, Binnekade R. Beta-adrenergic stimulation induces an increase of the plasma levels of immunoreactive alpha-MSH, beta-endorphin, ACTH and of corticos-terone. Life Sciences 29: 2249–2256, 1981

    PubMed  Article  CAS  Google Scholar 

  6. Bortz WM, Angevin P, Mefford IN, Boarder N, Noyce N, et al. Catecholamines, dopamine, and endorphin levels during extreme exercise. New England Journal of Medicine 305: 466–467, 1981

    PubMed  Google Scholar 

  7. Brooks S, Burrin J, Cheetham ME, Hall GM, Yeo T, et al. The responses of the catecholamines and β-endorphin to brief maximal exercise in man. European Journal of Applied Physiology 57: 230–234, 1988

    Article  CAS  Google Scholar 

  8. Bullen BA, Skrinar GS, Beitins IZ, Carr DB, Reppert SM, et al. Endurance training effects on plasma hormonal responsiveness and sex hormone excretion. Journal of Applied Physiology 56: 1453–1463, 1984

    PubMed  CAS  Google Scholar 

  9. Buono MJ, Yeager JE, Sucec AA. Effect of aerobic training on plasma ACTH response to exercise. Journal of Applied Physiology 63: 2499–2501, 1987

    PubMed  CAS  Google Scholar 

  10. Carr DB, Bullen BA, Skrinar GS, Arnold MA, Rosenblatt M, et al. Physical conditioning facilitates the exercise-induced secretion of β-endorphin and β-lipotropin in women. New England Journal of Medicine 305: 560–563, 1981

    PubMed  Article  CAS  Google Scholar 

  11. Chavkin C, Cox BM, Goldstein A. Stereo-specific opiate binding in the bovine adrenal medulla. Molecular Pharmacology 15: 751–753, 1979

    PubMed  CAS  Google Scholar 

  12. Colt EWD, Wardlaw SL, Frantz AG. The effect of running on plasma β-endorphin. Life Science 28: 1637–1640, 1981

    Article  CAS  Google Scholar 

  13. Dearman J, Francis KT. Plasma levels of catecholamines, Cortisol, and β-endorphins in male athletes after running 26.2, 6 and 2 miles, Journal of Sports Medicine 23: 30–38, 1983

    CAS  Google Scholar 

  14. De Meirleir K, Naaktgeboren N, Steirteghem V, Gorus F, Albrecht J, et al. Beta-endorphin and ACTH levels in peripheral blood during and after aerobic and anaerobic exercise. European Journal of Applied Physiology 55: 5–8, 1986

    Article  Google Scholar 

  15. Dent RRM, Guilleminault C, Albert LH. Diurnal rhythm of plasma immuno-reactive β-endorphin and its relationship to sleep stages and plasma rhythms of Cortisol and prolactin. Journal of Clinical Endocrinology and Metabolism 52: 942–947, 1981

    PubMed  Article  CAS  Google Scholar 

  16. Donevan RH, Andrew GM. Plasma β-endorphin immunoreactivity during graded cycle ergometry. Medicine and Science in Sports and Exercise 19: 229–233, 1987

    CAS  Google Scholar 

  17. Elias AN, Fairshter R, Pandian MR, Domurat E, Kayaleh R. β-Endorphin/β-lipotropin release and gonadotropin secretion after acute exercise in physicially conditioned males. European Journal of Applied Physiology 58: 522–527, 1989

    Article  CAS  Google Scholar 

  18. Emrich HM, Hollt V, Kissling W, Fischler M, Laspe H, et al. β-Endorphin-like immunoreactivity in cerebrospinal fluid and plasma of patients with schizophrenia and other neuropsychiatric disorders. Pharmakopsychiatrie 12: 269, 1979

    Article  CAS  Google Scholar 

  19. Estilo AE, Cottrell JE. Hemodynamic and catecholamine changes after administration of naloxone. Anesthesia and Analgesia 61: 349–353, 1982

    PubMed  Article  CAS  Google Scholar 

  20. Farrell PA, Garthwaite TL, Gustafson AB. Plasma adrenocorti-cotropin and Cortisol responses to submaximal and exhaustive exercise. Journal of Applied Physiology 55: 1441–1444, 1983

    PubMed  CAS  Google Scholar 

  21. Farrell PA, Gates WK, Morgan WP, Maksud MG. Increases in plasma β-endorphin/β-lipotropin immunoreactivity after treadmill running in humans. Journal of Applied Physiology 52: 1245–1249, 1982

    PubMed  CAS  Google Scholar 

  22. Farrell PA, Gustafson AB, Garthwaite TL, Kalkhoff A, Cowley AW, et al. Influence of endogenous opioids on the response of selected hormones to exercise in humans. Journal of Applied Physiology 61: 1051–1057, 1986

    PubMed  CAS  Google Scholar 

  23. Farrell PA, Kjaer M, Bach FW, Galbo H. β-endorphin and adrenocorticotropin response to supramaximal treadmill exercise in trained and untrained males. Acta Physiologica Scandinavica 130: 619–625, 1987

    PubMed  Article  CAS  Google Scholar 

  24. Fraioli F, Moretti C, Paolucci D, Alicicco E, Crescenzi F. Physical exercise stimulates marked concomitant release of β-endorphin and ACTH in peripheral blood in man. Experientia 36: 987–989, 1980

    PubMed  Article  CAS  Google Scholar 

  25. Fuchs E. Release rates of catecholamines, GABA and β-endorphin in the preoptic area and the mediobasal hypothalamus of the rhesus monkey in push-pull perfusates: correlati-on with blood hormone levels. Experimental Brain Research 65: 224–228, 1986

    Article  CAS  Google Scholar 

  26. Galbo H. Endocrinology and metabolism in exercise. International Journal of Sports Medicine 2: 203–211, 1981

    Article  Google Scholar 

  27. Gambert SR, Garthwaite TL, Pontzer CH, Cook EE, Tristani FE, et al. Running elevates plasma β-endorphin immunoreactivity and ACTH in un-trained human subjects. Proceedings of the Society for Experimental Biology and Medicine 168: 1–4, 1981

    PubMed  CAS  Google Scholar 

  28. Gerner RH, Sharp B, Catlin DH. Peripherally administered β-endorphin increases cerebrospinal fluid endorphin immunoreactivity. Journal of Clinical Endocrinology and Metabolism 55: 358–360, 1982

    PubMed  Article  CAS  Google Scholar 

  29. Gold MS, Redmond DE, Kleber HD. Clonidine blocks acute opiate withdrawal symptoms. Lancet 2: 599–602, 1978

    PubMed  Article  CAS  Google Scholar 

  30. Goldfarb AH, Hatfield BD, Armstrong D, Potts J. Plasma betaendorphin concentration: response to intensity and duration of exercise. Medicine and Science in Sports and Exercise 22: 241–244, 1990

    PubMed  CAS  Google Scholar 

  31. Goldfarb AH, Hatfield BD, Sforzo GA, Flynn MG. Serum β-endorphin levels during a graded exercise test to exhaustion. Medicine and Science in Sports and Exercise 19: 78–82, 1987

    PubMed  Article  CAS  Google Scholar 

  32. Grossman A. Endorphins: “opiates for the masses”. Medicine and Science in Sports and Exercise 17: 101–105, 1985

    PubMed  CAS  Google Scholar 

  33. Guillemin R, Vargo T, Rossier J, Minick S, Ling N, et al. β-endorphin and adrenocorticotropin are secreted concomitantly by the pituitary gland. Science 197: 1362–1369, 1977

    Article  Google Scholar 

  34. Haier RJ, Quaid K, Mills JSC. Naloxone alters pain perception after jogging. Psychiatry Research 5: 231–232, 1981

    PubMed  Article  CAS  Google Scholar 

  35. Harber VJ, Sutton JR. Endorphins and exercise. Sports Medicine 1: 154–171, 1984

    PubMed  Article  CAS  Google Scholar 

  36. Holaday JW. Cardiovascular effects of endogenous opioids. Annual Review of Pharmacology and Toxicology 23: 541–594,1983

    PubMed  Article  CAS  Google Scholar 

  37. Hollmann W, De Meirleir K. Gehirn und Sport — hämodynamische und biochemische Aspekte. Deutsche Zeitschrift für Sportmedizin 39: 56–64, 1988

    Google Scholar 

  38. Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR. Identification of two related pentapeptides from the brain with potent opiate against activity. Nature 258: 577–579, 1975

    PubMed  Article  CAS  Google Scholar 

  39. Janal MN, Colt EWD, Clark WC, Glusman M. Pain sensitivity, mood, and plasma endocrine levels in man following longdistance running: effects of naloxone. Pain 19: 13–25, 1984

    PubMed  Article  CAS  Google Scholar 

  40. Jungkunz G. Endogenous opiates increase pain tolerance after stress in humans. Psychiatry Research 8: 13–18, 1983

    PubMed  Article  CAS  Google Scholar 

  41. Keizer HA, Platen P, Koppeschaar H, de Vries WR, Vervoorn C, et al. Blunted β-endorphin responses to corticotropin releasing hormone and exercise after exhaustive training. Abstract. International Journal of Sports Medicine 12: 97, 1991

    Google Scholar 

  42. Kelso TB, Herbert WG, Gwazdauskas FC, Goss FL, Hess JL. Exercise — thermoregulatory stress and increased plasma β-endorphin/β-lipotropin in humans. Journal of Applied Physiology 57: 444–449, 1984

    PubMed  CAS  Google Scholar 

  43. Kemppainen P, Pertovaara A, Huopaniemi T, Johansson G, Karonen SL. Modification of dental pain and cutaneous thermal sensitivity by physical exercise in man. Brain Research 360: 33–40, 1985

    PubMed  Article  CAS  Google Scholar 

  44. Kindermann W. Das Übertraining — Ausdruck einer vegetativen Fehlsteuerung. Deutsche Zeitschrift für Sportmedizin 37: 238–245, 1986

    Google Scholar 

  45. Kindermann W, Schnabel A, Schmitt WM, Biro G, Hippchen M. Catecholamine, STH, Cortisol, Glucagon, Insulin und Sexu-alhormone bei körperlicher Belastung und Beta1-Blockade. Klinische Wochenschrift 60: 505–512, 1982

    PubMed  Article  CAS  Google Scholar 

  46. Kindermann W, Simon G, Keul J. The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. European Journal of Applied Physiology 42: 25–34, 1979

    Article  CAS  Google Scholar 

  47. Kraemer RR, Blair S, Kraemer GR, Castracane VD. Effects of treadmill running on plasma beta-endorphin, corticotropin, and cortisol levels in male and female 10k runners. European Journal of Applied Physiology 58: 845–851, 1989

    Article  CAS  Google Scholar 

  48. Kraemer WJ, Patton JF, Knuttgen HG, Marchitelli LJ, Cruthirds C, et al. Hypothalamic-pituitary-adrenal responses to short-duration high-intensity cycle exercise. Journal of Applied Physiology 66: 161–166, 1989

    PubMed  Article  CAS  Google Scholar 

  49. Langenfeld ME, Hart LS, Kao PC. Plasma β-endorphin responses to one-hour bicycling and running at 60% V̇2max. Medicine and Science in Sports and Exercise 19: 83–86, 1987

    PubMed  Article  CAS  Google Scholar 

  50. Li CH. β-endorphin: a pituitary peptide with potent morphinelike reactivity. Archives of Biochemistry and Biophysics 183: 595, 1977

    Google Scholar 

  51. Louisy F, Guezennec CY, Lartigue M, Aldigier JC, Galen FX. Influence of endogenous opioids on atrial natriuretic factor release during exercise in man. European Journal of Applied Physiology 59: 34–38, 1989

    Article  CAS  Google Scholar 

  52. Mader A, Liesen H, Heck H, Philippi H, Rost R, et al. Zur Beurteilung der sportartspezifischen Ausdauerleistungs-fähigkeit im Labor. Deutsche Zeitschrift für Sportmedizin 27: 80–112, 1976

    Google Scholar 

  53. Mains RE, Eipper BA, Ling N. Common precursor to corticotropins and endorphins. Proceedings of the National Academy of Sciences of the United States of America 74: 3014–3018, 1977

    PubMed  Article  CAS  Google Scholar 

  54. Mannelli M, Maggi M, De Feo ML, Cuomo S, Delitala G, Giusti G, Serio M. Effects of naloxone on catecholamine plasma levels in adult men. A dose-response study. Acta Endocrinologica 106: 357–361, 1984

    CAS  Google Scholar 

  55. Matsumura M, Fukushima T, Saito H, Saito S. In vivo and in vitro effects of β-endorphin on glucose metabolism in the rat. Hormone and Metabolic Research 16: 27–31, 1984

    PubMed  Article  CAS  Google Scholar 

  56. McDowell J, Kitchen I. Development of opioid systems: peptides, receptors and pharmacology. Brain Research Reviews 12: 397–421, 1987

    Article  CAS  Google Scholar 

  57. McMurray RG, Forsythe WA, Mar MH, Hardy CJ. Exercise intensity-related responses of β-endorphin and catecholamines. Medicine and Science in Sports and Exercise 19: 570–574, 1987

    PubMed  Article  CAS  Google Scholar 

  58. Mougin C, Baulay A, Henriet MT, Haton D, Jacquier MC, et al. Assessment of plasma opioid peptides, β-endorphin and metenkephalin at the end of an international nordic ski race. European Journal of Applied Physiology 56: 281–286, 1987

    Article  CAS  Google Scholar 

  59. Olausson R, Eriksson E, Ellmarker L, Rydenhag B, Shyu RC, Andersson SA. Effects of naloxone on dental pain threshold following muscle exercise and low frequency transcutaneous nerve stimulation: a comparative study in man. Acta Physiologica Scandinavica 126: 299–305, 1986

    PubMed  Article  CAS  Google Scholar 

  60. Oleshansky MA, Zoltick JM, Herman RH, Mougey EH, Meyerhoff JL. The influence of fitness on neuroendocrine responses to exhaustive treadmill exercise. European Journal of Applied Physiology 59: 405–410, 1990

    Article  CAS  Google Scholar 

  61. Oyama T, Jin T, Yamaya R. Profound analgesic effects of β-endorphin in man. Lancet 1: 122–124, 1980

    PubMed  Article  CAS  Google Scholar 

  62. Paulev PE, Thorboll JE, Nielsen U, Kruse P, Jordal R, et al. Opioid involvement in the perception of pain due to endurance exercise in trained man. Japanese Journal of Physiology 39: 67–74, 1989

    PubMed  Article  CAS  Google Scholar 

  63. Pertovaara A, Kemppainen P, Johansson G, Karonen SL. Ischemic pain nonsegmentally produces a predominant reduction of pain and thermal sensitivity in man: a selective role for endogenous opioids. Brain Research 251: 83–92, 1982

    PubMed  Article  CAS  Google Scholar 

  64. Petraglia F, Barletta C, Faccinetti F, Spinazzola F, Monzani A, et al. Response of circulating adrenocorticotropin, beta-endorphin, beta-lipotropin and Cortisol to athletic competition. Acta Endocrinologica 118: 332–336, 1988

    PubMed  CAS  Google Scholar 

  65. Petraglia F, Facchinetti F, Parrini D, Micieli G, De Luca S, et al. Simultaneous circadian variations of plasma ACTH, beta-lipotropin, beta-endorphin and Cortisol. Hormone Research 17: 147–152, 1983

    PubMed  Article  CAS  Google Scholar 

  66. Rahkila P, Hakala E, Alen N, Salminen K, Laatikainen T. Betaendorphin and corticotropin release is dependent on a threshold intensity of running in male endurance athletes. Life Sciences 43: 451–455, 1987a

    Google Scholar 

  67. Rahkila P, Hakala E, Salminen K, Laatikainen T. Responses of plasma endorphins to running exercises in male and female endurance athletes. Medicine and Sciences in Sports and Exercise 19: 451–455, 1987b

    CAS  Google Scholar 

  68. Schwarz L, Kindermann W. β-Endorphin, catecholamines, and Cortisol during exhaustive endurance exercise. International Journal of Sports Medicine 10: 324–328, 1989

    PubMed  Article  CAS  Google Scholar 

  69. Schwarz L, Kindermann W. β-Endorphin, adrenocorticotropic hormone, Cortisol and catecholamines during aerobic and anaerobic exercise. European Journal of Applied Physiology 61: 165–171, 1990

    Article  CAS  Google Scholar 

  70. Schwarz L, Kullmer T, Kindermann W. Einfluβ einer chronischen β-selektiven Blockade auf das β-Endorpninverhalten während erschöfender Ausdauerbelastung. In Böning D, et al. (Eds) Sport — Rettung oder Risiko für die Gesundheit?, pp. 166–170, Deutscher Ärzte Verlag, 166–170, Köln, 1989

    Google Scholar 

  71. Sforzo GA. Opioids and exercise: an update. Sports Medicine 7: 109–124, 1988

    Article  Google Scholar 

  72. Shyu BC, Andersson SA, Thoren P. Endorphin-mediated increase in pain threshold induced by long lasting exercise in rats. Life Science 30: 833–840, 1982

    Article  CAS  Google Scholar 

  73. Sjödin B, Jacobs I. Onset of blood lactate accumulation and marathon running performance. International Journal of Sports Medicine 2: 23–26, 1981

    PubMed  Article  Google Scholar 

  74. Speroff L. Getting high on running. Fertility and Sterility 36: 49–51, 1981

    Google Scholar 

  75. Stegmann H, Kindermann W. Comparison of prolonged exercise tests at the individual anaerobic threshold and the fixed anaerobic threshold of 4 mmol/L. International Journal of Sports Medicine 3: 105–110, 1982

    PubMed  Article  CAS  Google Scholar 

  76. Stegmann H, Kindermann W, Schnabel A. Lactate kinetics and individual anaerobic threshold. International Journal of Sports Medicine 2: 160–165, 1981

    PubMed  Article  CAS  Google Scholar 

  77. Sutton JR, Brown GM, Keane P, Walker WHC, Jones NL, et al. The role of endorphins in the hormonal control and psychological responses to exercise. International Journal of Sports Medicine 2: 19–24, 1982

    Google Scholar 

  78. Sweep CGJ, Wiegant VM. Release of β-endorphin-immunoreactivity from rat pituitary and hypothalamus in vitro: effects of isoproterenol, dopamine, corticotropin-releasing factor and arginine-vasopressin. Biochemical and Biophysical Research Communications 161: 221–228, 1989

    PubMed  Article  CAS  Google Scholar 

  79. raylor T, Dluhy RG, Williams GH. β-Endorphin suppresses ad-renocorticotropin and Cortisol levels in normal human subjects. Journal of Clinical Endocrinology and Metabolism 57: 592–596, 1983

    Article  Google Scholar 

  80. Tererenius L. Endorphins and modulation of pain. Advances in Neurology 33: 59–64, 1982

    Google Scholar 

  81. Thompson DA, Penicaud L, Welle SL, Jacobs LS. Pharmacological evidence for opioid and adrenergic mechanisms controlling growth hormone, prolactin, pancreatic polypeptide, and catecholamine levels in humans. Metabolism 34: 383–388, 1985

    PubMed  Article  CAS  Google Scholar 

  82. Vale W, Rivier C, Yang L, Minick S, Guillemin R. Effects of purified hypothalamic corticotrophin-releasing factor and other substances on the secretion of adrenocorticotropin and β-endorphin-like immunoreactivities in vitro. Endocrinology 103: 1910, 1978

    PubMed  Article  CAS  Google Scholar 

  83. Van Loon GR, Appel NM. β-endorphin induced increases in plasma dopamine, norepinephrine, and epinephrine. Research Communications in Chemical Pathology and Pharmacology 27: 607–610, 1980

    PubMed  Google Scholar 

  84. Vettor R, Manno M, De Carlo E, Federspiel G. Evidence for an involvement of opioid peptides in exercise-induced lipolysis in rats. Hormone and Metabolic Research 19: 282–283, 1987

    PubMed  Article  CAS  Google Scholar 

  85. Vuolteenaho O, Leppäluoto J, Männistö P. Rat plasma and hypothalamic β-endorphin levels fluctuate concomitantly with plasma corticosteroids during the day. Acta Physiologica Scandinavica 115: 515–516, 1982

    PubMed  Article  CAS  Google Scholar 

  86. Wildmann J, Krüger A, Schmole M, Niemann J, Matthaei H. Increase of circulating β-endorphin-like immunoreactivity correlates with the change in the feeling of pleasantness after running. Life Science 38: 997–1003, 1986

    Article  CAS  Google Scholar 

  87. Wilier JC, Denen H, Cambier J. Stress-induced analgesia in humans: endogenous opioids and naloxone-reversible depression of pain reflexes. Science 212: 689–691, 1981

    Article  Google Scholar 

  88. Young E, Akil H. Corticotropin-releasing factor stimulation of adrenocorticotropin and β-endorphin release: effects of acute and chronic stress. Endocrinology 117: 23–30, 1985

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wilfried Kindermann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schwarz, L., Kindermann, W. Changes in β-Endorphin Levels in Response to Aerobic and Anaerobic Exercise. Sports Medicine 13, 25–36 (1992). https://doi.org/10.2165/00007256-199213010-00003

Download citation

Keywords

  • Cortisol
  • Lactate Concentration
  • Endurance Exercise
  • Anaerobic Threshold
  • Apply Physiology