Skip to main content
Log in

Free Radical Chemistry

Relationship to Exercise

  • Research Reviews
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

Free radicals are molecules or molecular fragments containing an unpaired electron in the valence shell. Radicals interested only a few chemists until 18 years ago when an enzyme was discovered which functioned to remove a specific oxygen-centered radical. That discovery renewed interest in radicals and has already begun to alter thinking on many clinical problems. Free radicals have been shown to be common phenomena that play a role in normal biochemistry but require an elaborate control system to be held in check. Since oxygen-centered radicals are produced in intermediate metabolism, exercise should increase their production and that has been shown to be so. There is also evidence that the consumption of large quantities of ambient oxygen during exercise induces harmful chemistry known as lipid peroxidation. Presently, there are insufficient data available to ascertain how the human body tolerates such increased production of free radicals and lipid peroxidation and how the consequences of that chemistry might relate to the overall well being of exercising humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allesio HM, Goldfarb AH, Byarlay JA. Endurance training effects on lipid peroxidation and scavenger enzyme activity. Abstract. 9th Annual Mid-Atlantic Meeting of the American College of Sports Medicine, 1986

  • Amatuni VG, Safarian MD. Lipid peroxidation and the antioxidant system in patients with bronchial asthma and asthmatic bronchitis subjected to graded physical load. Terapevticheskii Arkhiv 58: 23–25, 1986

    PubMed  CAS  Google Scholar 

  • Balke PO, Snider MT, Bull AP. Evidence for lipid peroxidation during moderate exercise. Abstract. Medicine and Science in Sports and Exercise 16: 181, 1984

    Article  Google Scholar 

  • Barber AA, Bernheim F. Lipid peroxidation: its measurement, occurrence and significance in animal tissues. In Strehler (Ed.) Advances in gerontological research, Vol. 2, pp. 355–403, Academic, New York, 1967

    Google Scholar 

  • Baum RM. Superoxide theory of oxygen toxicity is center of heated debate. Chemical and Engineering News 62: 20–26, 1984

    Article  Google Scholar 

  • Belko A, Obarzaneke R, Roach M, Rotter G, Urban S, et al. Effects of aerobic exercise and weight loss on riboflavin requirements of moderately obese, marginally deficient young women. American Journal of Clinical Nutrition 40: 553–561, 1984

    PubMed  CAS  Google Scholar 

  • Benedetti A, Casini AF, Ferrali M, Comporti M. Effects of difusible products of peroxidation of rat liver microsomal lipids. Biochemistry Journal 180: 303–312, 1979

    CAS  Google Scholar 

  • Birnboim HC. DNA strand breaks in human leukocytes induced by Superoxide anion hydrogen peroxide and tumor promoters are repaired slowly compared to breaks induced by ionizing radiation. Carcinogenesis 7: 1511–1517, 1986

    Article  PubMed  CAS  Google Scholar 

  • Boveris A, Cadenas E, Chance B. Ultraweak chemiluminescence: a sensitive assay for oxidative radical reactions. Federation Proceedings 40: 195–198, 1981

    PubMed  CAS  Google Scholar 

  • Boveris A, Cadenas E, Stoppani AOM. Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochemistry Journal 156: 435–444, 1976

    CAS  Google Scholar 

  • Brady PS, Brady LJ, Ullrey DE. Selenium, vitamin E and the response to swimming stress in the rat. Journal of Nutrition 109: 1103–1109, 1979

    PubMed  CAS  Google Scholar 

  • Brady PS, Ku PK, Ullrey DE. Lack of effect of selenium supplementation on the response of equine erythrocyte glutathione system and plasma enzymes to exercise. Journal of Animal Science 47: 492–496, 1978

    PubMed  CAS  Google Scholar 

  • Brooks GA, Fahey TD. Exercise physiology, pp. 176–178, John Wiley & Sons, New York, 1984

    Google Scholar 

  • Burge WE. Comparison of the catalase content of the tissues of the mother and of the offspring. Proceedings of the Society of Experimental Biology and Medicine 17: 139–141, 1920

    Google Scholar 

  • Burge WE, Kennedy J, Neill AJ. The effect of thyroid feeding on the catalase content of the tissues. American Journal of Physiology 43: 433–437, 1917

    CAS  Google Scholar 

  • Burge WE, Neil AJ. Comparison of the amount of catalase in the muscle of large and of small animals. American Journal of Physiology 42: 373–377, 1916–17

    Google Scholar 

  • Burk RF. Biological activity of selenium. Annual Review of Nutrition 3: 53–70, 1983

    Article  PubMed  CAS  Google Scholar 

  • Cadenas E, Boveris A, Ragazn CI, Stopani AOM. Production of Superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome C reductase from beef heart mitochondria. Archives of Biochemistry and Biophysics 180: 248–257, 1977

    Article  PubMed  CAS  Google Scholar 

  • Caldarera CM, Guarnieri C, Lazzari F. Catalase and peroxidase activity in cardiac muscle. Bulletin of the Italian Experimental Biological Society 49: 72–77, 1973

    CAS  Google Scholar 

  • Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiological Reviews 59: 527–605, 1979

    PubMed  CAS  Google Scholar 

  • Chia LS, Thompson JE, Moscarello MA. Disorders in human myelin induced by Superoxide radical: an in vitro investigation. Biochemical and Biophysical Research Communications 117: 141–146, 1983

    Article  PubMed  CAS  Google Scholar 

  • Combs GF. Vitamin E in vitamin tolerance of domestic animals. Subcommittee on vitamin tolerance/committee on nutrition, pp. 23–30, National Academy of Science Printing Office, Washington, D.C., 1987

    Google Scholar 

  • Davies JJA, Quintanilha AT, Brooks GA, Packer L. Free radicals and tissue damage produced by exercise. Biochemical Biophysics Research Communications 107: 1198–1205, 1982

    Article  CAS  Google Scholar 

  • Deev LI, Akhalaiai MI, Illarionova EA, Kadriashov IB. Relation of changes in the content and activity of rat liver microsomal cytochrome P-450 to the intensification of lipid peroxidation under stress. Biuletyn Eksperimentalna Biologia Medicine 95: 51–53, 1983

    CAS  Google Scholar 

  • de Groot H, Noll T, Tolle T. Loss of latent activity of liver microsomal membrane enzymes evoked by lipid peroxidation. Biochimica et Biophysica Acta 815: 91–96, 1985

    Article  PubMed  Google Scholar 

  • Del Maestro R. An approach to free radicals in medicine and biology. Acta Physiologica Scandinavica 492 (Suppl.): 153–168, 1980

    Google Scholar 

  • Demopoulos HB. The basis of free radical pathology. Federation Proceedings 32: 1859–1861, 1973

    PubMed  CAS  Google Scholar 

  • Demopoulos H. Quoted in Pearson D, Shaw S. Life extension: a practical scientific approach, p. 100. Warner Books, New York, 1982

    Google Scholar 

  • Dillard CJ, Litor RE, Savin WM, Dumelin EE, Tappel AL. Effects of exercise, vitamin E, and ozone on pulmonary function and lipid peroxidation. Journal of Applied Physiology 45: 927–932, 1978

    PubMed  CAS  Google Scholar 

  • Ege S. Organic chemistry, pp. 162, DC Heath and Co., Lexington, Mass., 1984

    Google Scholar 

  • Feinstein RN, Howard JB, Faulhaber JT. Catalase levels and radiation resistance in three species of wild duck. International Journal of Radiation Biology 15: 341–346, 1969

    Article  CAS  Google Scholar 

  • Flohe L, Nieback G, Reiber H. Zur Wirkung von Divicin in menschlichen Erythrocyten. Zeitschrift fuer Klinische Chemie and Klinische Biochemie 9: 431–437, 1978

    Google Scholar 

  • Fridovich I. Superoxide dismutase: defence against endogenous Superoxide radical: oxygen free radicals and tissue damage. CIBA Foundation Symposium 65, pp. 77–86, Excerpta Medica, New York, 1979

    Google Scholar 

  • Fridovich I. Antioxidant defenses in the lung. Annual Review of Physiology 48: 693–702, 1986

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto Y, Yoshida A, Morisawa K, Ueno T, Fujita T. Enhancement of methyl mercury-induced lipid peroxidation by the addition of ascorbic acid. Research Communications in Chemical Pathology and Pharmacology 49: 267–275, 1985

    PubMed  CAS  Google Scholar 

  • Gabig TG, Babior BM. The killing of pathogens by phagocytes. Annual Review of Medicine 32: 313–326, 1981

    Article  PubMed  CAS  Google Scholar 

  • Gohil K, Packer L, deLumen B, Brooks GA, Terblanche SC. Vitamin E deficiency and vitamin C supplements: exercise and mitochondrial oxidation. Journal of Applied Physiology 60: 1986–1991, 1986

    PubMed  CAS  Google Scholar 

  • Gruger EH, Tappel AL. Reactions of biological antioxidants: composition of biological membranes. Lipids 6: 147–148, 1971

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge JMC, Rowley DA, Halliwell B, Cooper DF, Heeley DM. Copper and iron complexes catalytic for oxygen radical reactions in sweat from human athletes. Clinica Chimica Acta 145: 267–273, 1985

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Archives of Biochemistry and Biophysics 246: 501–514, 1986

    Article  PubMed  CAS  Google Scholar 

  • Higuchi M, Cartier LJ, Chen M, Holloszy JO. Superoxide dismutase and catalase in skeletal muscle: adaptive response to exercise. Journal of Gerontology 40: 281–286, 1985

    PubMed  CAS  Google Scholar 

  • Hill HAO. The chemistry of dioxygen and its reduction products. In oxygen free radicals and tissue damage, CIBA Foundation Symposium 65, pp. 5–17, Excerpta Medica, New York, 1979

    Google Scholar 

  • Holmberg P. The physics and chemistry of free radicals. Medical Biology 62: 68–70, 1984

    PubMed  CAS  Google Scholar 

  • Ivanova SM, Orlov ON, Brantova SS, Labetskaia OI, Dayydova NA. Effect of intensive operator activity on lipid peroxidation processes in the human body. Kosmicheskaya Biologiya Avia Kosmiches Kaya Meditsina 20: 220–222, 1986

    Google Scholar 

  • Jackson MJ, Edwards RHT, Symons MCR. Electron spin resonance studies of intact skeletal muscle. Biochimica et Biophysica Acta 847: 185–190, 1985

    Article  PubMed  CAS  Google Scholar 

  • Jenkins R. Effect of use and disuse on catalase activity in fast and slow skeletal muscle. Proceedings of the Congress De Medicina Deportiva, San Juan, Puerto Rico, 1979

  • Jenkins RR. The role of Superoxide dismutase and catalase in muscle fatigue. In Knuttgen et al. (Eds) Biochemistry of exercise, Vol. 13, pp. 467–471, Human Kinetics, Champaign, 1983

    Google Scholar 

  • Jenkins RR, Friedland R, Hownld H. The relationship of oxygen uptake to Superoxide dismutase and catalase activity in human muscle. International Journal of Sports Medicine 95: 11–14, 1984

    Article  Google Scholar 

  • Jenkins RR, LoPresto C. Influence of H2O2 on glycogen repletion in rat liver and skeletal muscle. In Benzi (Ed.) Advances in myochemistry 1, p. 364, J Libbey & Co., London, 1987

    Google Scholar 

  • Jenkins RR, Martin D, Goldberg E. Lipid peroxidation in skeletal muscle during atrophy and acute exercise. Medicine and Science in Sports and Exercise 15: 93H, 1983

    Google Scholar 

  • Jenkins RR, Newsham D. Catalase activity in electrically stimulated muscle. Experientia 36: 843, 1980

    Article  PubMed  CAS  Google Scholar 

  • Jenkins RR, Newsham D, Rushmore R, Tengie J. Effect of disuse on the skeletal muscle catalase of rats. Biochemical Medicine 27: 195–199, 1982

    Article  PubMed  CAS  Google Scholar 

  • Jenkins RR, Tengi J. Catalase activity in skeletal muscle of varying fiber types. Experientia 37: 67, 1981

    Article  PubMed  CAS  Google Scholar 

  • Kanter MM, Hamlin RL, Unverferth DV, Davis MW, Merola AJ. Effect of exercise training on antioxidant enzymes and cardiotoxicity of doxorubicin. Journal of Applied Physiology 59: 1298–1303, 1985

    PubMed  CAS  Google Scholar 

  • Kanter MM, Lesmes GR, Kaminsky LA, LaHam-Saeger J, Neguin ND. Serum creatine kinase and lactate dehydrogenase changes following a fifty mile race: relationship to lipid peroxidation. European Journal of Applied Physiology, in press, 1988

  • Kanter MM, Lesmes GR, Neguin ND, Kaminsky LA, Saeger JM. Serum lipid levels and lipid peroxidation in ultramarathon runners. Annals of Sports Medicine 3: 39–41, 1986a

    CAS  Google Scholar 

  • Kappus H. Lipid peroxidation: mechanisms, analysis, enzymology and biological relevance in oxidative stress. In Sies (Ed.) Metabolic compartmentation, pp. 273–310, Academic Press, London, 1985

    Google Scholar 

  • Karlsson J. Heart and skeletal muscle ubiquinone or CoQ10 as a protective agent against radical formation in man. In Benzi (Ed.) Advances in myochemistry 1, pp. 305–318, J Libbey & Co., London, 1987

    Google Scholar 

  • Karlsson J, Folkers R, Astrom H, Jansson E, Pernon B, et al. Effect of adriamycin on heart and skeletal muscle coenzyme Q (CoQ10) in man. Submitted for publication, 1987

  • Knuutila S. Role of free radicals in genetic damage (mutation). Medical Biology 62: 110–114, 1984

    PubMed  CAS  Google Scholar 

  • Lawrence GD, Cohen G. Ethane exhalation as an index of in vivo lipid peroxidation: concentrating ethane from a breath collection chamber. Analytical Biochemistry 122: 283–290, 1982

    Article  PubMed  CAS  Google Scholar 

  • Llaurado JG. The saga of BHT and BHA in life extension myths. Journal of the American College of Nutrition 4: 481–484, 1985

    PubMed  CAS  Google Scholar 

  • Lovlin R, Cottle W, Pyke I, Kavanagh M, Beicastro AN. Are indices of free radical damage related to exercise intensity. European Journal of Applied Physiology 56: 313–316, 1987

    Article  CAS  Google Scholar 

  • Marklund SL. Clinical aspects of Superoxide dismutase. Medical Biology 62: 130–134, 1984

    PubMed  CAS  Google Scholar 

  • Marklund SL. Superoxide dismutase in human tissues, cells, and extracellular fluids: clinical implications. In Johnson (Ed.) Free radicals, aging, and degenerative diseases pp. 509–526, Alan R. Liss, London 1986

    Google Scholar 

  • Mautz WJ, McClure TR, Reischl P, Phalen RF, Crocker TT. Enhancement of ozone-induced lung injury by exercise. Journal of Toxicology and Environmental Health 16: 841–845, 1985

    Article  PubMed  CAS  Google Scholar 

  • McCord JM. Free radicals and inflammation: protection of synovial fluid by Superoxide dismutase. Science 185: 529–531, 1974

    Article  PubMed  CAS  Google Scholar 

  • McCord JM. Oxygen-derived free radicals in post ischemie tissue injury. New England Journal of Medicine 312: 159–163, 1985

    Article  PubMed  CAS  Google Scholar 

  • McCord JM, Fridovich I. Superoxide dismutase, an enzymatic function for erythrocaperin (hemocurperin). Journal of Biological Chemistry 244: 6049–6055, 1969

    PubMed  CAS  Google Scholar 

  • Meerson FZ, Kagan VE, Prilipko LL, Rozhitskaia II, Giber LM. Activation of lipid peroxidation in emotional-pain stress. Viuletyn Eksperimentalna Biologia Medicina 88: 404–406, 1979

    CAS  Google Scholar 

  • Meister A, Anderson ME. Glutathione. Annual Review of Biochemistry 52: 711–760, 1983

    Article  PubMed  CAS  Google Scholar 

  • Michelson AM. Toxic effects of active oxygen. In Hayaishi & Asada (Eds) Biochemical and medical aspects of active oxygen, pp. 155–170, University Park Press, Baltimore, 1977

    Google Scholar 

  • Morasaki N, Sprecher H, Milo GE, Cornwell DG. Fatty acid specificity in the inhibition of cell proliferation and its relationship to lipid peroxidation and prostaglandin biosynthesis. Lipids 17: 893–899, 1982

    Article  Google Scholar 

  • Morgulis S. Is catalase a measure of metabolic activity? American Journal of Physiology 57: 125–134, 1921

    CAS  Google Scholar 

  • Nagui A, Chance B, Cadenas E. Reactive oxygen intermediates in biochemistry. Annual Review of Biochemistry 55: 137–166, 1986

    Article  Google Scholar 

  • Needleman P, Turk J, Jakschik BA, Morrison AR, Lefkowith JB. Arachidonic acid metabolism. Annual Review of Biochemistry 55: 69–102, 1986

    Article  PubMed  CAS  Google Scholar 

  • Niki E, Saito M, Kawakami A, Kamiya Y. Inhibition of oxidation of methyl linoleate in solution by vitamin E and vitamin C. Journal of Biological Chemistry 259: 4177–4182, 1984

    PubMed  CAS  Google Scholar 

  • Niki EY, Yamamoto Y, Kamiya Y. Role of uric acid, cysteine, and glutathione as chain breaking antioxidants in aqueous phase. Chemistry Letters 430: 1267–1270, 1985

    Article  Google Scholar 

  • Nohl H, Jordan W, Youngman RJ. Quinones in biology: functions in electron transfer and oxygen activation. Advances in Free Radical Biology and Medicine 92: 211–279, 1986

    Article  Google Scholar 

  • Oberley LW, Oberley TD, Buettner GR. Cell division in normal and transformed cells: the possible role of Superoxide and hydrogen peroxide. Medical Hypothesis 7: 21–42, 1981

    Article  CAS  Google Scholar 

  • Ohno H, Sato Y, Yamashita K, Doi R, Arai K, et al. The effect of brief physical exercise on free radical scavenging enzyme systems in human red blood cells. Canadian Journal of Physiology and Pharmacology 64: 1263–1265, 1986

    Article  PubMed  CAS  Google Scholar 

  • Packer JE, Slater TF, Willson RL. Direct observation of a free radical interaction between vitamin E and vitamin C. Nature 278: 737–738, 1979

    Article  PubMed  CAS  Google Scholar 

  • Packer L, Deamer DW, Heath RL. Regulation and deterioration of structure in membranes. In Strehler (Ed.) Advances in gerontological research, Vol. 2, pp. 77–118, Academic Press, New York, 1967

    Google Scholar 

  • Placer Z, Veselkova A, Rath R. Kinetik des Malondialdehydes in Organismus. Experientia 21: 19–20, 1965

    Article  PubMed  CAS  Google Scholar 

  • Pryor WA. Free radicals, pp. 354, McGraw-Hill Book Co., New York, 1966

    Google Scholar 

  • Pryor WA. Free radical reactions and their importance in biochemical systems. Federation Proceedings 32: 1862–1869, 1973

    PubMed  CAS  Google Scholar 

  • Pryor WA. Oxy-radicals and related species: their formation, lifetimes and reactions. Annual Review of Physiology 48: 657–667, 1986

    Article  PubMed  CAS  Google Scholar 

  • Quintanilha AT. Effects of physical exercise and/or vitamin E on tissue oxidative metabolism. Biochemical Society Transactions 12: 403–404, 1984

    PubMed  CAS  Google Scholar 

  • Recknagel RO, Ghoshal AK. New data on the question of lipoperoxidation of lipids. Experimental and Molecular Pathology 5: 108–117, 1966

    Article  PubMed  CAS  Google Scholar 

  • Salminen A, Kainulainen H, Vihko V. Endurance training and antioxidants of lung. Experientia 40: 822–823, 1984

    Article  PubMed  CAS  Google Scholar 

  • Salminen A, Vihko V. Endurance training reduces the susceptibility of mouse skeletal muscle to lipid peroxidation in vitro. Acta Physiologica Scandinavia 117: 109–113, 1983

    Article  CAS  Google Scholar 

  • Scott M. Advances in our understanding of vitamin E. Federation Proceedings 39: 2736–2739, 1980

    PubMed  CAS  Google Scholar 

  • Schmid L. Malignant tumors as causes of death of former athletes. In Howald & Poortmans (Eds) Metabolic adaptation to prolonged physical exercise, pp. 85–91, Birkhauser Verlag, Basel, 1975

    Google Scholar 

  • Schmid L. Malignant tumors in male and female athletes. Neoplasma, in press, 1986

  • Sevanian A, Muakkassah-Kelly SF, Montestrugue S. The influence of phospholipase A2 and glutathione peroxidase on the elimination of membrane lipid peroxides. Archives of Biochemistry and Biophysics 223: 441–452, 1983

    Article  PubMed  CAS  Google Scholar 

  • Shephard R. Can we identify those for whom exercise is hazardous? Sports Medicine 1: 75–86, 1984

    Article  Google Scholar 

  • Shephard RJ. Exercise and malignancy. Sports Medicine 3: 235–241, 1986

    Article  PubMed  CAS  Google Scholar 

  • Snider MT, Balke PO, Oerter KE, Francalancia NA, Pasko KA, et al. Life Chemistry Reports 3: 168–173, 1985

    CAS  Google Scholar 

  • Sohol RS, Allen RG. Relationship between oxygen metabolism, aging and development. Advances in Free Radical Biology and Aging 2: 117–160, 1986

    Article  Google Scholar 

  • Suzuki M, Katamine S, Tatsumi S. Exercise-induced enhancement of lipid peroxide metabolism in tissues and their transference into the brain in rat. Journal of Nutritional Science and Vitaminology 29: 141–151, 1983

    Article  PubMed  CAS  Google Scholar 

  • Sylven C, Jansson A, Szamos A, Book K, Karlsson J. Papillary muscle key enzyme activities and coenzyme Q content in patients with mitral valve disease — relation to myocardial function. American Journal of Cardiology, in press, 1988

  • Taniguchi T, Kirata F, Hayaishi O. Participation of Superoxide anion in the intracellular activity of indoleamine 2, 3-dioxygenase. In Hayaishi & Asada (Eds) Biochemical and medical aspects of active oxygen, p. 155–170, University Park Press, Baltimore, Maryland, 1977

    Google Scholar 

  • Tappel AL. Vitamin E and free radical peroxidation of lipids. Annals of the New York Academy of Science 203: 12–28, 1972

    Article  CAS  Google Scholar 

  • Thompson JA, Hess ML. The oxygen free radical system: a fundamental mechanism in the production of myocardial necrosis. Progress in Cardiovascular Diseases 28: 449–462, 1986

    Article  PubMed  CAS  Google Scholar 

  • Viinikka L, Vuori J, Ylikorkala O. Lipid peroxides, prostacyclin, and thromboxane A2 in runners during acute exercise. Medicine and Science in Sports and Exercise 16: 275–277, 1984

    PubMed  CAS  Google Scholar 

  • Wilbur KM, Bernheim F, Shapiro OW. The thiobarbituric acid reagent as a test for the oxidation of unsaturated fatty acids by various agents. Archives of Biochemistry 24: 305–313, 1949

    PubMed  CAS  Google Scholar 

  • Williams MD, Chance B. Spontaneous chemiluminescence of human breath. Journal of Biological Chemistry 258: 3628–3631, 1983

    PubMed  CAS  Google Scholar 

  • Williams RJ. Biochemical individuality, pp. 214, John Wiley and Sons, Inc., New York, 1963

    Google Scholar 

  • Yagi K (Ed.). Lipid peroxides in biology and medicine, pp. 364, Academic Press, New York, 1982

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenkins, R.R. Free Radical Chemistry. Sports Medicine 5, 156–170 (1988). https://doi.org/10.2165/00007256-198805030-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-198805030-00003

Keywords

Navigation