Skip to main content

Potassium Regulation during Exercise and Recovery

Summary

The concentrations of extracellular and intracellular potassium (K+) in skeletal muscle influence muscle cell function and are also important determinants of cardiovascular and respiratory function.

Several studies over the years have shown that exercise results in a release of K+ ions from contracting muscles which produces a decrease in intracellular K+ concentrations and an increase in plasma K+ concentrations. Following exercise there is a recovery of intracellular K+ concentrations in previously contracting muscle and plasma K+ concentrations rapidly return to resting values.

The cardiovascular and respiratory responses to K+ released by contracting muscle produce some changes which aid exercise performance. Increases in the interstitial K+ concentrations of contracting muscles stimulate CIII and CIV afferents to directly stimulate heart rate and the rate of ventilation. Localised K+ release causes a vasodilatation of the vascular bed within contracting muscle. This, together with the increase in cardiac output (through increased heart rate), results in an increase in blood flow to isometrically contracted muscle upon cessation of contraction and to dynamically contracting muscle. This exercise hyperaemia aids in the delivery of metabolic substrates to, and in the removal of metabolic endproducts from, contracting and recovering muscle tissues.

In contrast to the beneficial respiratory and cardiovascular effects of elevations in interstitial and plasma K+ concentrations, the responses of contracting muscle to decreases in intracellular K+ concentrations and increases in intracellular Na+ concentrations and extracellular K+ concentrations contribute to a reduction in the strength of muscular contraction. Muscle K+ loss has thus been cited as a major factor associated with or contributing to muscle fatigue.

The sarcolemma, because of changes in intracellular and extracellular K+ concentrations and Na+ concentrations on the membrane potential and cell excitability, contributes to a fatigue ‘safety mechanism’. The purpose of this safety mechanism would be to prevent the muscle cell from the self-destruction which is evident upon overload (metabolic insufficiency) of the tissues. The net loss of K+ and associated net gain of Na+ by contracting muscles may contribute to the pain and degenerative changes seen with prolonged exercise.

During exercise, mechanisms are brought into play which serve to regulate cellular and whole body K+ homeostasis. Increased rates of uptake of K+ by contracting muscles and inactive tissues through activation of the Na+-K+ pump serve to restore active muscle intracellular K+ concentrations towards precontraction levels and to prevent plasma K+ concentrations from rising to toxic levels. These effects are at least partially mediated by exercise-induced increases in plasma catecholamines, particularly adrenaline. Upon cessation of exercise intracellular K+ concentrations rapidly recover towards resting values, and this is associated with improvements in muscle contraction.

Training may result in an increase in intracellular K+ concentrations of resting muscle and relatively lower plasma K+ concentrations compared to values reported in untrained individuals. Also, a blunting of the exercise-induced hyperkalaemia in trained individuals is associated with a decrease in the net loss of K+ from contracting muscle; these observations have been attributed to an upregulation of Na+-K+ pump activity in both inactive tissues and active muscle.

This is a preview of subscription content, access via your institution.

References

  • Adam WR, Koretsky AP, Weiner MW. Measurement of tissue potassium in vivo using 39K nuclear magnetic resonance. Biophysics Journal 51: 265–271, 1987.

    CAS  Article  Google Scholar 

  • Ahlborg B, Bergstrom J, Ekelund L-G, Hultman E. Muscle glycogen and muscle electrolytes during prolonged physical exercise. Acta Physiologica Scandinavica 70: 129–142, 1967.

    CAS  Article  Google Scholar 

  • Andersen P, Saltin B. Maximal perfusion of skeletal muscle in man. Journal of Physiology (London) 366: 233–249, 1985.

    CAS  Google Scholar 

  • Anderson RL, Wilmore JH, Joyner MJ, Freund BJ, Hartzell AA, et al. Effects of cardioselective and nonselective beta-adrenergic blockade on the performance of highly trained runners. American Journal of Cardiology 55: 149D–154D, 1985.

    PubMed  CAS  Article  Google Scholar 

  • Ashcroft FM. Adenosine 5′-triphosphatase-sensitive potassium channels. Annual Review of Neuroscience 11: 97–118, 1988.

    PubMed  CAS  Article  Google Scholar 

  • Åstrand P-O, Saltin B. Oxygen uptake during the first minutes of heavy muscular exercise. Journal of Applied Physiology 16: 971–976, 1961.

    PubMed  Google Scholar 

  • Ballanyi K, Grafe P. Changes in intracellular ion activities induced by adrenaline in human and rat skeletal muscle. Pflugers Archives 411: 283–288, 1988.

    CAS  Article  Google Scholar 

  • Beam KG, Caldwell JH, Campbell DT. Sodium channels in skeletal muscle concentrated near the neuromuscular junction. Nature 313: 588–590, 1985.

    PubMed  CAS  Article  Google Scholar 

  • Bergstrom J. Muscle electrolytes in man: determined by neutron activation analysis on needle biopsy specimens: a study on normal subjects, kidney patients, and patients with chronic diarrhoea. Scandinavian Journal of Clinical and Laboratory Investigation 14(Suppl. 68): 1–110, 1962.

    Google Scholar 

  • Bergstrom J, Guarnieri G, Hultman E. Carbohydrate metabolism and electrolyte changes in human muscle tissue during heavy work. Journal of Applied Physiology 30: 122–125, 1971.

    PubMed  CAS  Google Scholar 

  • Bia MJ, DeFronzo RA. Extrarenal potassium homeostasis. American Journal of Physiology 240: F257–F268, 1981.

    PubMed  CAS  Google Scholar 

  • Bigland-Ritchie B, Cafarelli E, Vollestad NK. Fatigue of sub-maximal static contractions. Acta Physiologica Scandinavica 128(Suppl. 556): 137–148, 1986.

    Google Scholar 

  • Bigland-Ritchie B, Jones DA, Woods JA. Excitation frequency and muscle fatigue: electrical responses during human voluntary and stimulated contractions. Experimental Neurology 64: 414–427, 1979.

    PubMed  CAS  Article  Google Scholar 

  • Bigland-Ritchie B, Woods JJ. Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle & Nerve 7: 691–699, 1984.

    CAS  Article  Google Scholar 

  • Boning D, Tibes U, Schweigart U. Red cell hemoglobin, hydrogen ion and electrolyte concentrations during exercise in trained and untrained subjects. European Journal of Applied Physiology 35: 243–249, 1976.

    CAS  Article  Google Scholar 

  • Brown MJ, Brown DC, Murphy MB. Hypokalemia from beta2-receptor stimulation by circulating epinephrine. New England Journal of Medicine 309: 1414–1419, 1983.

    PubMed  CAS  Article  Google Scholar 

  • Busse MW, Maassen N. Effect of consecutive exercise bouts on plasma potassium concentration during exercise and recovery. Medicine and Science in Sports and Exercise 21: 489–493, 1989.

    PubMed  CAS  Google Scholar 

  • Busse MW, Maassen N, Konrad H, Boning D. Interrelationship between pH, plasma potassium concentration and ventilation during intense continuous exercise in man. European Journal of Applied Physiology 59: 256–261, 1989.

    CAS  Article  Google Scholar 

  • Campion DS. Resting membrane potential and ionic distribution in fast- and slow-twitch mammalian muscle. Journal of Clinical Investigation 54: 514–518, 1974.

    PubMed  CAS  Article  Google Scholar 

  • Carlsson E, Fellenius E, Lundborg P, Svensson L. Beta-adrenoceptor blockers, plasma potassium, and exercise. Lancet 2: 424–425, 1978.

    PubMed  CAS  Article  Google Scholar 

  • Castellino P, Simonson DC, DeFronzo RA. Adrenergic modulation of potassium metabolism during exercise in normal and diabetic humans. American Journal of Physiology 252: E68–E76, 1987.

    PubMed  CAS  Google Scholar 

  • Castle NA, Haylett DG. Effect of channel blockers on potassium efflux from metabolically exhausted frog skeletal muscle. Journal of Physiology (London) 383: 31–43, 1987.

    CAS  Google Scholar 

  • Clausen T. Regulation of active Na+-K+ transport in skeletal muscle. Physiological Reviews 66: 542–580, 1986.

    PubMed  CAS  Google Scholar 

  • Clausen T, Everts ME. Is the Na, K-pump capacity in skeletal muscle inadequate during sustained work? In Skou JC et al. (Eds) The Na+, K+-pump, Part B: cellular aspects, pp. 239–244, Alan R. Liss, New York, 1988.

    Google Scholar 

  • Clausen T, Everts ME. Regulation of the Na, K-pump in skeletal muscle. Kidney International 35: 1–13, 1989.

    PubMed  CAS  Article  Google Scholar 

  • Clausen T, Everts ME, Kjeldsen K. Quantification of the maximum capacity for active sodium-potassium transport in rat skeletal muscle. Journal of Physiology (London) 338: 163–181, 1987.

    Google Scholar 

  • Clausen T, Flatman JA. The effect of catecholamines on Na-K transport and membrane potential in rat soleus. Journal of Physiology (London) 270: 383–414, 1977.

    CAS  Google Scholar 

  • Costill DL, Saltin B. Muscle glycogen and electrolytes following exercise and thermal dehydration. In Howald and Poortmans (Eds) Metabolic adaptation to prolonged physical exercise, pp. 352–360, Birkhauser, Basel, 1975.

    Google Scholar 

  • Creese R, Hashish S, Scholes NW. Potassium movements in contracting diaphragm muscle. Journal of Physiology (London) 143: 307–324, 1958.

    CAS  Google Scholar 

  • Davies NW. Modulation of ATP-sensitive K+ channels in skeletal muscle by intracellular protons. Nature 343: 375–377, 1990.

    PubMed  CAS  Article  Google Scholar 

  • Davies NW, Spruce AE, Standen NB, Stanfield PR. Multiple blocking mechanisms of ATP-sensitive potassium channels of frog skeletal muscle by tetraethylammonium ions. Journal of Physiology (London) 413: 31–48, 1989.

    CAS  Google Scholar 

  • De Lanne R, Barnes JR, Brouha L. Changes in osmotic pressure and ionic concentrations of plasma during muscular work and recovery. Journal of Applied Physiology 14: 804–808, 1959.

    Google Scholar 

  • Donaldson SKB. Effect of acidosis on maximum force generation of peeled mammalian skeletal muscle fibers. In Knuttgen et al. (Eds) Biochemistry of exercise, International Series on Sport Sciences, Vol. 13, pp. 126–133, Human Kinetics, Champaign IL, 1983.

    Google Scholar 

  • Dorup I, Skajaa K, Clausen T, Kjeldsen K. Reduced concentrations of potassium, magnesium, and sodium-potassium pumps in skeletal muscle during treatment with diuretics. British Medical Journal 296: 455–458, 1988.

    PubMed  CAS  Article  Google Scholar 

  • Drahota Z. The ionic composition of various types of striated muscles. Physiologica Bohemoslovica 10: 160–165, 1961.

    Google Scholar 

  • Edwards RHT. Biochemical bases of fatigue in exercise performance: catastrophe theory of muscular fatigue. In Vogel et al. (Eds) Biochemistry of exercise, International Series on Sports Sciences, Vol. 13, pp. 3–28, Human Kinetics, Champaign IL, 1983.

    Google Scholar 

  • Everts ME, Retterstol K, Clausen T. Effects of adrenaline on excitation-induced stimulation of the sodium-potassium pump in rat skeletal muscle. Acta Physiologica Scandinavica 134: 189–198, 1988.

    PubMed  CAS  Article  Google Scholar 

  • Fenn WO. Electrolytes in muscle. Physiological Reviews 16: 450–487, 1936.

    CAS  Google Scholar 

  • Fenn WO. Factors affecting the loss of potassium from stimulated muscles. American Journal of Physiology 124: 213–229, 1938.

    CAS  Google Scholar 

  • Fink R, Luttgau HC. An evaluation of the membrane constants and the potassium conductance in metabolically exhausted muscle fibres. Journal of Physiology (London) 263: 215–238, 1976.

    CAS  Google Scholar 

  • Fink R, Hase S, Luttgau HC, Wettwer E. The effect of cellular energy reserves and internal calcium ions on the potassium conductance in skeletal muscle of the frog. Journal of Physiology (London) 336: 211–228, 1983.

    CAS  Google Scholar 

  • Gullestad L, Dolva LO, Nordby G, Skaaraas K, Larsen S, et al. The importance of potassium and lactate for maximal exercise performance during beta blockade. Scandinavian Journal of Clinical and Laboratory Investigation 49: 521–528, 1989.

    PubMed  CAS  Article  Google Scholar 

  • Henriksson J, Reitman JS. Time course of changes in human skeletal muscle succinate dehydrogenase and cytochrome oxidase activities and maximal oxygen uptake with physical activity and inactivity. Acta Physiologica Scandinavica 99: 91–97, 1977.

    PubMed  CAS  Article  Google Scholar 

  • Hermansen L, Orheim A, Sejersted OM. Metabolic acidosis and changes in water and electrolyte balance in relation to fatigue during maximal exercise of short duration. International Journal of Sports Medicine 5(Suppl.): 110–115, 1984.

    CAS  Article  Google Scholar 

  • Hespel P, Lijnen P, Fiocchi R, Van Oppens S, Vanden Eynde E, et al. Erythrocyte cations and Na+, K+-ATPase pump activity in athletes and sedentary subjects. European Journal of Applied Physiology 55: 24–29, 1986.

    CAS  Article  Google Scholar 

  • Hicks A, McComas AJ. Increased sodium pump activity following repetitive stimulation of rat soleus muscles. Journal of Physiology (London) 414: 337–349, 1989.

    CAS  Google Scholar 

  • Hirche H, Schumacher E, Hagemann H. Extracellular K+ concentration and K+ balance of the gastrocnemius muscle of the dog during exercise. Pfluegers Archivs 387: 231–237, 1980.

    CAS  Article  Google Scholar 

  • Hnik P, Holas M, Krekule I, Kriz N, Mejsnar J, et al. Work-induced potassium changes in skeletal muscle and effluent venous blood assessed by liquid ion-exchanger microelectrodes. Pfluegers Archivs 362: 85–94, 1976.

    CAS  Article  Google Scholar 

  • Hnik P, Vyskocil F, Ujec E, Vejsada R, Rehfeldt H. Work-induced potassium loss from skeletal muscles and its physiological implications. In Saltin (Ed.) Biochemistry of exercise VI, International Series on Sport Sciences, Vol. 16, pp. 345–364, Human Kinetics, Champaign IL, 1986.

    Google Scholar 

  • Hultman E. Studies on muscle metabolism of glycogen and active phosphate in man with special reference to exercise and diet. Scandinavian Journal of Clinical and Laboratory Investigation 14(Suppl. 94): 1–63, 1967.

    Google Scholar 

  • Hultman E, Bergstrom M, Spriet LL, Soderlund K. Energy metabolism and fatigue. In Taylor et al. (Eds) Biochemistry of exercise VII, International Series on Sport Sciences 21, pp. 73–92, Human Kinetics, Champaign IL, 1990

    Google Scholar 

  • Jones DP. Intracellular diffusion gradients of O2 and ATP. American Journal of Physiology 250: C663–C675, 1986.

    PubMed  CAS  Google Scholar 

  • Juel C. Potassium and sodium shifts during in vitro isometric muscle contraction, and the time course of ion-gradient recovery. Pfluegers Archivs 406: 458–463, 1986.

    CAS  Article  Google Scholar 

  • Juel C. Muscle action potential propagation velocity changes during activity. Muscle & Nerve 11: 714–719, 1988.a

    CAS  Article  Google Scholar 

  • Juel C. The effect of beta2-adrenoceptor activation on ion-shifts and fatigue in mouse soleus muscles stimulated in vitro. Acta Physiologica Scandinavica 134: 209–216, 1988.b

    PubMed  CAS  Article  Google Scholar 

  • Juel C, Bangsbo J, Graham T, Saltin B. Lactate and potassium fluxes from human skeletal muscle after intense, dynamic knee-extensor exercise. Acta Physiologica Scandinavica 140: 147–159, 1990.

    PubMed  CAS  Article  Google Scholar 

  • Katz A, Sahlin K, Juhlin-Danfelt A. Effect of β-adrenoceptor blockade on H+ and K+ flux in exercising humans. Journal of Applied Physiology 59: 336–341, 1985.

    PubMed  CAS  Google Scholar 

  • Kiens B, Saltin B. Endurance training of man decreases muscle potassium loss during exercise. Acta Physiologica Scandinavica 126: 20A, 1986.

    Google Scholar 

  • Kiens B, Saltin B, Walloe L, Wesche J. Temporal relationship between blood flow changes and release of ions and metabolites from muscle upon single weak contractions. Acta Physiologica Scandinavica 136: 551–559, 1989.

    PubMed  CAS  Article  Google Scholar 

  • Kilburn KH. Muscular origin of elevated plasma potassium during exercise. Journal of Applied Physiology 21: 675–678, 1966.

    PubMed  CAS  Google Scholar 

  • Kjaer M, Christensen NJ, Sonne B, Richter EA, Galbo H. Effect of exercise on epinephrine turnover in trained and untrained subjects. Journal of Applied Physiology 59: 1061–1067, 1985.

    PubMed  CAS  Google Scholar 

  • Kjaer M, Farrel PA, Christensen NJ, Galbo H. Increased epinephrine response and inaccurate glucoregulation in exercising athletes. Journal of Applied Physiology 61: 1693–1700, 1986.

    PubMed  CAS  Google Scholar 

  • Kjeldsen K. Regulation of the concentration of 3H-ouabain binding sites in mammalian skeletal muscle — effects of age, Kdepletion, thyroid status and hypertension. Danish Medical Bulletin 34: 15–46, 1987.

    PubMed  CAS  Google Scholar 

  • Kjeldsen K, Bjerregaard P, Richter EA, Thomsen PEB, Norgaard A. Na+, K+-ATPase concentration in rodent and human heart and skeletal muscle: apparent relation to muscle performance. Cardiovascular Research 22: 95–100, 1988.

    PubMed  CAS  Article  Google Scholar 

  • Kjeldsen K, Gron P. Skeletal muscle Na,K-pump concentration in children and its relationship to cardiac glycoside distribution. Journal of Pharmacological and Experimental Therapeutics 250: 721–725, 1989.

    CAS  Google Scholar 

  • Kjeldsen K, Norgaard A, Ostrup C, Hau C, Clausen C. Effects of training on exercise-induced hyperkalemia and the concentration of Na,K-pumps in human skeletal muscle. Acta Physiologica Scandinavica 129: 23A, 1987.

    Google Scholar 

  • Kjeldsen K, Richter EA, Galbo H, Lortie G, Clausen T. Training increases the concentration of [3H]ouabain-binding sites in rat skeletal muscle. Biochimica et Biophysica Acta 860: 708–712, 1986.

    PubMed  CAS  Article  Google Scholar 

  • Kjellmer I. The potassium ion as a vasodilator during muscular exercise. Acta Physiologica Scandinavica 63: 460–468, 1965.

    PubMed  CAS  Article  Google Scholar 

  • Klitgaard H, Clausen T. Increased total concentration of Na-K pumps in vastus lateralis muscle of old trained human subjects. Journal of Applied Physiology 67: 2491–2494, 1989.

    PubMed  CAS  Google Scholar 

  • Knochel JP, Blachley JD, Johnson JH, Carter NW. Muscle cell electrical hyperpolarization and reduced exercise hyperkalemia in physically conditioned dogs. Journal of Clinical Investigation 75: 740–745, 1985.

    PubMed  CAS  Article  Google Scholar 

  • Knochel JP, Dotin LN, Hamburger RJ. Pathophysiology of intense physical conditioning in a hot climate. Journal of Clinical Investigation 51: 242–255, 1972.

    PubMed  CAS  Article  Google Scholar 

  • Kolb H-A. Potassium channels in excitable and non-excitable cells. Reviews in Physiology, Biochemistry and Pharmacology 115: 51–91, 1990.

    CAS  Article  Google Scholar 

  • Kossler F, Lange F, Caffier G, Kochler G. Changes of the conduction velocity of isolated muscles induced by altered external potassium concentrations. Biomedica et Biochimica Acta 48: S465–S470, 1989.

    CAS  Google Scholar 

  • Kowalchuk JM, Heigenhauser GJF, Lindinger MI, Obminski G, Sutton JR, et al. Role of lungs and inactive muscle in acid-base control after maximal exercise. Journal of Applied Physiology 65: 2090–2096, 1988.b

    PubMed  CAS  Google Scholar 

  • Kowalchuk JM, Heigenhauser GJF, Lindinger MI, Sutton JR, Jones NL. Factors influencing hydrogen ion concentration in muscle after intense exercise. Journal of Applied Physiology 65: 2080–2089, 1988.a

    PubMed  CAS  Google Scholar 

  • Leader JP, Bray JJ, MacKnight ADC, Mason DR, McCaig D, et al. Cellular ions in intact and denervated muscles of the rat. Journal of Membrane Biology 81: 19–27, 1984.

    PubMed  CAS  Article  Google Scholar 

  • LeBlanc J, Jobin M, Cote J, Samson P, LaBrie A. Enhanced metabolic response to caffeine in exercise-trained human subjects. Journal of Applied Physiology 59: 832–837, 1985.

    PubMed  CAS  Google Scholar 

  • Lindinger MI, Heigenhauser GJF. Intracellular ion content of skeletal muscle measured by instrumental neutron activation analysis. Journal of Applied Physiology 63: 426–433, 1987.

    PubMed  CAS  Google Scholar 

  • Lindinger MI, Heigenhauser GJF. Ion fluxes during tetanic stimulation in isolated perfused rat hindlimb. American Journal of Physiology 254: R117–R126, 1988.

    PubMed  CAS  Google Scholar 

  • Lindinger MI, Heigenhauser GJF, McKelvie RS. Lactate and K+ shuttling in man during intense exercise. Canadian Journal of Physiology and Pharmacology 68(5): Axix, 1990a.

    Google Scholar 

  • Lindinger MI, Heigenhauser GJF, McKelvie RS, Jones NL. Role of nonworking muscle on blood metabolites and ions with intense intermittent exercise. American Journal of Physiology 258: R1486–R1494, 1990.b

    PubMed  CAS  Google Scholar 

  • Lindinger MI, Heigenhauser GJF, McKelvie RS, Jones NL. Blood ion regulation during repeated maximal exercise and recovery in humans. American Journal of Physiology, in press, 1991.

  • Lindinger MI, Heigenhauser GJF, Spriet LL. Effects of intense swimming and tetanic electrical stimulation on skeletal muscle ions and metabolites. Journal of Applied Physiology 63: 2331–2339, 1987.

    PubMed  CAS  Google Scholar 

  • McCloskey DI, Mitchell JH. Reflex cardiovascular and respiratory responses originating in exercising muscle. Journal of Physiology (London) 224: 173–186, 1972.

    CAS  Google Scholar 

  • McKelvie RS, Lindinger MI, Heigenhauser GJF. Ion changes in arterial red blood cells in maximal exercise. Medicine and Science in Sports and Exercise 19(Suppl. 2): S86, 1987.

    Google Scholar 

  • Medbo JJ, Sejersted OM. Plasma potassium changes with high intensity exercise. Journal of Physiology (London) 421: 105–122, 1990.

    CAS  Google Scholar 

  • Miller RG, Giannini D, Milner-Brown HS, Layzer RB, Koretsky AP, et al. Effects of fatiguing exercise on high-energy phosphates, force, and EMG: evidence for three phases of recovery. Muscle & Nerve 10: 810–821, 1987.

    CAS  Article  Google Scholar 

  • Milner-Brown HS, Miller RG. Muscle membrane excitation and impulse propagation velocity are reduced during muscle fatigue. Muscle & Nerve 9: 367–374, 1986.

    CAS  Article  Google Scholar 

  • Mitchell JH, Reardon WC, McCloskey DI. Reflex effects on circulation and respiration from contracting skeletal muscle. American Journal of Physiology 233: H374–H378, 1977.

    PubMed  CAS  Google Scholar 

  • Mohrman DE, Sparks HV. Role of potassium ions in the vascular response to a brief tetanus. Circulation Research 35: 384–390, 1974.

    PubMed  CAS  Article  Google Scholar 

  • Moss RF, Raven PB, Knochel JP, Peckham JR, Blachley JD. The effect of training on resting membrane potentials. In Knuttgen et al. (Eds) Biochemistry of exercise, International Series on Sports Sciences 13, pp. 806–811, Human Kinetics Publishers, Champaign IL, 1983.

    Google Scholar 

  • Nielsen B, Sjøgaard G, Bonde-Petersen F. Cardiovascular, hormonal and body fluid changes during prolonged exercise. European Journal of Applied Physiology 53: 63–70, 1984.

    CAS  Article  Google Scholar 

  • Nielsen B, Sjøgaard G, Ugelvig J, Knudsen B, Dohlmann B. Fluid balance in exercise dehydration and rehydration with different glucose-electrolyte drinks. European Journal of Applied Physiology 55: 318–325, 1986.

    CAS  Article  Google Scholar 

  • Norgaard A, Kjeldsen K, Clausen T. A method for the determination of the total number of 3H-ouabain binding sites in biopsies of human skeletal muscle. Scandinavian Journal of Clinical and Laboratory Investigation 44: 509–518, 1984.

    PubMed  CAS  Article  Google Scholar 

  • Olszewski W, Engeset A, Haeger PM, Sokolowski J, Theodorsen L. Flow and composition of leg lymph in normal men during venous sepsis, muscular activity and local hyperthermia. Acta Physiologica Scandinavica 99: 149–155, 1977.

    PubMed  CAS  Article  Google Scholar 

  • Reinhart WH, Staubli M, Straub PW. Impaired red cell filtrability with elimination of old red blood cells during a 100-km race. Journal of Applied Physiology 54: 827–830, 1983.

    PubMed  CAS  Google Scholar 

  • Rogus EM, Cheng LC, Zierler K. β-Adrenergic effect on Na+-K+ transport in rat skeletal muscle. Biochimica et Biophysica Acta 464: 347–355, 1977.

    PubMed  CAS  Article  Google Scholar 

  • Rolett EL, Strange S, Sjogaard G, Kiens B, Saltin B. β2-Adrenergic stimulation does not prevent potassium loss from exercising quadriceps muscle. American Journal of Physiology 258: R1192–R1200, 1990.

    PubMed  CAS  Google Scholar 

  • Sahlin K, Broberg S. Release of K+ from muscle during prolonged dynamic exercise. Acta Physiologica Scandinavica 136: 293–294, 1989.

    PubMed  CAS  Article  Google Scholar 

  • Sahlin K, Henriksson J, Juhlin-Dahnfelt A. Intracellular pH and electrolytes in human skeletal muscle during adrenaline and insulin infusions. Clinical Science 67: 461–464, 1984.

    PubMed  CAS  Google Scholar 

  • Saltin B, Sjøgaard G, Gaffney FA, Rowell LB. Potassium, lactate, and water fluxes in human quadriceps muscle during static contractions. Circulation Research 48(Suppl. I): I18–I24, 1981.

    PubMed  CAS  Google Scholar 

  • Sandercock TG, Faulkner JA, Albers JW, Abbrecht PH. Single motor unit and fiber action potentials during fatigue. Journal of Applied Physiology 58: 1073–1079, 1985.

    PubMed  CAS  Google Scholar 

  • Shetty RPM, Krishna DJ, Macchia DD. Effects of albumin on resting membrane potential of toad semitendinosus muscles. Pfluegers Archivs 404: 83–85, 1985.

    CAS  Article  Google Scholar 

  • Shiota M, Sugano T. Characteristics of rat hindlimbs perfused with erythrocyte- and albumin-free medium. American Journal of Physiology 251: C78–C84, 1986.

    PubMed  CAS  Google Scholar 

  • Sjøgaard G. Electrolytes in slow and fast muscle fibers of humans at rest and with dynamic exercise. American Journal of Physiology 245: R25–R31, 1983.

    PubMed  Google Scholar 

  • Sjøgaard G. Water and electrolyte fluxes during exercise and their relation to muscle fatigue. Acta Physiologica Scandinavica 128(Suppl. 556): 129–136, 1986.

    Google Scholar 

  • Sjøgaard G. Muscle energy metabolism and electrolyte shifts during low-level prolonged static contraction in man. Acta Physiologica Scandinavica 134: 181–187, 1988.

    PubMed  Article  Google Scholar 

  • Sjøgaard G. Exercise-induced muscle fatigue: the significance of potassium. Acta Physiologica Scandinavica 140(Suppl. 593): 1–63, 1990.

    Google Scholar 

  • Sjøgaard G, Adams RP, Saltin B. Water and ion shifts in skeletal muscle of humans with intense dynamic knee extension. American Journal of Physiology 248: R190–R196, 1985.

    PubMed  Google Scholar 

  • Sjøgaard G, Saltin B. Extra- and intracellular water spaces in muscles of man at rest and with dynamic exercise. American Journal of Physiology 243: R271–R280, 1982.

    PubMed  Google Scholar 

  • Skou JC. Enzymatic basis for active transport of Na+ and K+ across cell membrane. Physiological Reviews 45: 596–617, 1965.

    PubMed  CAS  Google Scholar 

  • Spriet LL, Lindinger MI, McKelvie RS, Heigenhauser GJF, Jones NL. Muscle glycogenolysis and hydrogen ion concentration during maximal intermittent cycling. Journal of Applied Physiology 66: 8–13, 1989.

    PubMed  CAS  Google Scholar 

  • Spruce AE, Standen NB, Stanfield PR. Voltage-dependent, ATP-sensitive potassium channels of skeletal muscle membrane. Nature 316: 736–738, 1985.

    PubMed  CAS  Article  Google Scholar 

  • Spruce AE, Standen NB, Stanfield PR. Studies of the unitary properties of adenosine-5′-triphosphate-regulated potassium channels of frog skeletal muscle. Journal of Physiology (London) 382: 213–236, 1987.

    CAS  Google Scholar 

  • Sreter FA. Cell water, sodium, and potassium in stimulated red and white mammalian muscles. American Journal of Physiology 205: 1295–1298, 1963.

    PubMed  CAS  Google Scholar 

  • Tibes U, Haberkorn-Butendeich E, Hammersen F. Effect of contraction on lymphatic, venous, and tissue electrolytes and metabolites in rabbit skeletal muscle. Pfluegers Archivs 368: 195–202, 1977.

    CAS  Article  Google Scholar 

  • Tibes U, Hemmer B, Boning D, Schweigart U. Relationships of femoral venous [K+], [H+], PO2, osmolality, and [orthophosphate] with heart rate, ventilation, and leg blood flow during bicycle exercise in athletes and nonathletes. European Journal of Applied Physiology 35: 201–214, 1976.

    CAS  Article  Google Scholar 

  • Tibes U, Hemmer B, Schweigart U, Boning D, Fotescu D. Exercise acidosis as a cause of electrolyte changes in femoral venous blood of trained and untrained man. Pfluegers Archivs 347: 145–158, 1974.

    CAS  Article  Google Scholar 

  • Van Beaumont W, Strand JC, Petrosfsky JS, Hipskind SG, Greenleaf JE. Changes in total plasma content of electrolytes and proteins with maximal exercise. Journal of Applied Physiology 34: 102–106, 1973.

    PubMed  Google Scholar 

  • Van Beaumont W, Underkofler S, Van Beaumont S. Erythrocyte volume, plasma volume, and acid-base changes in exercise and heat dehydration. Journal of Applied Physiology 50: 1255–1262, 1981.

    PubMed  Google Scholar 

  • Vick RL, Todd EP, Luedke DW. Epinephrine-induced hypokalemia: relation to liver and skeletal muscle. Journal of Pharmacology and Experimental Therapeutics 181: 139–146, 1972.

    PubMed  CAS  Google Scholar 

  • Vollestad NK, Sejersted OM. Plasma K+ during exercise of various intensity in normal humans. Clinical Physiology 5: 151, 1985.

    Google Scholar 

  • Vollestad NK, Sejersted OM. Changes in plasma K+ during different types and intensities of exercise in man. Acta Physiologica Scandinavica 134(Suppl. 575): S24, 1988.

    Google Scholar 

  • Vyskocil F, Hnik P, Rehfeldt H, Vejsada R, Ujec E. The measurement of K+ concentration changes in human skeletal muscles during volitional contractions. Pfluegers Archivs 399: 235–237, 1983.

    CAS  Article  Google Scholar 

  • Weik R, Neumcke B. ATP-sensitive potassium channels in adult mouse skeletal muscle: characterization of the ATP-binding site. Journal of Membrane Biology 110: 217–226, 1989.

    PubMed  CAS  Article  Google Scholar 

  • Weiss JN, Lamp ST. Cardiac ATP-sensitive K+ channels: evidence for preferential regulation by glycolysis. Journal of General Physiology 94: 911–935, 1989.

    PubMed  CAS  Article  Google Scholar 

  • Westerblad H, Lannergren J. Force and membrane potential during and after fatiguing, intermittent tetanic stimulation of single Xenopus muscle fibres. Acta Physiologica Scandinavica 128: 369–378, 1986.

    PubMed  CAS  Article  Google Scholar 

  • Wilkerson JE, Horvath SM, Gutin B, Molnar S, Diaz FJ. Plasma electrolyte content and concentration during treadmill exercise in humans. Journal of Applied Physiology 53: 1529–1539, 1982.

    PubMed  CAS  Google Scholar 

  • Williams ME, Gervino EV, Rosa RM, Landsberg L, Young JB, et al. Catecholamine modulation of rapid potassium shifts during exercise. New England Journal of Medicine 312: 823–827, 1985.

    PubMed  CAS  Article  Google Scholar 

  • Williams ME, Rosa RM, Silva P, Brown RS, Epstein FH. Impairment of extrarenal potassium disposal by α-adrenergic stimulation. New England Journal of Medicine 311: 145–149, 1984.

    PubMed  CAS  Article  Google Scholar 

  • Yonemura K. Resting and action potentials in red and white muscle of the rat. Japanese Journal of Physiology 17: 708–719, 1967.

    PubMed  CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lindinger, M.I., Sjøgaard, G. Potassium Regulation during Exercise and Recovery. Sports Medicine 11, 382–401 (1991). https://doi.org/10.2165/00007256-199111060-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199111060-00004

Keywords

  • Skeletal Muscle
  • Muscle Fatigue
  • Rest Membrane Potential
  • Human Skeletal Muscle
  • Apply Physiology