Skip to main content
Log in

Jet-Lag and Human Performance

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

The desynchronisation of an athlete’s physiological and psychological cycles has adverse effects on his/her performance. The primary cause of dysrhythmia in an athlete is jet-lag, which is a rapid displacement across the earth’s time zones and is often experienced while competing in international events and in continental leagues.

General symptoms which arise from dysynchronisation include malaise, appetite loss, tiredness during the day and disturbed sleep. The specific symptoms resulting from jet-lag are characterised as phase shifts in physiological and psychological cycles. These phase shifts occur in body temperature, ability to mobilise energy substrates, excretion of water and metabolites, arousal levels, sleep/wake cycles and reaction time. The severity of these adverse effects and therefore the time required for resynchronisation depends on the ability to preset the bodily rhythms prior to flying, the number of time zones crossed, the direction of flight, the type of individual (introvert/extrovert), age, social interaction and activity, diet plan and prescribed use of chronobiotic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews RV. Temporal secretory responses of cultured hamster adrenals. Comparative Biochemistry and Physiology 26: 179–193, 1968

    Article  PubMed  CAS  Google Scholar 

  • Antal LC. The effects of the changes of the circadian rhythm on the sportshooter. British Journal of Sports Medicine 9: 9–12, 1975

    Article  PubMed  CAS  Google Scholar 

  • Arendt J, Marks B. Physiological changes underlying jeg-lag. British Medical Journal 284: 144–146, 1982

    Article  PubMed  CAS  Google Scholar 

  • Aschoff J. Circadian rhythms in man. Science 148: 1427–1432, 1965

    Article  PubMed  CAS  Google Scholar 

  • Åstrand PO, Rodahl Textbook of work physiology, McGraw Hill, 1977

  • Bartter FC, Chan JCM, Simpson HW. Chronobiological aspects of plasma renin activity, plasma aldosterone, and urinary electrolytes. In Krieger (Ed.) Endocrine rhythms, pp. 225–247, Raven Press, New York, 1979

    Google Scholar 

  • Born J, Muth S, Fehm HL. The significance of sleep onset and slow wave sleep for nocturnal release of growth hormone (GH) and cortisol. Psychoneuroendocrinology 13(3): 233–243, 1988

    Article  PubMed  CAS  Google Scholar 

  • Boyar RM. Sleep-related endocrine rhythms. In Reichlin et al. (Eds). The hypothalamus, pp. 373–386, Raven Press, New York, 1978

    Google Scholar 

  • Desir et al. Effects of “jet lag” on hormonal patterns. 1. Procedures, variations in total plasma proteins, and disruption of adrenocorticotropin-corticol periodicity. Journal of Clinical Endocrinology and Metabolism 4: 628–641, 1981

    Article  Google Scholar 

  • Ehret CF, Groh KR, Meinert JC. Considerations of diet in alleviating jet lag. In Scheving & Halberg (Eds.) Principles and applications to shifts in schedules, pp. 393–402, Rockville, MD, Sijithoffand Noordhoff, 1980

    Google Scholar 

  • Ehret CF, Meinert JC, Groh KR. The chronopharmacology of L-DOPA: implications for orthochronol therapy in the prevention of circadian dyschronism. In Walker et al. (Eds) Chronopharmacology and chronotherapeutics, pp. 47–65, Florida A & M Universiy Foundation, Tallahassee, 1981

    Google Scholar 

  • Ehret CF, Scanlon LW. Overcoming jet lag. Berkeley Publishing Corporation, New York, 1983

    Google Scholar 

  • Elliot AL, Mills JN, Minors DS, Waterhouse JM. Effects of simulated time zone shifts upon plasma corticosteroid rhythms. Journal of Physiology 217: 50P, 1971

    Google Scholar 

  • Flink Doe RP. Effect of sudden time displacement by air travel on synchronization of adrenal function. Proceedings for the Society for Experimental Biology 100: 498–501, 1959

    CAS  Google Scholar 

  • Folkard S. Fiurnal variation. In Hockey (Ed.) Stress and fatigue in human performance, pp. 245–272, John Wiley & Sons, New York, 1983

    Google Scholar 

  • Folkard S. Monk TH, Lobban MC. Short and long term adjustments of circadian rhythms in “permanent” night nurses. Ergonomics 21: 785–799, 1978

    Article  PubMed  CAS  Google Scholar 

  • Fort A, Gabbay JA, Jackett R, Jones MC, Jones SM, et al. The relationship between deep body temperature and performance on psychomotor tests. Journal of Physiology 219: 17P–18P, 1971

    PubMed  CAS  Google Scholar 

  • Froberg J. Twenty-four hour patterns in human performance, subjective and physiological variables, and differences between morning and evening active subjects. Biological Psychology 5: 119–134, 1977

    Article  PubMed  CAS  Google Scholar 

  • Froberg J, Karlsson CG, Levi L, Lidberg L. Circadian variations in performance psychological ratings, catecholamine excretion, and urine flow during prolonged sleep deprivation. In Colquhoun (Ed.) Aspects of human efficiency, pp. 247–259, The English University Press, London, 1972.

    Google Scholar 

  • Gerritzen F. The diurnal rhythm in water, chloride, sodium and potassium excretion during a rapid displacement from east to west and vice versa. Aerospace Medicine 33: 697–701, 1962

    PubMed  CAS  Google Scholar 

  • Goldstein J, Van Cauter F, Desir D, Noel P, Spire JP, et al. Effects of ‘jet lag’ on hormonal patterns. IV. Time shifts increase growth hormone release. Journal of Clinical Endocrinology and Metabolism 56(3): 433–440, 1983

    Article  Google Scholar 

  • Graeber RC, Gatty R, Halberg F, Levine H. Human eating behavior: preferences, consumption patterns, and biorhythms. Technical Report: Natick/TR-78-78/022, Food Sciences Laboratory, Natick, MA, 1978

    Google Scholar 

  • Halberg F, Cornelissen G, Carandente F, Katinas GS. Glossary of chronobiology. Chronobiologia 4(Suppl. 1): 1–189, 1977

    PubMed  Google Scholar 

  • Hartman BO. Field study of transport aircrew workload and rest. Journal of Aerospace and Medicine 42: 817–821, 1971

    CAS  Google Scholar 

  • Holley DC, Winget CM, DeRoshia CW, Heinold MP, Edgar DM, et al. Effects of circadian rhythm phase alteration on physiological and psychological variables: implications to pilot performance, National Aeronautics and Space Administration technical memorandum 81277, Armes Research Center, Moffett Field, CA, 1981

    Google Scholar 

  • Honma K, Watanabe K, Hiroshige T. Effects of parachlorophen-ylalanine and 5,6 dehydroxytryptamine on the free-running rhythms of locomotor activity and plasma corticosterone in the rat exposed to continuous light. Brain Research 169: 531–544, 1979

    Article  PubMed  CAS  Google Scholar 

  • Horne JA, Ostberg Individual differences in human circadian rhythms. Biological Psychology 5: 179–190, 1977

    Article  PubMed  CAS  Google Scholar 

  • Johnson LC, Naitch P. The operational consequences of sleep deprivation and sleep deficit. NATO Advisory Group for Aerospace Research and Development Report no. AGARG-AG-193, Neuilly-Sur-Seine, France, 1974

    Google Scholar 

  • Joseph SA, Knigge KM. The endocrine hypothalamus: recent anatomical studies. In Reichlin S, et al. (Eds). The hypothalamus, pp. 15–47, Raven Press, New York, 1978

    Google Scholar 

  • Kanabrocki EL, Scheving LE, Halberg F, Brewer RL, Bird TJ. Circadian variation in presumably healthy men under conditions of peace-time army reserve unit training. Space Life Science 4: 258–270, 1973

    CAS  Google Scholar 

  • Klein KE, Bruner H, Gunther E, Jorry D, Mertens J, et al. Psychological and physiological changes caused by desynchronization following transzonal air travel. In Colquhoun (Ed.) Aspects of human efficiency: diurnal rhythm and loss of sleep, English Universities Press, London, 1972

    Google Scholar 

  • Klein KE, Hermann R, Kuklinski P, Wegmann HM. Circadian performance rhythms: experimental studies in air operations. In Mackie (Ed.) Vigilance: theory, operational performance, and physiological correlates, pp. 111–132, Plenum Publishing Corp, New York, 1977

    Google Scholar 

  • Klein KE, Wegmann H. The resynchronization of human circadian rhythms after transmeridian flights as a result of flight direction and mode of activity. In Schering et al. (Eds.) Chronobiology, pp. 564–570, Igaku Shoin, Tokyo 1974

    Google Scholar 

  • Klein KE, Wegmann HM. Significance of circadian rhythms in aerospace operations, Advisory Group for Aerospace Research and Development Report AGARD-AG-247, AGARD, NATO, Neuilly-Sur-Seine, France, 1980

    Google Scholar 

  • Kripke DF, Wyborney BG. Lithium slows rat circadian activity rhythms. Life Science 27: 1319–1321, 1980

    Article  Google Scholar 

  • LaDou J. Circadian rhythms and athletic performance. Physician and Sportsmedicine 7: 87–93, 1979

    Google Scholar 

  • Langdon DE, Hartman Performance upon sudden awakening. US School of Aviation Medicine, Brooks Air Force Base Reports 62: 17, 1961

    Google Scholar 

  • Lavernhe J, Lafontaine E, Laplane R. Subjective effects of time shifts (an inquiry among flight personnel of Air France). Revue de Medicine Aeronautic 4: 30–36, 1965

    CAS  Google Scholar 

  • Litsov AN. Effects of prolonged unidirectional shift of sleeping-waking cycle on physiological functions, mental productivity and sleep of man. Kosmicheskaia Biologiia i Aviakosmicheskaia Meditsina 13: 53–58, 1979

    PubMed  CAS  Google Scholar 

  • Miles LE, Dement WC. Sleep and aging. Sleep 3: 1–220, 1980

    PubMed  CAS  Google Scholar 

  • Mills JN. Human circadian rhythms. Physiology Review 46: 128–171, 1966

    CAS  Google Scholar 

  • Minors DS, Waterhouse JM. Anchor sleep as a synchronizer on abnormal routines. International Journal of Chronobiology 7: 165–188, 1981

    PubMed  CAS  Google Scholar 

  • Morin LP, Fitzgerald KM, Zucker I. Estradiol shortens the period of hamster circadian rhythms. Science 196: 305–306, 1977

    Article  PubMed  CAS  Google Scholar 

  • Pegram GV, Crowley TJ. Biochemical regulation of the sleep-wake and temperature cycles. Proceedings of the AGARD Conference on Medicolegal Aspects of Aviation (No. 61): 28-1-28-8, 1970

  • Preston FS. Temporal discord. Journal of Psychosomatic Research 22: 377–383, 1978

    Article  PubMed  CAS  Google Scholar 

  • Reilly T. Circadian variation in ventilatory and metabolic adaptations to submaximal exercise. British Journal of Sports Medicine 17: 115–116, 1982

    Article  Google Scholar 

  • Reilly T, Brooks GA. Investigations of circadian rhythms in metabolic responses to exercise. Ergonomics 25: 1093–1107, 1982

    Article  PubMed  CAS  Google Scholar 

  • Reilly T, Robinson G, Minors DS. Some circulatory responses to exercise at different times of day. Medicine and Science in Sports and Exercise 16: 477–482, 1984

    Article  PubMed  CAS  Google Scholar 

  • Reilly T, Walsh TJ. Physiological, psychological and performance measures during an endurance record for 5-a-side soccer play. British Journal of Sports Medicine 15: 122–128, 1981

    Article  PubMed  CAS  Google Scholar 

  • Reinberg A. Chronobiology and nutrition. In Reinberg and Smolensky (Eds) Biological rhythms and medicine, pp. 265–300, Springer-Verlag, New York, 1983

    Chapter  Google Scholar 

  • Reinberg A, Apfelbaum M, Assam R, Lacatis D. Persisting circadian rhythm in insulin, glucagon cortisol, etc. of healthy young women during caloric restriction (protein diet). In Schering et al. (Eds) Chronobiology, pp. 88–93, Igaku Shoin, Tokyo, 1974

    Google Scholar 

  • Richter Biological clocks in medicine and psychiatry, C.C. Thomas, Springfield, 1965

  • Rodahl A, O’Brien M, Firth RGR. Diurnal variation in performance of competitive swimmers. Journal of Sportsmedicine 16: 72–76, 1976

    CAS  Google Scholar 

  • Sasaki T. Effect of rapid transposition around the earth on diurnal variation in body temperature. Proceedings of the Society of Experimental Biology 115: 1129–1131, 1964

    CAS  Google Scholar 

  • Sekigushi C, Yamagushi O, Kitajima T, Ueda, Y. Effects of rapid round trips against time displacement on adrenal corticalme-dullary circadian rhythms. Aviation and Space Environmental Medicine 47: 1101, 1976

    Google Scholar 

  • Shephard RJ. Sleep, biorhythms and human performance. Sports Medicine 1: 11–37, 1984

    Article  Google Scholar 

  • Stughold H. The physiological clock in aeronautics and astronautics. Annals of New York Academy of Sciences 134: 413–422, 1965

    Article  Google Scholar 

  • Thommen GS. Is this your day? How biorhythm helps you determine your life cycles. Crown Publishing Co., New York, 1973

    Google Scholar 

  • Tortora GJ. Evans RL. Principles of human physiology, 2nd ed. Harper and Row, New York. 1986

    Google Scholar 

  • Turek FW, McMillan JP, Menaker, M. Mclatonin: effects on the circadian locomotor rhythm of sparrows. Science 194: 1441–1443, 1976

    Article  PubMed  CAS  Google Scholar 

  • Walker CA. Winget CM, Soliman KRA. Chronopharmacology and chronotherapeutics. Florida A & M University Press, Tallahassee. 1981

    Google Scholar 

  • Wehr TA. Wirz-Justice A, Goodwin FK. Tricyclic antidepressant drugs shorten the period of hamster circadian rhythms. Chronobiologia 6: 169. 1979

    Google Scholar 

  • Wever RA. Phase shifts of human circadian rhythms due to shifts of artificial Zeitgebers. Chronobiologia 7: 303–327, 1980

    PubMed  CAS  Google Scholar 

  • Winget CM, DeRoshia CW, Holley DC. Circadian rhythms and athletic performance. Medicine and Science in Sport and Exercise 17: 498–516. 1985

    Article  CAS  Google Scholar 

  • Winget CM. DeRoshia CW. Markley CL, Holley DC. A review of human physiological and performance changes associated with desynchronosis of biological rhythms. Aviation, Space and Environmental Medicine 55: 1085–1096, 1984

    CAS  Google Scholar 

  • Wirz-Justice A, Campbell JC. Antidepressant drugs can slow or dissociate circadian rhythms. Experentia 38: 1301–1309, 1982

    Article  CAS  Google Scholar 

  • Wright JE, Vogel JA, Sampson JB, Knapik JJ, Patton JF, et al. Effects of travel across time zones (jet lag) on exercise capacity and performance. Aviation, Space, and Environmental Medicine 54(2): 132–137, 1983

    PubMed  CAS  Google Scholar 

  • Zarcone VP. Sleep and alcoholism. In Chase & Weitzman (Eds) Sleep disorders: basic and clinical research, pp. 319–325, Spectrum Publications, New York, 1983

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loat, C.E.R., Rhodes, E.C. Jet-Lag and Human Performance. Sports Medicine 8, 226–238 (1989). https://doi.org/10.2165/00007256-198908040-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-198908040-00003

Keywords

Navigation