Advertisement

Sports Medicine

, Volume 11, Issue 6, pp 351–357 | Cite as

Cycle Ergometry and Maximal Intensity Exercise

  • E. M. Winter
Leading Article

Keywords

Power Output Apply Physiology Peak Power Output Cycle Ergometry Anaerobic Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott BC, Bigland B, Ritchie JM. The physiological cost of negative work. Journal of Physiology 117: 380–390, 1952.PubMedGoogle Scholar
  2. Abbott BC, Bigland B. The effects of force and speed changes on the rate of oxygen consumption during negative work. Journal of Physiology 120: 319–325, 1953.PubMedGoogle Scholar
  3. Adamson GT, Whitney RJ. Critical appraisal of jumping as a measure of human power. In J. Vredenbregt and J. Wartenweiler (Eds) Medicine and sport 6, Biomechanics II, pp. 208–211, S. Karger, Basel, 1971.Google Scholar
  4. Armstrong N, Davies B, Heal M. The specificity of energy utilisation in trained and untrained adolescent boys. British Journal of Sports Medicine 17: 193–199, 1983.PubMedCrossRefGoogle Scholar
  5. Asmussen E, Boje O. Body temperature and capacity for work. Acta Physiologica Scandinavica 10: 1–22, 1945.CrossRefGoogle Scholar
  6. Åstrand PO, Rhyming I. A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during submaximal work. Journal of Applied Physiology 7: 218–221, 1954.PubMedGoogle Scholar
  7. Ayalon A, Inbar O, Bar-Or O. Relationships among measurements of explosive strength and anaerobic power. In Nelson RC and Morehouse CA (Eds.) International series on sport sciences, vol. I, Biomechanics IV, pp. 572–577, University Press, Baltimore, 1974.Google Scholar
  8. Bar-Or O. Le test Anaérobie de Wingate: caractéristiques et applications. Symbioses 13: 157–172, 1981.Google Scholar
  9. Bar-Or O. The Wingate Anaerobic Test: an update on methodology, reliability and validity. Sports Medicine 4: 381–394, 1987.PubMedCrossRefGoogle Scholar
  10. Bar-Or O, Dotan R, Inbar O, Rothstein A, Karlsson J, et al. Anaerobic capacity and muscle fibre type distribution in man. International Journal of Sports Medicine 1: 82–85, 1980.CrossRefGoogle Scholar
  11. Cumming GR. Correlation of athletic performance and anaerobic power in 12–17 year old children with bone age, calf muscle and total body potassium, heart volume and two indices of anaerobic power. In Bar-Or (Ed.) Paediatric work physiology, pp. 109–134, Wingate Institute, Israel, 1974.Google Scholar
  12. Dickinson S. The dynamics of bicycle pedalling. Proceedings of the Royal Society Series B 103: 225–233, 1928.CrossRefGoogle Scholar
  13. Dickinson S. The efficiency of bicycle pedalling as affected by speed and load. Journal of Physiology 67: 242–255, 1929.PubMedGoogle Scholar
  14. Döbeln W von. A simple bicycle ergometer. Journal of Applied Physiology 7: 222–224, 1954.Google Scholar
  15. Dotan R, Bar-Or O. Load optimisation for the Wingate Anaerobic Test. European Journal of Applied Physiology 51: 409–417, 1983.CrossRefGoogle Scholar
  16. Evans JA, Quinney HA. Determination of resistance settings for anaerobic power testing. Canadian Journal of Applied Sport Sciences 6: 53–56, 1981.Google Scholar
  17. Fenn WO. Frictional and kinetic factors in the work of sprint running. American Journal of Physiology 95: 583–611, 1930.Google Scholar
  18. Fenn WO. Zür Mechanik des Radfahrens im Vergleich zu der des Laufens. Pflügers Archiv für gesante Physiologie 229: 354–366, 1932.CrossRefGoogle Scholar
  19. Fleisch A. Ergostat a pouissances constantes et multiples. Helvetica Medica Acta Series A 17: 47–58, 1950.Google Scholar
  20. Hale T, Armstrong N, Hardman A, Jakeman P, Sharp C, Winter E. Position Statement on the physiological assessment of the elite competitor, 2nd ed., British Association of Sports Sciences, 1988.Google Scholar
  21. Harrison JY. Maximising human power output by suitable selection of motion cycle and load. Human Factors 12: 315–329, 1970.Google Scholar
  22. man muscles and their most economical speed. Journal of Physiology 56: 19–41, 1922Google Scholar
  23. Hill AV. The efficiency of bicycle pedalling. Journal of Physiology 82: 207–210, 1934.PubMedGoogle Scholar
  24. Hill AV. The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society Series B 126: 136–195, 1938.CrossRefGoogle Scholar
  25. Hoes MJAJM, Binkhorst RA, Smeeks-Kuyl AEMC, Vissers ACA. Measurements of forces exerted on pedal crank during work on a bicycle ergometer at different speeds. Internationale Zeitschrift für Angewandte Physiologie Einschlesslich Arbeitsphysiologie 26: 33–42, 1968.Google Scholar
  26. Inbar O, Dotan R, Bar-Or O. Aerobic and anaerobic components of a thirty-second supramaximal cycling task. Medicine and Science in Sports 8: 51, 1976.Google Scholar
  27. Inbar O, Dotan R, Trousil T, Dvir Z. The effect of bicycle crank length variation upon power performance. Ergonomics 26: 1139–1146, 1983.PubMedCrossRefGoogle Scholar
  28. Inbar O, Dotan R, Trousil T, Dvir Z. The effect of bicycle crank length variation upon power performance. Ergonomics 26: 1139–1146, 1983.PubMedCrossRefGoogle Scholar
  29. Inbar O, Kaiser P, Dotan R, Bar-Or O, Schéle R, Karlsson J. Indices of the Wingate Anaerobic Test, fibre type distribution and running performance in man. Medicine and Science in Sports and Exercise 11: 89, 1979.Google Scholar
  30. Katch V. Body weight, leg volume, leg weight and leg density as determiners of short duration work performance on the bicycle ergometer. Medicine and Science in Sports 6: 267–270, 1974.PubMedGoogle Scholar
  31. Kaneko M, Yamazaki T. Internal mechanical work done due to velocity changes of the limb in working on a bicycle ergometer. In Asmussen E and Jorgensen K (Eds) Biomechanics VI-A, pp. 86–92, University Park Press, Baltimore, 1978Google Scholar
  32. Katch VL, Weltman A, Martin R, Gray L. Optimal test characteristics for maximal anaerobic work on the bicycle ergometer. Research Quarterly 48: 319–327, 1977.PubMedGoogle Scholar
  33. Katch VL, Weltman A. Interrelationships between anaerobic power output, anaerobic capacity and aerobic power. Ergonomics 22: 325–332, 1979.PubMedCrossRefGoogle Scholar
  34. Kelso LEA, Hellebrandt FA. The recording electrodynamic brake bicycle ergometer. Journal of Clinical and Laboratory Medicine 19: 1105–1113, 1932.Google Scholar
  35. Krogh A. A bicycle ergometer and respiration apparatus for the experimental study of muscular work. Scandinavian Archives of Physiology 33: 375–394, 1913.CrossRefGoogle Scholar
  36. Lakomy HKA. Effect of load on corrected peak power output generated on friction loaded cycle ergometers. Journal of Sports Sciences 3: 240, 1985.Google Scholar
  37. Lakomy HKA. Measurement of work and power output using friction loaded cycle ergometers. Ergonomics 29: 509–517, 1986.PubMedCrossRefGoogle Scholar
  38. Lakomy HKA, Wootton SA. Discrimination of rapid changes in pedal frequency. Journal of Physiology 316: 1P, 1984.Google Scholar
  39. La Voie N, Dallaire J, Brayne S, Barrett D. Anaerobic testing using the Wingate and Evans-Quinney protocols with and without toe stirrups. Canadian Journal of Applied Sport Sciences 9: 1–5, 1984.Google Scholar
  40. MacDonald IA, Wootton SA, Munoz B, Fentem PH, Williams C. Catecholamine response to maximal anaerobic exercise. In Knuttgen JA, et al. (Eds) Biochemistry of exercise, pp. 749–754, Human Kinetics, Champaign, Ill 1983.Google Scholar
  41. McCartney N, Heigenhauser GJF, Jones NL. Power output and fatigue of human muscle in maximal cycling exercise. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 55: 218–224, 1983b.Google Scholar
  42. McCartney N, Heigenhauser GJF, Jones NL. Effects of pH on maximal power output and fatigue during short-term dynamic exercise. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 55: 225–229, 1983.cGoogle Scholar
  43. McCartney N, Heigenhauser GJF, Sargeant AJ, Jones NL. A constant-velocity cycle ergometer for the study of dynamic muscle function. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 55: 212–217, 1983.aGoogle Scholar
  44. McCartney N, Obminski G, Heigenhauser GJF. Torque-velocity relationship in isokinetic cycling exercise. Journal of Applied Physiology 58: 1459–1462, 1985.PubMedGoogle Scholar
  45. McClenaghan BA, Literowitch W. Fundamentals of computerised data acquisition in the human performance laboratory. Sports Medicine 4: 425–445, 1987.PubMedCrossRefGoogle Scholar
  46. Maréchal R, Pirnay F, Crielaard JM, Petit JM. Influence de l’age sur la puissance anaérobic Primier colloque medical international de gymnastique, Strasbourg, October 1978, Economica, Paris, 1979.Google Scholar
  47. Nadeau M, Brassard A. The bicycle ergometer for muscle power testing. Canadian Journal of Applied Sport Sciences 8: 41–46, 1983.Google Scholar
  48. Nakamura Y, Mutoh Y, Myashita M. Determination of the peak power output during maximal brief pedalling bouts. Journal of Sports Sciences 3: 181–187, 1985.PubMedCrossRefGoogle Scholar
  49. Patton JF, Murphy MM, Frederick FA. Maximal power outputs during the Wingate Anaerobic test. International Journal of Sports Medicine 6: 82–85, 1985.PubMedCrossRefGoogle Scholar
  50. Pérès G, Vandewalle H, Monod H. Aspect particulier de la relation charge vitesse lors du pédalage sur cycloergometre. Journal of Physiology (Paris) 77: 10A, 1981.aGoogle Scholar
  51. Pérès G, Vandewalle H, Monod H. Comparison de trois methodes de mésure de la puissance maximale anaérobie alactique des membres inférieurs. Congrés National Scientifique de Médicine du Sport, Grenoble, 1981b.Google Scholar
  52. Pirnay F, Crielaard JM. Mesure de la puissance anaérobie alactique. Medicine du Sport 53: 13–16, 1979.Google Scholar
  53. Sargeant AJ, Dolan P. Optimal velocity of muscle contraction for short-term (anaerobic) power output in children and adults. In Rutenfrantz J, et al. (Eds) Children and exercise XII, pp. 39–42, Human Kinetics, Champaign, Ill 1986.Google Scholar
  54. Sargeant AJ, Dolan P, Thome A. Isokinetic measurement of maximal leg force and anaerobic power output in children. In Il-marinen J and Valimaki I (Eds) Children and sport, pp. 95–98, Springer-Verlag, Berlin, 1984a.Google Scholar
  55. Sargeant AJ, Dolan P, Young A. Optimal velocity for maximal short-term (anaerobic) power output in cycling. International Journal of Sports Medicine 5: 124–125, 1984.bCrossRefGoogle Scholar
  56. Sargeant AJ, Hoinville E, Young A. Maximum leg force and power output during short term dynamic exercise. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 53: 1175–1182, 1981.Google Scholar
  57. Sjøgaard G. Force-velocity curve for bicycle work. In Asmussen E and Jorgensen K (Eds) Biomechanics VI-A, pp. 93–99, University Park Press, Baltimore, 1978Google Scholar
  58. Smith AJ. A study of the forces on the body in athletic activities, with particular reference to jumping. Unpublished doctoral thesis, University of Leeds, 1972.Google Scholar
  59. Taunton JE, Maron H, Wilkinson JG. Anaerobic performance in middle and long distance runners. Canadian Journal of Applied Sport Sciences 6: 109–113, 1981.Google Scholar
  60. Tuttle WW, Wendler AJ. The construction, calibration and use of an alternating current electrodynamic brake bicycle ergometer. Journal of Laboratory and Clinical Medicine 30: 173–183, 1945.Google Scholar
  61. Vandewalle H, Pérès G, Heller J, Monod H. All out anaerobic capacity tests on cycle ergometers: a comparative study on men and women. European Journal of Applied Physiology 54: 222–229, 1985.CrossRefGoogle Scholar
  62. Vandewalle H, Pérès G, Heller J, Monod H. Puissance maximale des membres inférieurs et relation force-vitesse sur ergocycle: efects du protocole et de l’orientation sportive. Quatrième Congres Scientifique de Médicine du Sports, Limoges, 1985. Médicine du Sport 60: 152, 1986.Google Scholar
  63. Vandewalle H, Pérès G, Monod H. Relation force-vitesse lors d’exercises cycliques réalisés avec les membres superieurs. Motricité Humaine 2: 22–25, 1983.Google Scholar
  64. Williams C. Short term activity. In McLeod D, et al. Exercise: benefits, limitations and adaptations, pp. 59–62. E and FN Spon, London, 1987.Google Scholar
  65. Winter EM, Brookes FBC, Hamley EJ. Optimised loads for external power output during brief, maximal cycling. Journal of Sports Sciences 7: 69–70, 1989.Google Scholar
  66. Winter EM, Brookes FBC, Hamley EJ. Maximal exercise performance and lean leg volume in men and women. Journal of Sports Sciences, in press, 1991.Google Scholar
  67. Wilkie DR. The relation between force and velocity in human muscle. Journal of Physiology 110: 249–280, 1950.Google Scholar
  68. Woledge RC, Curtin NA, Homsher E. Energetic aspects of muscular contraction, Academic Press, London, 1985.Google Scholar

Copyright information

© Adis International Limited 1991

Authors and Affiliations

  • E. M. Winter
    • 1
  1. 1.Bedford College of Higher EducationBedford, BedfordshireEngland

Personalised recommendations