Opioids and Exercise

An Update

Summary

A number of endogenously produced opioid peptides interact with centrally and peripherally located specific receptors to form a widespread neuroendocrine system with many implications for human function. It is becoming increasingly evident that moderately high and high intensity exercise stimulate the release of the opioid peptide β-endorphin to the circulation and this event may be subject to considerable intra- and interindividual variation. Moreover, endorphin levels probably remain elevated for 15 to 60 minutes following exercise. The duration of exertion does not seem to be critical, and low or moderate (< 75% V̇O2max) intensity efforts do not stimulate this response. It also appears (mostly from animal model research) that exercise might elicit central opioid effects, but there is conflicting evidence on this topic. Physical training may encourage adapted opioid system function (e.g. altered peptide response to exercise or receptor number), but these adaptations are not well elucidated by the few existing studies.

The significance of peripherally released opioid peptides during exercise has frequently been questioned. Exercise-induced affective response (e.g. mood enhancement), analgesia, food intake suppression and reproductive dysfunction are often mentioned as potentially controlled by an opioid mediated mechanism. While most of these events are normally considered under central control, it is time we begin entertaining the notion of peripheral effects (e.g. altered catecholamine release) and afferent input affecting central function in some of these phenomena. Additionally, evidence exists to suggest peripherally released enkephalins may cross the blood-brain barrier, but this is probably not true for endorphins. A number of other reported exercise-related events could possibly involve an underlying opioid mechanism. Exercise-associated metabolic regulation, immunosuppression, and cardiovascular function are areas for future opioid research.

This is a preview of subscription content, log in to check access.

References

  1. Adams ML, Eastman NW, Tobin RP, Morris DL, Dewey WL. Increased plasma beta-endorphin immunoreactivity in scuba divers after submersion. Medicine and Science in Sports and Exercise 19: 87–90, 1987

    PubMed  CAS  Article  Google Scholar 

  2. Akil H, Young E, Walker JM, Watson SJ. The many possible roles of opioids and related peptides in stress-induced analgesia. Annals of the New York Academy of Sciences 467: 140–153, 1986

    PubMed  CAS  Article  Google Scholar 

  3. Banks WA, Kastin AJ. Saturable transport of peptides across the blood-brain barrier. Life Sciences 41: 1319–1338, 1987

    PubMed  CAS  Article  Google Scholar 

  4. Bjorntorp P. Effects of physical training on blood pressure in hypertension. European Heart Journal 8(Suppl. B): 71–76, 1987

    PubMed  Article  Google Scholar 

  5. Blake MJ, Stein EA, Vomachka AJ. Effects of exercise training on brain opioid peptides and serum LH in female rats. Peptides 5: 953–958, 1984

    PubMed  CAS  Article  Google Scholar 

  6. Blankstein J, Reyes FI, Winter JSD, Faimen C. Endorphins and the regulation of the human menstrual cycle. Clinical Endocrinology 14: 287–294, 1981

    PubMed  CAS  Article  Google Scholar 

  7. Blume AJ, Lichtshtein D, Boone G. Receptor-mediated inhibitions of NG108-15 adenylate cyclase: essential role of Na+ and GTP. In Pepeu et al. (Eds) Receptors for neurotransmitters and peptide hormones, pp. 339–348, Raven Press, 1980

    Google Scholar 

  8. Bowen WD, Gentleman S, Herkenham M, Pert C. Interconverting mu and delta forms of the opiate receptor in rat striatal patches. Proceedings of the National Academy of Science 78: 4818–4822, 1981

    CAS  Article  Google Scholar 

  9. Brambilla F, Facchinetti F, Petraglia F, Genazzani AR. Opioid peptides in primary affective disorders. In Muller & Genazzani (Eds) Central and peripheral endorphins, p. 265–277, Raven Press, New York, 1984

    Google Scholar 

  10. Bramnert M, Hokfelt B. Lack of effect of naloxone in a moderate dosage on the exercise-induced increase in blood pressure, heart rate, plasma catecholamines, plasma renin activity and plasma aldosterone in healthy males. Clinical Science 68: 185–191, 1985

    PubMed  CAS  Google Scholar 

  11. Brooks S, Burrin J, Cheetham ME, Hall G, Williams C. The responses of the catecholamines and beta-endorphin to brief maximal exercise in man. European Journal of Applied Physiology and Occupational Physiology 57: 230–234, 1988

    PubMed  CAS  Article  Google Scholar 

  12. Bryant HU, Story JA, Yim GKW. Morphine-induced alterations in plasma and tissue cholesterol levels. Life Sciences 41: 545–554, 1987

    PubMed  CAS  Article  Google Scholar 

  13. Camilleci M, Malagelada R, Stanghellini V, Zinsmeister AR, Kao PC, et al. Dose-related effects of synthetic human beta-endorphin and naloxone on fed gastrointestinal motility. American Journal of Physiology 251: G147–G154, 1986

    Google Scholar 

  14. Carr DB, Bullen BA, Skrinar GS, Arnold MA, Rosenblatt MA, et al. Physical conditioning facilitates the exercise induced secretion of beta-endorphin and beta-lipotropin in women. New England Journal of Medicine 305: 560–563, 1981

    PubMed  CAS  Article  Google Scholar 

  15. Colt EW, Wardlaw SL, Frantz AG. The effects of running on plasma beta-endorphin. Life Sciences 28: 1637–1640, 1981

    PubMed  CAS  Article  Google Scholar 

  16. Costa E, Mocchetti I, Supattapone S, Snyder S. Opioid peptide biosynthesis: enzymatic selectivity and regulatory mechanisms. FASEB Journal 1: 16–21, 1987

    PubMed  CAS  Google Scholar 

  17. Coupar I. Opioid action on the intestine: the importance of the intestinal mucosa. Life Sciences 41: 917–925, 1987

    PubMed  CAS  Article  Google Scholar 

  18. Cumming DC, Wheeler GD. Opioids in exercise physiology. Seminars in Reproductive Endocrinology 5: 171–179, 1987

    Article  Google Scholar 

  19. Dearman J, Francis KT. Plasma levels of catecholamine, cortisol, and beta-endorphin in male athletes after running 26.2, 6 and 2 miles. Journal of Sports Medicine 23: 30–38, 1983

    CAS  Google Scholar 

  20. deMeirleir K, Naaktgeboren N, VanSteirteghen A, Gorus F, Olbrecht J, et al. Beta-endorphin and ACTH levels in peripheral blood during and after aerobic and anerobic exercise. European Journal of Applied Physiology 55: 5–8, 1986

    Article  Google Scholar 

  21. Donevan RH, Andrew GM. Plasma beta-endorphin immunoreactivity during graded cycle ergometry. Medicine and Science in Sports and Exercise 19: 229–233, 1987

    PubMed  CAS  Article  Google Scholar 

  22. Farrell PA, Gustafson AB, Morgan WP, Pert CB. Enkephalins, catecholamines, and psychological mood alterations: effects of prolonged exercise. Medicine and Science in Sports and Exercise 19: 347–353, 1987a

    PubMed  CAS  Article  Google Scholar 

  23. Farrell PA, Kjaer M, Bach FW, Galbo H. Beta-endorphin and adrenocorticotropin response to supramaximal treadmill exercise in trained and untrained males. Acta Physiologica Scandinavica 130: 619–625, 1987b

    PubMed  CAS  Article  Google Scholar 

  24. Feldberg W, Shaligram SV. The hyperglycaemic effect of morphine. British Journal of Pharmacology 46: 602–618, 1972

    PubMed  CAS  Article  Google Scholar 

  25. Feldman M, Kiser RS, Unger RH, Li CH. Beta-endorphin and the endocrine pancreas: studies in healthy and diabetic human beings. New England Journal of Medicine 308: 349–353, 1983

    PubMed  CAS  Article  Google Scholar 

  26. Feuerstein G, Siren A. Cardiovascular effects of enkephalins. Atlas of Science: Pharmacology 1: 280–283, 1987

    CAS  Google Scholar 

  27. Fridland GH, Desiderio DM. Measurement of opioid peptides with combinations of reversed phase high performance liquid chromatography, radioimmunoassay, radioreceptorassay, and mass spectometry. Life Sciences 41: 809–812, 1987

    PubMed  CAS  Article  Google Scholar 

  28. Geller EB, Rowan CH, Adler MW. Body temperature effects of opioids in rats: intracerebroventricular administration. Pharmacology, Biochemistry and Behavior 24: 1761–1765, 1986

    CAS  Article  Google Scholar 

  29. Gero A. Considerations on the nature of mu, kappa, and delta receptors. National Institute Drug Abuse Research Monogram Series 75: 37–40, 1986

    CAS  Google Scholar 

  30. Gillman MA, Katzeff IE. Does opioid uncoupling of adrenal responses mediate opioid anti-stress effects? Medical and Science Research 16: 207–209, 1988

    CAS  Google Scholar 

  31. Giugliano D, Cozzolino D, Salvatore T, Ceriello A, Torella R. Dual effect of beta-endorphin on insulin secretion in man. Hormonal and Metabolic Research 19: 502–503, 1987

    CAS  Article  Google Scholar 

  32. Giugliano D, Torella R, Lefebvre PJ, Onofrio FD. Opioid peptides and metabolic regulation. Diabetalogia 31: 3–15, 1988

    CAS  Google Scholar 

  33. Goldfarb AH, Hatfield BD, Sforzo GA, Flynn MG. Serum beta-endorphin levels during a graded exercise test to exhaustion. Medicine and Science in Sports and Exercise 19: 78–82, 1987

    PubMed  CAS  Article  Google Scholar 

  34. Gullestad L, Oystein Dolva L, Kjeldsen SE, Eide I, Kjekshus J. The effects of naloxone and timolol on plasma catecholamine levels during short term dynamic exercise. Scandinavian Journal of Clinical and Laboratory Investigation 47: 847–851, 1987

    PubMed  CAS  Article  Google Scholar 

  35. Harber VJ, Sutton JR. Endorphins and exercise. Sports Medicine 1: 154–171, 1984

    PubMed  CAS  Article  Google Scholar 

  36. Hawkins KN, Knapp RJ, Gehlert DR, Lui GK, Yamamura MS, et al. Quantitative autoradiography of [3H]CTOP binding to mu opioid receptors in the rat brain. Life Sciences 42: 2541–2551, 1988

    PubMed  CAS  Article  Google Scholar 

  37. Herz A. Multiple endorphins as natural ligands for multiple opioid receptors. In Muller & Genazzani (Eds) Central and peripheral endorphins, pp. 43–52, Raven Press, New York, 1984

    Google Scholar 

  38. Holaday JW, Tortella FC. Multiple opioid receptors: possible physiological functions of mu and delta binding sites in vivo. In Muller & Genazzani (Eds) Central and peripheral endorphins, pp. 237–250, Raven Press, New York, 1984

    Google Scholar 

  39. Houghten RA, Pratt SM, Young EA, Brown H, Spann DR. Effect of chronic exercise on beta-endorphin receptor levels in rats. National Institute Drug Abuse Research Monogram Series 75: 505–508, 1986

    CAS  Google Scholar 

  40. Howlett T, Tomlin S, Ngahfoong L, Bullen BA, Skrinar GS, et al. Exercise-induced release of met-enkephalin and beta-endorphin. In Muller & Genazzani (Eds) Central and peripheral endorphins, pp. 285–288, Raven Press, New York, 1984

    Google Scholar 

  41. Hughes J. Biogenesis, release and inactivation of enkephalins and dynorphins. British Medical Bulletin 39: 17–24, 1983

    PubMed  CAS  Google Scholar 

  42. Hughes J, Kosterlitz HW. Introduction. British Medical Bulletin 39: 1–3, 1983

    PubMed  CAS  Google Scholar 

  43. Inosotroza J, Teschemacher HJ, Mueller-Eckhardt C. Opioid peptides and the immune system. Immunologia 6: 93–99, 1987

    Google Scholar 

  44. Johnson HM, Smith EM, Torres BA, Blalock JE. Regulation of the in vitro antibody response by neuroendocrine hormones, Proceedings of the National Academy of Science 79: 4171–4174, 1982

    CAS  Article  Google Scholar 

  45. Kastin AJ, Olson GA, Zadina JE, Olson RD. Disparate effects of peripherally administered endorphins and enkephalins in laboratory animals. In Muller & Genazzani (Eds) Central and peripheral endorphins, pp. 99–108, Raven Press, New York, 1984

    Google Scholar 

  46. Keast D, Cameron K, Morton AR. Exercise and the immune response. Sports Medicine 5: 248–267, 1988

    PubMed  CAS  Article  Google Scholar 

  47. Langenfeld ME, Hart LS, Kao PC. Plasma beta-endorphin responses to one-hour bicycling and running at 60% V̇D2max. Medicine and Science in Sports and Exercise 19: 83–86, 1987

    PubMed  CAS  Article  Google Scholar 

  48. Levine JD, Gordon NW, Fields NL. Naloxone dose-dependently produces analgesia and hyperalgesia in postoperative patients. Nature 278: 740, 1979

    PubMed  CAS  Article  Google Scholar 

  49. Lolait SJ, Lim ATW, Toh BH, Funder JW. Immunoreactive β-endorphin in a subpopulation of mouse spleen macrophages. Journal of Clinical Investigation 73: 277–280, 1984

    PubMed  CAS  Article  Google Scholar 

  50. Madison DV, Nicoll RA. Enkephalin hyperpolarizes interneurons in the rat hippocampus. Journal of Physiology 398: 123–130, 1988

    PubMed  CAS  Google Scholar 

  51. Martinez JL, Weinberger SB, Scholteis G. Enkephalins and learning and memory: a review of evidence for a site of action outside of the blood-brain barrier. Behavioral and Neural Biology 49: 192–221, 1988

    PubMed  CAS  Article  Google Scholar 

  52. Matthews PM, Froelich CJ, Sibbitt WL, Bankhurst AD. Enhancement of natural cytotoxicity by beta-endorphin. Journal of Immunology 130: 1658–1662, 1983

    Google Scholar 

  53. McCain HW, Lamster IB, Bilotta J. Modulation of human T-cell suppressor activity by beta-endorphin and glycyl-1-glutamine. International Journal of Immunopharmacology 8:443–446,1986

    PubMed  CAS  Article  Google Scholar 

  54. McMurray RG, Forsythe WA, Mar MH, Hardy CJ. Exercise intensity-related responses of beta-endorphin and catecholamines. Medicine and Science in Sports and Exercise 19: 570–574, 1987

    PubMed  CAS  Article  Google Scholar 

  55. Metzger JM, Stein EA. Brain endorphin and sprint training. Life Sciences 34: 1541–1547, 1984

    PubMed  CAS  Article  Google Scholar 

  56. Miller BE, Lipman JJ, Byrne WL. Partial characterization of a novel endogenous opioid in human cerebrospinal fluid. Life Sciences 41: 2535–2545, 1987

    PubMed  CAS  Article  Google Scholar 

  57. Morley JE, Kay NE, Solomon GF, Plotnikoff NP. Neuropeptides: conductors of the immune orchestra. Life Sciences 41: 527–544, 1987

    PubMed  CAS  Article  Google Scholar 

  58. Mougin C, Baulay A, Henriet MT, Haton D, Jacquier MC, et al. Assessment of plasma opioid peptides, beta-endorphin and metenkephalin, at the end of an international ski race. European Journal of Applied Physiology 56: 281–286, 1987

    CAS  Article  Google Scholar 

  59. Moss IR, Scarpelli EM. Beta-endorphin central depression of respiration and circulation. Journal of Applied Physiology 50: 1011–1016, 1981

    PubMed  CAS  Google Scholar 

  60. Olson GA, Olson R, Kastin AJ. Endogenous opioids: 1986. Peptides 8: 1135–1164, 1987

    PubMed  CAS  Article  Google Scholar 

  61. Oltras CM, Mora F, Vives F. Beta-endorphin and ACTH in plasma: effects of physical and psychological stress. Life Sciences 40: 1683–1686, 1987

    PubMed  CAS  Article  Google Scholar 

  62. Pasternak GW, Wood PJ. Multiple mu opioid receptors. Life Sciences 38: 1889–1898, 1986

    PubMed  CAS  Article  Google Scholar 

  63. Patterson SJ, Robson LE, Kosterlitz HW. Classification of opioid receptors. British Medical Journal 39: 31–36, 1983

    Google Scholar 

  64. Pomeroy G, Ardell JL, Wurster RD. Spinal opioid modulation of cardiovascular reflexes in the exercising dog. Brain Research 381: 385–389, 1986

    PubMed  CAS  Article  Google Scholar 

  65. Rahkila P, Hakala E, Alen M, Salminen K, Laatikainen T. Beta-endorphin and corticotropin release is dependent on a threshold intensity of running in male endurance athletes. Life Sciences 43: 551–558, 1988

    PubMed  CAS  Article  Google Scholar 

  66. Rahkila P, Hakala E, Salminen K, Laatikainen T. Responses of plasma endorphins to running exercises in male and female endurance athletes. Medicine and Science in Sports and Exercise 19: 451–455, 1987

    PubMed  CAS  Article  Google Scholar 

  67. Rauramo I, Salminen K, Laatikainen T. Release of beta-endorphin in response to physical exercise in non-pregnant and pregnant women.Acta Obstetrica et Gynaecologica Scandinavica65: 609–612, 1986

    CAS  Article  Google Scholar 

  68. Richter WO, Kerscher P, Janetschek P, Schwandt P. In vitro lipolysis of proopiocortin peptides. Life Sciences 33(Suppl. 1): 747–750, 1983

    PubMed  CAS  Article  Google Scholar 

  69. Richter WO, Kerscher P, Schwandt P. Beta-endorphin stimulates in vivo lipolysis in the rabbit. Life Sciences 33(Suppl. 1): 743–746, 1983

    PubMed  CAS  Article  Google Scholar 

  70. Richter WO, Schwandt P. Metabolic effects of beta-lipotropin in vivo and in vitro in the rabbit. In Muller & Genazzani (Eds) Central and peripheral endorphins, pp. 197–201, Raven Press, New York, 1984

    Google Scholar 

  71. Schwellnus MP, Gordon NF. Effect of opioid antagonism on esophageal temperature during exercise. Medicine and Science in Sports and Exercise 20: 381–384, 1988

    PubMed  CAS  Article  Google Scholar 

  72. Seeger TF, Sforzo GA, Pert CB, Pert A. In vivo autoradiography: visualization of stress-induced changes in opiate receptor occupancy in the rat brain. Brain Research 305: 303–311, 1984

    PubMed  CAS  Article  Google Scholar 

  73. Sforzo GA. Opioids and exercise: a review. In Nudel (Ed.) Pediatric sports medicine, Ch. 4, SP Medical and Scientific, New York, 1988

    Google Scholar 

  74. Sforzo GA, Seeger TF, Pert CB, Pert A, Dotson CO. In vivo opioid receptor occupation in the rat brain following exercise. Medicine and Science in Sports and Exercise 18: 380–384, 1986

    PubMed  CAS  Article  Google Scholar 

  75. Sheps DS, Koch G, Bragdon EE, Ballenger MN, McMurray RG. The reproducibility of resting and post-exercise plasma beta-endorphins. Life Sciences 43: 787–791, 1988

    PubMed  CAS  Article  Google Scholar 

  76. Shippenberg TS, Herz A. Differential effects of mu and kappa opioid systems on motivational processes. National Institute Drug Abuse Research Monogram Series 75: 563–566, 1986

    CAS  Google Scholar 

  77. Smyth DG. Beta-endorphin and related peptides in pituitary, brain, pancreas and antrum. British Medical Journal 39: 25–30, 1983

    CAS  Google Scholar 

  78. Solerte SB, Fiorauanti M, Petraglia F, Facchinetti F, Patti AL, et al. Plasma beta-endorphin, free fatty acid and blood lipid changes in type 2 (non-insulin dependent) diabetic patients. Journal of Endocrinological Investigation 11: 37–42, 1988

    PubMed  CAS  Google Scholar 

  79. Sonka K, Sonka J. Exercise and beta-endorphin in plasma. In Macek & Kucera (Eds) Sports in health and disease, pp. 150–152, Czechoslovak Medical Press, Prague, 1985

    Google Scholar 

  80. Staessen J, Fiocchi R, Bouillon R, Fagard R, Lijnen P. The nature of opioid involvement in the hemodynamic respiratory and humoral responses to exercise. Circulation 72: 982–990, 1985

    PubMed  CAS  Article  Google Scholar 

  81. Staessen J, Fiocchi R, Fagard R, Lijnen P, Amery A. Alpha-adrenoceptor blockade by tibalosine: hemodynamic and humoral effects at rest and during exercise, and effect of opioid receptor antagonism. Journal of Cardiovascular Pharmacology 8: 1028–1034, 1986

    PubMed  CAS  Article  Google Scholar 

  82. Terenius L, Nyberg F. Opioid peptides in man–analytical aspects. Life Sciences 41: 805–808, 1987

    PubMed  CAS  Article  Google Scholar 

  83. Vettor R, Manno M, DeCarlo E, Federspil G. Evidence for an involvement of opioid peptides in exercise-induced lipolysis in rats. Hormonal and Metabolic Research 19: 282–283, 1987

    CAS  Article  Google Scholar 

  84. Viswanathan M, VanDijk JP, Graham TE, Bonen A, George JC. Exercise and cold-induced changes in plasma beta-endorphin and beta-lipotropin in men and women. Journal of Applied Physiology 62: 622–627, 1987

    PubMed  CAS  Google Scholar 

  85. Wagner HN. Quantitative imaging of dopamine, serotonin, and opiate receptors in the living human brain. In Boast et al. (Eds) Quantitative receptor autoradiography, pp. 233–254, Liss Inc., Philadelphia, 1986

    Google Scholar 

  86. Wardlaw SL, Frantz A. Effects of swimming stress on brain beta-endorphin and ACTH. Clinical Research 28: 482A, 1980

    Google Scholar 

  87. Weber RJ, Pert CB. Opiatergic modulation of the immune system. In Muller & Genazzani (Eds) Central and peripheral endorphins, pp. 35–42, Raven Press, New York, 1984

    Google Scholar 

  88. Zagon IS, McLaughlin PJ. Naltrexone’s influence on neurobehavioral development. Pharmacology, Biochemistry and Behavior 22: 441–448, 1985

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dr G. A. Sforzo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sforzo, G.A. Opioids and Exercise. Sports Med 7, 109–124 (1989). https://doi.org/10.2165/00007256-198907020-00003

Download citation

Keywords

  • Naloxone
  • Opioid Receptor
  • Opioid Peptide
  • Grade Exercise Test
  • Endorphin Level