Skip to main content

Advertisement

Log in

Calcineurin Inhibitor Sparing in Paediatric Solid Organ Transplantation

Managing the Efficacy/Toxicity Conundrum

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Despite their efficacy, the calcineurin inhibitors (CNIs) ciclosporin and tacrolimus carry a risk of debilitating adverse effects, especially nephrotoxicity, that affect the long-term outcome and survival of children who are given organ transplants. Simple reduction in dosage of CNI has little or no long-term benefit on their adverse effects, and complete withdrawal without threatening graft outcome may only be possible after liver transplantation. Until the last decade, the only option was to increase corticosteroid and/or azathioprine doses, which imposed additional long-term hazards. Considered here are the emerging generation of new agents offering an opportunity for improving long-term graft survival, minimizing CNI-related adverse events and ensuring patient well-being.

A holistic, multifaceted strategy may need to be considered — initial selection and optimized use and monitoring of immunosuppressant regimens, early recognition of indicators of patient and graft dysfunction, and, where applicable, early introduction of CNI-sparing regimens facilitating CNI withdrawal. The evidence reviewed here supports these approaches but remains far from definitive in paediatric solid organ transplantation. Because de novo immunosuppression uses CNI in more than 93% of patients, reduction of CNI-related adverse effects has focused on CNI sparing or withdrawal.

A recurring theme where sirolimus and mycophenolate mofetil have been used for this purpose is the importance of their early introduction to limit CNI damage and provide long-term benefit: for example, long-term renal function critically reflects that at 1 year post-transplant. While mycophenolic acid shows advantages over sirolimus in preserving renal function because the latter is associated with proteinuria, sirolimus appears the more potent immunosuppressant but also impairs early wound healing. The use of CNI-free immunosuppressant regimens with depleting or non-depleting antibodies plus sirolimus and mycophenolic acid needs much wider investigation to achieve acceptable rejection rates and conserve renal function.

The adverse effects of the alternative immunosuppressants, particularly the dyslipidaemia associated with sirolimus, needs to be minimized to avoid replacing one set of adverse effects (from CNIs) with another. While we can only conjecture that judicious combinations with the second generation of novel immunosuppressants currently in development will provide these solutions, a rationale of low-dose therapy with multiple immunosuppressants acting by complementary mechanisms seems to hold the promise for efficacy with minimal toxicity until the vision of tolerance achieves reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Table IV
Table V
Table VI

Similar content being viewed by others

References

  1. Carrel A, Guthrie CC. Functions of a transplanted kidney. Science 1905; 22: 473–7

    Article  PubMed  CAS  Google Scholar 

  2. Calne R. Cyclosporine as a milestone in immunosuppression. Transplant Proc 2004; 36: 13–5S

    Article  CAS  Google Scholar 

  3. Horslen S, Barr ML, Christensen LL, et al. Pediatric transplantation in the United States, 1996–2005. Am J Transplant 2007; 7: 1339–58

    Article  PubMed  CAS  Google Scholar 

  4. Meier-Kriesche H, Li S, Gruessner RWG, et al. Immunosuppression: evolution in practice and trends, 1994–2004. Am J Transplant 2006; 6: 1111–31

    Article  PubMed  CAS  Google Scholar 

  5. Smith JM, Stablein DM, Munoz R, et al. Contributions of the Transplant Registry: the 2006 annual report of the north American pediatric renal trials and collaborative studies (NAPRTCS). Pediatr Transplant 2007; 11: 366–73

    Article  PubMed  Google Scholar 

  6. Kelly DA. Current issues in pediatrie transplantation. Pediatr Transplant 2006; 10: 712–20

    Article  PubMed  CAS  Google Scholar 

  7. Habwe VQ. Posttransplantation quality of life: more than graft function. Am J Kidney Dis 2006; 47: S98–110

    Article  PubMed  Google Scholar 

  8. Schwarz C, Oberbauer R. Calcineurin inhibitor sparing in renal transplantation. Curr Opin Organ Transplant 2006; 11: 632–6

    Article  Google Scholar 

  9. Di Filippo S, Cochat P, Bozio A. The challenge of renal function in heart transplant children. Pediatr Nephrol 2007; 22: 333–42

    Article  PubMed  Google Scholar 

  10. Kearns GL, Abdel-Rhaman SM, Alander SW, et al. Developmental pharmacology: drug disposition, action and therapy in infants and children. N Engl J Med 2003; 349: 1157–67

    Article  PubMed  CAS  Google Scholar 

  11. Kosti RI, Panagiotakos DB. The epidemic of obesity in children and adolescents of the world. Cent Eur J Public Health 2006; 14: 151–9

    PubMed  Google Scholar 

  12. Lee JM. Insulin resistance in children and adolescents. Rev Endocr Metab Disord 2006; 7: 141–7

    Article  PubMed  CAS  Google Scholar 

  13. Kato T, Gaynor JJ, Selvaggi G, et al. Intestinal transplantation in children: a summary of clinical outcomes and prognostic factors in 108 patients from a single center. J Gastrointest Surg 2005; 9: 75–89

    Article  PubMed  Google Scholar 

  14. Puliyanda DP, Stablein DM, Dharnidharka VR. Younger age and antibody induction increase the risk for infection in pediatric renal transplantation: a NAPRTCS report. Am J Transplant 2007; 7: 662–6

    Article  PubMed  CAS  Google Scholar 

  15. Martin SR, Atkinson P, Anand R, et al. Studies of pediatric liver transplantation 2002: patient and graft survival and rejection in pediatric recipients of a first liver transplant in the United States and Canada. Pediatr Transplant 2004; 8: 273–83

    Article  PubMed  CAS  Google Scholar 

  16. Renoult E, Buteau C, Lamarre V, et al. Infectious risk in pediatric organ transplant recipients: is it increased with the new immunosuppressive agents? Pediatr Transplant 2005; 9: 470–9

    Article  PubMed  CAS  Google Scholar 

  17. Kirk AD, Cherikh WS, Ring M, et al. Dissociation of depletional induction and postransplant lymphoproliferative disease in kidney recipients treated with Alemtuzumab. Am J Transplant 2007; 7: 2619–25

    Article  PubMed  CAS  Google Scholar 

  18. Humar A, Michaels M, Working Group ASTID. American Society of Transplantation recommendations for screening, monitoring and reporting of infectious complications in immunosuppression trials of recipients of organ transplantation. Am J Transplant 2006; 6: 262–74

    Article  PubMed  CAS  Google Scholar 

  19. Kelly D, Jara P, Rodeck B, et al. Tacrolimus and steroids versus ciclosporin microemulsion, steroids and azathioprine in children undergoing liver transplantation: randomised European multicentre trial. Lancet 2004; 364: 1054–61

    Article  PubMed  CAS  Google Scholar 

  20. John U, Everding AS, Kuwertz-Broking E, et al. High prevalence of febrile urinary tract infections after pediatric renal transplantation. Nephrol Dialysis Transplant 2006; 21: 3269–74

    Article  Google Scholar 

  21. Verma A, Wade JJ, Cheeseman P, et al. Risk factors for fungal infection in paediatric liver transplant recipients. Pediatr Transplant 2005; 9: 220–5

    Article  PubMed  Google Scholar 

  22. Shepherd RW, Turmelle Y, Nadler M, et al. Risk factors for rejection and infection in pediatric liver transplantation. Am J Transplant 2008; 8: 396–403

    Article  PubMed  CAS  Google Scholar 

  23. Acott PD. Polyoma virus in pediatric renal transplantation. Pediatr Transplant 2006; 10: 856–60

    Article  PubMed  Google Scholar 

  24. Hymes LC, Warshaw BL. Polyomavirus (BK) in pediatric renal transplants: evaluation of viremic patients with and without BK associated nephritis. Pediatr Transplant 2006; 10: 920–2

    Article  PubMed  Google Scholar 

  25. Pinchoff RJ, Kaufman SS, Magid MS, et al. Adenovirus infection in pediatric small bowel transplantation recipients. Transplantation 2003; 76: 183–9

    Article  PubMed  Google Scholar 

  26. Smith JM, McDonald RA. Emerging viral infections in transplantation. Pediatr Transplant 2006; 10: 838–43

    Article  PubMed  Google Scholar 

  27. Hymes LC, Warshaw BL. Sirolimus in pediatric patients: results in the first 6 months post-renal transplant. Pediatr Transplant 2005; 9: 520–2

    Article  PubMed  CAS  Google Scholar 

  28. Li L, Chaudhuri A, Weintraub LA, et al. Subclinical cytomegalovirus and Epstein Barr virus viremia are associated with adverse outcomes in pediatric renal transplantation. Pediatr Transplant 2007; 11: 187–95

    Article  PubMed  Google Scholar 

  29. Krantz B, Vester U, Wingen A–M, et al. Acute rejection episodes in pediatric renal transplant recipients with cytomegalovirus infection. Pediatr Transplant 2008; 12: 474–8

    Article  Google Scholar 

  30. Guthery SL, Heubi JE, Bucuvalas JC, et al. Determination of risk factors for Epstein-Barr virus-associated posttransplant lymphoproliferative disorder in pediatric liver transplant recipients using objective case ascertainment. Transplantation 2003; 75: 987–93

    Article  PubMed  CAS  Google Scholar 

  31. Mendoza F, Kunitake H, Laks H, et al. Post-transplant lymphoproliferative disorder following pediatric heart transplantation. Pediatr Transplant 2006; 10: 60–6

    Article  PubMed  Google Scholar 

  32. Webber SA, Naftel DC, Fricker FJ, et al. Lymphoproliferative disorders after paediatric heart transplantation: a multi-institutional study. Lancet 2006; 367: 233–9

    Article  PubMed  Google Scholar 

  33. Dharnidharka VR, Stevens G. Risk for post-transplant lymphoproliferative disorder after polyclonal antibody induction in kidney transplantation. Pediatr Transplant 2005; 9: 622–6

    Article  PubMed  Google Scholar 

  34. McDonald RA, Smith JM, Ho M, et al. Incidence of PTLD in pediatric renal transplant recipients receiving basiliximab, calcineurin inhibitor, sirolimus and steroids. Am J Transplant 2008; 8: 984–9

    Article  PubMed  CAS  Google Scholar 

  35. Herrmann BW, Sweet SC, Molter DW. Sinonasal post-transplant lymphoproliferative disorder in pediatric lung transplant patients. Otolaryngol Head Neck Surg 2005; 133: 38–41

    Article  PubMed  Google Scholar 

  36. Scheenstra R, Verschuuren EAM, de Haan A, et al. The value of prospective monitoring of Epstein Barr virus DNA in blood samples in pediatric liver transplants. Transplant Infect Dis 2004; 6: 15–22

    Article  CAS  Google Scholar 

  37. Hurwitz M, Desai DM, Cox KL, et al. Complete immunosuppressive withdrawal as a uniform approach to post-transplant lymphoproliferative disease in pediatric liver transplantation. Pediatr Transplant 2004; 8: 267–72

    Article  PubMed  Google Scholar 

  38. Gross TG. Post-transplant lymphoproliferative disease in children following solid organ transplant and rituximab: the final answer? Pediatr Transplant 2007; 11: 575–7

    Article  PubMed  Google Scholar 

  39. Comoli P, Basso S, Zecca M, et al. Preemptive therapy of EBV-related lymphoproliferative disease after pediatric haploidentical stem cell transplantation. Am J Transplant 2007; 7: 1648–55

    Article  PubMed  CAS  Google Scholar 

  40. Tredger JM, Brown NW, Dhawan A. Immunosuppression in pediatric solid organ transplantation: opportunities, risks, and management. Pediatr Transplant 2006; 10: 879–92

    Article  PubMed  CAS  Google Scholar 

  41. Feng S, Buell JF, Chari RS, et al. Tumors and transplantation: the 2003 third annual ASTS state-of-the art winter symposium. Am J Transplant 2003; 3: 1481–7

    Article  PubMed  Google Scholar 

  42. Penn I. De novo malignancy in paediatric organ transplant recipients. J Paediatr Surgery 1994; 29: 221–8

    Article  CAS  Google Scholar 

  43. Thomson MA, Suggett NR, Nightingale PG, et al. Skin surveillance of a U.K. paediatric transplant population. Br J Dermatol 2006; 156: 45–50

    Article  Google Scholar 

  44. Parkekh RS, Carrol CE, Wolfe RA, et al. Cardiovascular death in children and young adults with end-stage kidney disease. J Pediatr 2002; 141: 191–7

    Article  Google Scholar 

  45. Rabkin JM, Corless CL, Rosen HR, et al. Immunosuppression impact on long-term cardiovascular complications after liver transplantation. Am J Surg 2002; 183: 595–9

    Article  PubMed  CAS  Google Scholar 

  46. Silverstein DM, Mitchell M, LeBlanc P, et al. Assessment of risk factors for cardiovascular disease in pediatric renal transplant patients. Pediatr Transplant 2007; 11: 721–9

    Article  PubMed  CAS  Google Scholar 

  47. Ferraris JT, Ghezzi L, Waisman G, et al. Potential cardiac risk factors in paediatric renal transplant recipients. Pediatr Nephrol 2006; 21: 119–25

    Article  PubMed  Google Scholar 

  48. Alvarez A, Algar FJ, Santos F, et al. Pediatric lung transplantation. Transplant Proc 2005; 37: 1519–22

    Article  PubMed  CAS  Google Scholar 

  49. Loo RM, Atriyarajah V, Oh C, et al. Comparison between effects of ciclosporine and tacrolimus on glomerular filtration rate in pediatric post-orthotopic liver transplant patients. Pediatr Transplant 2006; 10: 55–9

    Article  PubMed  CAS  Google Scholar 

  50. Yuan J, Zhou J, Chen BC, et al. Magnesium supplementation prevents chronic cyclosporine nephrotoxicity via adjusting nitric oxide synthase activity. Transplant Proc 2005; 37: 1892–5

    Article  PubMed  CAS  Google Scholar 

  51. Boger CA, Rummele P, Mihatsch MJ, et al. Reverse diastolic intrarenal flow due to calcineurin inhibitor (CNI) toxicity. Am J Transplant 2006; 6: 1963–7

    Article  PubMed  CAS  Google Scholar 

  52. Alexander SI, Fletcher JT, Nankivell B. Chronic allograft nephropathy in pediatric renal transplantation. Pediatr Nephrol 2007; 22: 17–23

    Article  PubMed  Google Scholar 

  53. Silverstein DM, LeBlanc P, Hempe JM, et al. Tracking of blood pressure and its impact on graft function in pediatric renal transplant patients. Pediatr Transplant 2007; 11: 860–7

    Article  PubMed  Google Scholar 

  54. Campbell KM, Yazigi N, Ryckman FC, et al. High prevalence of renal dysfunction in long-term survivors after pediatric liver transplantation. J Pediatr 2006; 148: 475–80

    Article  PubMed  Google Scholar 

  55. Alonso EM. Long-term renal function in pediatric liver and heart recipients. Pediatr Transplant 2004; 8: 381–5

    Article  PubMed  Google Scholar 

  56. Arora-Gupta N, Davies P, McKiernan P, et al. The effect of long-term calcineurin inhibitor therapy on renal function in children after liver transplantation. Pediatr Transplant 2004; 8: 145–50

    Article  PubMed  CAS  Google Scholar 

  57. Di Filippo S. Anti-IL-2 receptor antibody vs. polyclonal antilymphocyte antibody as induction therapy in pediatric transplantation. Pediatr Transplant 2005; 9: 373–80

    Article  PubMed  CAS  Google Scholar 

  58. Ojo AO, Held PJ, Port FK. Chronic renal failure after transplantation of a non-renal organ. N Engl J Med 2003; 349: 931–40

    Article  PubMed  CAS  Google Scholar 

  59. Mention K, Lahoche-Manucci A, Bonnevalle M, et al. Renal function outcome in pediatric liver transplant recipients. Pediatr Transplant 2005; 9: 201–7

    Article  PubMed  CAS  Google Scholar 

  60. Kaplan B, Meier-Kriesche H–U. Death after graft loss: an important late study endpoint in kidney transplantation. Am J Transplant 2002; 2: 970–4

    Article  PubMed  Google Scholar 

  61. Oetjen E, Baun D, Beimesche S, et al. Inhibition of human insulin gene transcription by the immunosuppressive drugs cyclosporin A and tacrolimus in primary, mature islets of transgenic mice. Mol Pharmacol 2003; 63: 1289–95

    Article  PubMed  CAS  Google Scholar 

  62. van Hooff JP, Christiaans MHL, van Duijnhoven EM. Glucose metabolic disorder after transplantation. Am J Transplant 2007; 7: 1435–6

    Article  PubMed  Google Scholar 

  63. Midtvedt K, Hjelmesaeth J, Hartmann A, et al. Insulin resistance after renal transplantation: the effect of steroid dose reduction and withdrawal. J Am Soc Nephrol 2004; 15: 3233–9

    Article  PubMed  Google Scholar 

  64. Greenspan LC, Gitelman SE, Leung MA, et al. Increased incidence of post-transplant diabetes mellitus in children: a casecontrol analysis. Pediatr Nephrol 2004; 17: 1–5

    Article  Google Scholar 

  65. Heisel O, Heisel R, Balshaw R, et al. New onset diabetes mellitus in patients receiving calcineurin inhibitors: a systematic review and meta-analysis. Am J Transplant 2004; 4: 583–95

    Article  PubMed  Google Scholar 

  66. Matinez-Castaelao A, Hernandez MD, Pascual J, et al. Detection and treatment of post kidney transplant hyperglycaemia: a Spanish multicentre cross-sectional study. Transplant Proc 2005; 37: 3813–6

    Article  Google Scholar 

  67. Vincenti F, Friman S, Scheuermann EH, et al. Results of an international, randomized multicentre trial comparing glucose metabolism disorders and outcome with cyclosporine and tacrolimus. Am J Transplant 2007; 7: 1506–14

    Article  PubMed  CAS  Google Scholar 

  68. Al-Uzri A, Stablein DM, Cohn R. Postransplant diabetes mellitus in pediatric renal transplant recipients: a report of the North American Pediatric Renal Transplant Cooperative Study. Transplantation 2001; 72: 1020–4

    Article  PubMed  CAS  Google Scholar 

  69. Knoll GA, Bell RC. Tacrolimus versus ciclosporin for immunosuppression in renal transplantation: meta-analysis of randomised trials. BMJ 1999; 318: 1104–7

    Article  PubMed  CAS  Google Scholar 

  70. Filler G, Webb NJA, Milford DV, et al. Four-year data after pediatric renal transplantation: a randomized trial of tacrolimus vs cyclosporin microemulsion. Pediatr Transplant 2005; 9: 498–503

    Article  PubMed  CAS  Google Scholar 

  71. Lucey MR, Abdelmalek MF, Gagliardi R, et al. A comparison of tacrolimus and cyclosporine in liver transplantation: effects on renal function and cardiovascular risk status. Am J Transplant 2005; 5: 1111–9

    Article  PubMed  CAS  Google Scholar 

  72. Shishido S, Sato H, Asanuma H, et al. Unexpectedly high prevalence of pretransplant abnormal glucose tolerance in pediatric kidney transplant recipients. Pediatr Transplant 2006; 10: 67–73

    Article  PubMed  CAS  Google Scholar 

  73. Van Hooff JP, Christiaaans MHL, Van Duijnhoven EM. Tacrolimus and post-transplant diabetes mellitus in renal transplantation. Transplantation 2005; 79: 1465–9

    Article  PubMed  Google Scholar 

  74. Kasiske BL, Chakkera HA, Louis TA, et al. A meta-analysis of immunosuppression withdrawal trials in renal transplantation. J Am Soc Nephrol 2000; 11: 1910–7

    PubMed  CAS  Google Scholar 

  75. Filler G, Hadjiyannakis S. How to assess for impaired glucose tolerance before transplantation and should these results influence the choice of calcineurin inhibitors. Pediatr Transplant 2006; 10: 1–4

    Article  PubMed  CAS  Google Scholar 

  76. Schetz M, Vanhorebeek I, Wouters PJ, et al. Tight blood glucose control is renoprotective in critically ill patients. J Am Soc Nephrol 2008; 19: 571–8

    Article  PubMed  CAS  Google Scholar 

  77. Armstrong AK, Goldberg CS, Crowley DC, et al. Effect of age on lipid profiles in pediatric heart transplant recipients. Pediatr Transplant 2005; 9: 523–30

    Article  PubMed  CAS  Google Scholar 

  78. Siirtola A, Antikainen M, Ala-Houhala M, et al. Serum lipids in children 3–5 years after kidney, liver and heart transplantation. Transpl Int 2004; 17: 109–19

    Article  PubMed  CAS  Google Scholar 

  79. Scipelt IM, Crawford SE, Rodgers S, et al. Hypercholesterolemia is common after pediatric heart transplantation: initial experience with pravastatin. Pediatr Transplant 2005; 23: 317–22

    Google Scholar 

  80. Chin C, Lukito SS, Shek J, et al. Prevention of pediatric graft coronary artery disease: atorvastatin. Pediatr Transplant 2008; 12: 442–6

    Article  PubMed  CAS  Google Scholar 

  81. Kobashigawa JA. Potential immunosuppressive effects of statins. Pediatr Transplant 2008; 12: 381–4

    Article  PubMed  Google Scholar 

  82. Mitsnefes MM. Hypertension and end-organ damage in pediatric renal transplantation. Pediatr Transplant 2004; 8: 394–9

    Article  PubMed  Google Scholar 

  83. Silverstein DM. Risk factors for cardiovascular disease in pediatric renal transplant recipients. Pediatr Transplant 2004; 8: 386–93

    Article  PubMed  Google Scholar 

  84. Mitsnefes MM, Omoloja A, McEnery PT. Short-term pediatric renal transplant survival: blood pressure and allograft function. Pediatr Transplant 2001; 5: 160–5

    Article  PubMed  CAS  Google Scholar 

  85. Mitsnefes MM, Khoury PR, McEnery PT. Early posttransplantation hypertension and poor long-term renal allograft survival in pediatric patients. J Pediatr 2003; 143: 98–103

    Article  PubMed  Google Scholar 

  86. Roche, SL, Kaufmann J, Dipchand AI, et al. Hypertension after pediatric heart transplantation is primarily associated with immunosuppressive regimen. J Heart Lung Transplant 2008; 27: 501–7

    Article  PubMed  Google Scholar 

  87. Erol I, Alehan F, Ozcay F, et al. Neurological complications of liver transplantation in pediatric patients: a single centre experience. Pediatr Transplant 2007; 11: 152–9

    Article  PubMed  Google Scholar 

  88. Saland JM. Osseous complications of pediatric transplantation. Pediatr Transplant 2004; 8: 400–15

    Article  PubMed  Google Scholar 

  89. Bostanci N, Ilgenli T, Pirhan DC, et al. Relationship between IL-1A polymorphisms and gingival overgrowth in renal transplant recipients receiving cyclosporin A. J Clin Periodontol 2006; 33: 771–8

    Article  PubMed  CAS  Google Scholar 

  90. Tumgor G, Arikan C, Kilic M, et al. Frequency of hyperuricemia and effect of calcineurin inhibitors on serum uric acid levels in liver transplanted children. Pediatr Transplant 2006; 10: 665–8

    Article  PubMed  CAS  Google Scholar 

  91. Hesselink DA, Van Hest RM, Mathot RAA, et al. Cyclosporine interacts with mycophenolic acid by inhibiting the multidrug resistance-associated protein 2. Am J Transplant 2005; 5: 987–94

    Article  PubMed  CAS  Google Scholar 

  92. Ganschow R, Albani J, Grabhorn E, et al. Tacrolimus-induced cholestatic syndrome following pediatric liver transplantation and steroid-resistant graft rejection. Pediatr Transplant 2006; 10: 220–4

    Article  PubMed  CAS  Google Scholar 

  93. Pappas PA, Weppler D, Pinna AD, et al. Sirolimus in pediatric gastrointestinal transplantation: the use of sirolimus for pediatric transplant patients with tacrolimus-related cardiomyopathy. Pediatr Transplant 2000; 4: 45–9

    Article  PubMed  CAS  Google Scholar 

  94. Turska-Kmiec A, Jankowska I, Pawlowska J, et al. Reversal of tacrolimus-related hypertrophie cardiomyopathy after conversion to rapamycin in a pediatric liver transplant recipient. Pediatr Transplant 2007; 11: 319–23

    Article  PubMed  CAS  Google Scholar 

  95. Valentini RP, Imam A, Warrier I, et al. Sirolimus rescue for tacrolimus-associated post-transplant autoimmune hemolytic anemia. Pediatr Transplant 2006; 10: 358–61

    Article  PubMed  Google Scholar 

  96. Levi Z, Hazazi R, Kedar-Barnes I, et al. Switching from tacrolimus to sirolimus halts the appearance of new sebaceous neoplasms in Muir-Torre syndrome. Am J Transplant 2007; 7: 476–9

    Article  PubMed  CAS  Google Scholar 

  97. Blanchard SS, Gerrek M, Czinn S, et al. Food protein sensitivity with partial villous atrophy after pediatric liver transplantation with tacrolimus immunosuppression. Pediatr Transplant 2006; 10: 529–32

    Article  PubMed  Google Scholar 

  98. Granot E, Yakobovich E, Bardenstein R. Tacrolimus immunosuppression: an association with asymptomatic eosinophilia and elevated total and specific IgE levels. Pediatr Transplant 2006; 10: 690–3

    Article  PubMed  CAS  Google Scholar 

  99. Bucuvalas JC, O’Connor A, Buschle K, et al. Risk of hearing impairment in pediatric liver transplant recipients: a single centre study. Pediatr Transplant 2003; 7: 265–9

    Article  PubMed  Google Scholar 

  100. Deutsch ES, Bartling V, Lawenda B, et al. Sensorineural hearing loss in children after liver transplantation. Arch Otolaryngol Head Neck Surg 1998; 124: 529–33

    PubMed  CAS  Google Scholar 

  101. Halloran PF. Immunosuppressive drugs for kidney transplantation. N Engl J Med 2004; 351: 2715–29

    Article  PubMed  CAS  Google Scholar 

  102. Taylor AL, Watson CJE, Bradley JA. Immunosuppressive agents in solid organ transplantation: mechanisms of action and therapeutic efficacy. Crit Rev Oncol/Haematol 2005; 56: 23–46

    Article  Google Scholar 

  103. Dollery C. Therapeutic drugs. 2nd ed. Vol. 1. Edinburgh: Churchill Livingstone, 1999

    Google Scholar 

  104. Dollery C. Therapeutic drugs. 2nd ed. Vol. 2. Edinburgh: Churchill Livingstone, 1999

    Google Scholar 

  105. Allison AC, Eugui EM. Mechanism of action of mycophenolate mofetil in preventing acute and chronic allograft rejection. Transplantation 2005; 80: S181–90

    Article  PubMed  CAS  Google Scholar 

  106. Napoli KL, Taylor PJ. From beach to bedside: history of the development of sirolimus. Ther Drug Monit 2001; 23: 559–86

    Article  PubMed  CAS  Google Scholar 

  107. Chapman TM, Perry CM. Everolimus. Drugs 2004; 64: 861–72

    Article  PubMed  CAS  Google Scholar 

  108. Kunzendorf U, Ziegler E, Kabelitz D. FTY720: the first compound of a new promising class of immunosuppressive drugs. Nephrol Dial Transplant 2004; 19: 1677–81

    Article  PubMed  CAS  Google Scholar 

  109. Al-Hussaini A, Tredger JM, Dhawan A. Immunosuppression in pediatric liver and intestinal transplantation: a closer look at the arsenal. J Pediatr Gastroenterol Nutr 2005; 41: 152–65

    Article  PubMed  Google Scholar 

  110. Krieger NR, Emre S. Novel immunosuppressants. Pediatr Transplant 2004; 8: 594–9

    Article  PubMed  CAS  Google Scholar 

  111. Larsen CP, Knechtle SJ, Adams A, et al. A new look at blockade of T-cell costimulation: a therapeutic strategy for long-term maintenance immunosuppression. Am J Transplant 2006; 6: 876–83

    Article  PubMed  CAS  Google Scholar 

  112. Silva HT, Machado PP, Felipe CR, et al. Immunotherapy for de novo renal transplantation: what’s in the pipeline? Drugs Aging 2006; 66: 1665–84

    CAS  Google Scholar 

  113. Basu A, Tan HP, Shapiro R. Current thinking on calcineurin inhibition in kidney transplantation: 2007 [online]. Available from URL: http://cme.medscape.com/viewprogram/8075 [Accessed 2008 May 30]

  114. Flechner SM, Kobashigawa J, Klintmalm G. Calcineurin-inhibitor sparing regimens in sold organ transplantation: focus on improving renal function and nephrotoxicity. Clin Transplant 2008; 22: 1–15

    Article  PubMed  Google Scholar 

  115. Roche Laboratories. CellCept package insert. Nutley (NJ), 2007 Oct

  116. Rice JE, Shipp AT, Carlin JB, et al. Late reduction in cyclosporine dosage does not improve renal function in pediatric heart transplant recipients. J Heart Lung Transplant 2002; 21: 1109–12

    Article  PubMed  Google Scholar 

  117. Horoldt BS, Burattin M, Gunson BK, et al. Does the Banff rejection activity index predict outcome in patients with early acute cellular rejection following liver transplantation? Liver Transplant 2006; 12: 1144–51

    Article  Google Scholar 

  118. Scheenstra R, Torringa MLJ, Waalkens HJ, et al. Cyclosporine A withdrawal during follow up after pediatric liver transplantation. Liver Transplant 2006; 12: 240–6

    Article  Google Scholar 

  119. Tan HP, Smaldone MC, Shapiro R. Immunosuppressive preconditioning or induction regimens: evidence to date. Drugs 2006; 66: 1535–45

    Article  PubMed  CAS  Google Scholar 

  120. Kamel MH, Mohan P, Little DM, et al. Rabbit antithymocyte globulin as induction therapy for pediatric deceased donor kidney transplantation. J Urol 2005; 174: 703–7

    Article  PubMed  Google Scholar 

  121. Khositseth S, Matas AJ, Cook ME, et al. Thymoglobulin versus ATGAm induction therapy in pediatric kidney transplant recipients: a single-center report. Transplantation 2005; 79: 958–63

    Article  PubMed  CAS  Google Scholar 

  122. Hastings MC, Wyatt RJ, Lau KK, et al. Five year’s experience with thymoglobulin induction in a pediatric renal transplant population. Pediatr Transplant 2006; 10: 805–10

    Article  Google Scholar 

  123. Baron PW, Ojogho ON, Yorgin P, et al. Comparison of outcomes with low-dose anti-thymocyte globulin, basiliximab or no induction therapy in pediatric kidney transplant recipients: a retrospective study. Pediatr Transplant 2008; 12: 32–9

    Article  PubMed  CAS  Google Scholar 

  124. Di Filippo S, Boissonnat P, Sassolas F, et al. Rabbit antithymocyte globulin as induction immunotherapy in pediatric heart transplantation. Transplantation 2003; 75: 354–8

    Article  PubMed  Google Scholar 

  125. Bartosh SM, Knechtle SJ, Sollinger HW. Campath-1H use in pediatric renal transplantation. Am J Transplant 2005; 5: 1569–73

    Article  PubMed  CAS  Google Scholar 

  126. Benfield M, Tejani A, Harmon WE, et al. A randomised multi-centre trial of OKT3 mAbs induction compared with intravenous cyclosporine in pediatric renal transplantation. Pediatr Transplant 2005; 9: 282–92

    Article  PubMed  CAS  Google Scholar 

  127. Parisi F, Danesi H, Squitieri C, et al. Thymoglobuline use in pediatric heart transplantation. J Heart Lung Transplant 2003; 22: 591–3

    Article  PubMed  CAS  Google Scholar 

  128. Shah A, Agarwal A, Mangus R, et al. Induction immunosuppression with rabbit antithymocyte globulin in pediatric liver transplantation. Liver Transplant 2006; 12: 1210–4

    Article  Google Scholar 

  129. Ellis D, Shapiro R, Moritz M, et al. Renal transplantation in children managed with lymphocyte depleting agents and low-dose maintenance tacrolimus monotherapy. Transplantation 2007; 83: 1563–70

    Article  PubMed  CAS  Google Scholar 

  130. Shapiro R, Ellis D, Tan HP, et al. Alemtuzumab preconditioning with tacrolimus monotherapy in pediatric renal transplantation. Am J Transplant 2007; 7: 2736–8

    Article  PubMed  CAS  Google Scholar 

  131. Shapiro R, Ellis D, Tan HP, et al. Antilymphoid antibody preconditioning and tacrolimus monotherapy for pediatric kidney transplantation. J Paediatrics 2006; 148: 813–8

    Article  CAS  Google Scholar 

  132. Kato T, Selvaggi G, Panagiotis T, et al. Pediatric liver transplant with Campath 1H induction: preliminary report. Transplant Proc 2006; 38: 3609–11

    Article  PubMed  CAS  Google Scholar 

  133. Tzakis AG, Kato T, Nishida S, et al. Preliminary experience with Campath 1 (C1H) in intestinal and liver transplantation. Transplantation 2003; 75: 1227–31

    Article  PubMed  CAS  Google Scholar 

  134. Tejani A, Ping-Leung H, Emmett L, et al. Reduction in acute rejections decreases chronic rejection graft failure in children: a report of the North American Pediatric renal transplant Cooperative Study. Am J Transplant 2002; 2: 142–7

    Article  PubMed  Google Scholar 

  135. Acott PD, Lawen JG, Crocker JFS. Third dose of basiliximab in pediatric renal transplantation. Transplant Proc 2004; 36: 2628–31

    Article  PubMed  CAS  Google Scholar 

  136. Ortiz V, Almenar L, Martinez-Dolz L, et al. Induction therapy with daclizumab in heart transplantation: how many doses? Transplant Proc 2006; 38: 2541–2

    Article  PubMed  CAS  Google Scholar 

  137. Agarwal A, Pescovitz MD. Immunosuppression in pediatric solid organ transplantation. Semin Pediatr Surg 2006; 15: 142–52

    Article  PubMed  Google Scholar 

  138. Chapman TM, Keating GM. Basiliximab: a review of its use as induction therapy in renal transplantation. Drugs 2003; 63: 2803–35

    Article  PubMed  CAS  Google Scholar 

  139. Smith JM, Nemeth TL, McDonald RA. Current immunosuppressive agents in pediatric renal transplantation: efficacy, side-effects and utilization. Pediatr Transplant 2004; 8: 445–53

    Article  PubMed  CAS  Google Scholar 

  140. Vidhun JR, Sarwal MM. Corticosteroid avoidance in pediatric renal transplantation. Pediatr Nephrol 2005; 20: 418–26

    Article  PubMed  Google Scholar 

  141. Oberholzer J, John E, Lumpaopong A, et al. Early discontinuation of steroids is safe and effective in pediatric kidney transplant recipients. Pediatr Transplant 2005; 9: 456–63

    Article  PubMed  Google Scholar 

  142. Silverstein DM, Aviles DH, Le Blanc PM, et al. Results of one year follow-up of steroid-free immunosuppression in pediatric renal transplant patients. Pediatr Transplant 2005; 9: 589–97

    Article  PubMed  CAS  Google Scholar 

  143. Delucchi A, Ferrario M, Varela M, et al. Pediatric renal transplantation: a single center experience. Pediatr Transplant 2006; 10: 193–7

    Article  PubMed  CAS  Google Scholar 

  144. Grenda R, Watson AR, Vondrak K, et al. A prospective randomized multicenter trial of tacrolimus-based therapy with or without basiliximab in pediatric renal transplantation. Am J Transplant 2006; 6: 1666–72

    Article  PubMed  CAS  Google Scholar 

  145. Gibelli NEM, Pinho-Apezzato ML, Miyatani HT, et al. Basiliximab-chimeric anti-IL2R monoclonal antibody in pediatric liver transplantation: comparative study. Transplant Proc 2004; 36: 956–7

    Article  PubMed  CAS  Google Scholar 

  146. Ganschow R, Grabhorn E, Schultz A, et al. Long-term results of basiliximab induction immunosuppression in pediatric liver transplant recipients. Pediatr Transplant 2005; 9: 741–5

    Article  PubMed  CAS  Google Scholar 

  147. Schuller S, Wiederkehr JC, Coelo-Lemos IM, et al. Daclizumab induction therapy associated with tacrolimus-MMF has better outcome compared with tacrolimus-MMF alone in pediatric living donor liver transplantation. Transplant Proc 2005; 37: 1151–2

    Article  PubMed  CAS  Google Scholar 

  148. Ogjogho O, Sahney S, Cutler D, et al. Mycophenolate mofetil in pediatric renal transplantation: non-induction vs. induction with basiliximab. Pediatr Transplant 2005; 9: 80–3

    Article  CAS  Google Scholar 

  149. Spada M, Petz W, Bertani A, et al. Randomized trial of basiliximab induction versus steroid therapy in pediatric liver allograft recipients under tacrolimus immunosuppression. Am J Transplant 2006; 6: 1913–21

    Article  PubMed  CAS  Google Scholar 

  150. Chin C, Pittson S, Luikart H, et al. Induction therapy for pediatric and adult heart transplantation: comparison between OKT3 and daclizumab. Transplantation 2005; 80: 477–81

    Article  PubMed  CAS  Google Scholar 

  151. Duzova A, Buyan N, Bakkaloglu M, et al. Triple immunosuppression with or without basiliximab in pediatric renal transplantation: acute rejection rates at one year. Transplant Proc 2003; 35: 2878–80

    Article  PubMed  CAS  Google Scholar 

  152. Harmon WE, Meyers KE, Ingelfinger J, et al. Safety and efficacy of a calcineurin inhibitor avoidance regimen in pediatric renal transplantation. J Am Soc Nephrol 2006; 17: 1735–45

    Article  PubMed  CAS  Google Scholar 

  153. Arora N, McKiernan PJ, Beaath SV, et al. Concomitant basiliximab with low dose calcineurin inhibitors in children post liver transplantation. Pediatr Transplant 2002; 6: 214–8

    Article  PubMed  CAS  Google Scholar 

  154. Asolati M, Heffron TG. Immunosuppression in pediatric ABO incompatible liver transplantation. Curr Opin Org Transplant 2006; 11: 621–6

    Article  Google Scholar 

  155. Pescovitz MD. Rituximab, an anti-CD20 monoclonal antibody: history and mechanism of action. Am J Transplant 2006; 6: 859–66

    Article  PubMed  CAS  Google Scholar 

  156. Vincenti F, Mendez R, Pescovitz MD, et al. A phase I/II randomized open-label multicenter trial of Efalizumab, a humanized anti-CD 11a, anti-LFA-1 in renal transplantation. Am J Transplant 2007; 7: 1770–7

    Article  PubMed  CAS  Google Scholar 

  157. Ettenger R, Sarwal MM. Mycophenolate mofetil in pediatric renal transplantation. Transplantation 2005; 80: S201–10

    Article  PubMed  CAS  Google Scholar 

  158. Kaplan B. Enteric-coated mycophenolate sodium (Myfortic): an overview of current and future use in transplantation. Drugs 2006; 66: 1–8

    Article  CAS  Google Scholar 

  159. Henne T, Latta K, Strehlau J, et al. Mycophenolate mofetil induced reversal of glomerular filtration loss in children with chronic allograft nephropathy. Transplantation 2003; 76: 1326–30

    Article  PubMed  CAS  Google Scholar 

  160. Cransberg K, Cornelissen EAM, Davin JC, et al. Improved outcome of pediatric kidney transplantations in the Netherlands: effect of the introduction of mycophenolate mofetil. Pediatr Transplant 2005; 9: 104–11

    Article  PubMed  Google Scholar 

  161. Ferraris JT, Ghezzi LFR, Vallejo G, et al. Improved long-term allograft function in pediatric renal transplantation with mycophenolate mofetil. Pediatr Transplant 2005; 9: 178–82

    Article  PubMed  CAS  Google Scholar 

  162. Hocker B, Feneberg R, Kopf S, et al. SRL-based immunosuppression vs. CNI minimization in pediatric renal transplant recipients with chronic CNI nephrotoxicity. Pediatr Transplant 2006; 10: 593–601

    Article  PubMed  CAS  Google Scholar 

  163. Jungraithmayr TC, Wiesmayr S, Staskewitz A, et al. Five-year outcome in pediatric patients with mycophenolate mofetil-based renal transplantation. Transplantation 2007; 83: 900–5

    Article  PubMed  CAS  Google Scholar 

  164. Groetzner J, Reichart B, Roemer U, et al. Cardiac transplantation in pediatric patients: fifteen-year experience of a single centre. Ann Thorac Surg 2005; 79: 53–61

    Article  PubMed  Google Scholar 

  165. Filler G, Gellermann J, Zimmering M, et al. Effect of adding mycophenolate mofetil in pediatric renal recipients with cyclosporin nephrotoxicity. Transpl Int 2000; 13: 201–6

    Article  PubMed  CAS  Google Scholar 

  166. David-Neto E, Araujo LMP, Sumita NM, et al. Mycophenolic acid pharmacokinetics in stable pediatric renal transplantation. Pediatr Nephrol 2003; 18: 266–72

    PubMed  Google Scholar 

  167. Benz K, Plank C, Griebel M, et al. Mycophenolate mofetil introduction stabilizes and subsequent cyclosporine A reduction slightly improves kidney function in pediatric renal transplant patients: a retrospective analysis. Pediatr Transplant 2006; 10: 331–6

    Article  PubMed  CAS  Google Scholar 

  168. Plank C, Benz K, Amann K, et al. Stable graft function after reduction of calcineurin inhibitor dosage in paediatric kidney transplant recipients. Nephrol Dialysis Transplant 2006; 21: 2930–7

    Article  CAS  Google Scholar 

  169. Kerecuk L, Taylor J, Clark G. Chronic allograft nephropathy and mycophenolate mofetil introduction in paediatric renal recipients. Pediatr Nephrol 2005; 20: 1630–5

    Article  PubMed  Google Scholar 

  170. Cransberg K, Cornelissen M, Lilien M, et al. Maintenance immunosuppression with mycophenolate mofetil and corticosteroids in pediatric kidney transplantation: temporary benefit but not without risk. Transplantation 2007; 83: 1041–7

    Article  PubMed  CAS  Google Scholar 

  171. Aw MM, Samaroo B, Baker AJ, et al. Calcineurin-related nephrotoxicity: reversibility in pediatric liver transplant recipients. Transplantation 2001; 72: 746–9

    Article  PubMed  CAS  Google Scholar 

  172. Ferraris JR, Duca P, Prigoshin N, et al. Mycophenolate mofetil and reduced doses of cyclosporine in pediatric liver transplantation with chronic renal dysfunction: changes in the immune response. Pediatr Transplant 2004; 8: 454–9

    Article  PubMed  CAS  Google Scholar 

  173. Evans HM, McKiernan PJ, Kelly DA. Mycophenolate mofetil for renal dysfunction after pediatric liver transplantation. Transplantation 2005; 79: 1575–80

    Article  PubMed  CAS  Google Scholar 

  174. Tannuri U, Gibelli NEM, Maksoud-Filho JG, et al. Mycophenolate mofetil promotes prolonged improvement of renal dysfunction after pediatric liver transplantation: experience of a single center. Pediatr Transplant 2007; 11: 82–6

    Article  PubMed  CAS  Google Scholar 

  175. Boyer O, Le Bidois J, Dechaux M, et al. Improvement of renal function in pediatric heart transplant recipients treated with low dose calcineurin inhibitor and mycophenolate mofetil. Transplantation 2005; 79: 1405–10

    Article  PubMed  CAS  Google Scholar 

  176. Brown N, Aw MM, Mieli-Vergani G, et al. Mycophenolic acid and mycophenolic acid glucuronide pharmacokinetics in pediatric liver transplant recipients: effect of cyclosporine and tacrolimus comedication. Ther Drug Monit 2002; 24: 598–606

    Article  PubMed  CAS  Google Scholar 

  177. Filler G, Foster J, Berard R, et al. Age-dependency of mycophenolate mofetil dosing in combination with tacrolimus after pediatric renal transplantation. Transplant Proc 2004; 36: 1327–31

    Article  PubMed  CAS  Google Scholar 

  178. Ettenger R, Bartosh S, Choi L, et al. Pharmacokinetics of enteric-coated mycophenolate sodium in stable pediatric renal transplant recipients. Pediatr Transplant 2005; 9: 780–7

    Article  PubMed  CAS  Google Scholar 

  179. David-Neto E, Turconi A, Giron F, et al. A study about the safety and tolerability of the conversion to enteric-coated mycophenolate sodium from mycophenolate mofetil in stable pediatric renal transplant recipients [abstract no. 1517]. Am J Transplant 2004; 4: 575

    Google Scholar 

  180. Laskin G, Goebel J. Clinically “silent” weight loss associated with mycophenolate mofetil in pediatric renal transplant recipients. Pediatr Transplant 2008; 12: 113–6

    Article  PubMed  CAS  Google Scholar 

  181. Borrows R, Chusney G, Loucaidou M, et al. Mycophenolic acid 12-h trough level monitoring in renal transplantation: association with acute rejection and toxicity. Am J Transplant 2006; 6: 121–8

    Article  PubMed  CAS  Google Scholar 

  182. Tredger JM, Brown NW, Adams JE, et al. Monitoring mycophenolate in liver transplant recipients: towards a therapeutic range. Liver Transplant 2004; 10: 492–502

    Article  Google Scholar 

  183. Shaw LM, Holt DW, Oellerich M, et al. Current issues in therapeutic drug monitoring of mycophenolic acid: report of a roundtable discussion. Ther Drug Monit 2001; 23: 305–15

    Article  PubMed  CAS  Google Scholar 

  184. Tredger JM, Brown NW. Mycophenolate: better value through monitoring? Transplantation 2006; 81: 507–8

    Article  PubMed  Google Scholar 

  185. Van Gelder T, Shaw LM. The rationale for and limitations of therapeutic drug monitoring for mycophenolate mofetil in transplantation. Transplantation 2005; 80: S244–53

    Article  PubMed  Google Scholar 

  186. Buck ML. Immunosuppression with sirolimus after solid organ transplantation in children. Pediatr Pharmacother 2006; 12: 1–5

    Google Scholar 

  187. Dharnidharka VR. Sirolimus in pediatric solid organ transplantation. Pediatr Transplant 2005; 9: 427–9

    Article  PubMed  Google Scholar 

  188. Gupta P, Kaufman S, Fishbein TM. Sirolimus for solid organ transplantation in children. Pediatr Transplant 2005; 9: 269–76

    Article  PubMed  CAS  Google Scholar 

  189. Eisen HJ. Everolimus: a classical mammalian target of rapamycin inhibitor? Curr Opin Organ Transplant 2005; 10: 270–2

    Article  Google Scholar 

  190. El-Sabrout R, Weiss R, Butt F, et al. Rejection-free protocol using sirolimus-tacrolimus combination for pediatric renal transplant recipients. Transplant Proc 2002; 34: 1942–3

    Article  PubMed  CAS  Google Scholar 

  191. El-Sabrout R, Weiss R, Butt F, et al. Improved lipid profile and blood sugar control in pediatric renal transplant recipients using sirolimus-tacrolimus combination. Transplant Proc 2002; 34: 1946–7

    Article  PubMed  CAS  Google Scholar 

  192. Vilalta R, Vila A, Nieto J, et al. Rapamycin use and rapid withdrawal of calcineurin inhibitors in pediatric renal transplantation. Transplant Proc 2003; 35: 703–4

    Article  PubMed  CAS  Google Scholar 

  193. Hoyer PF, Ettenger R, Kovarik JM, et al. Everolimus in pediatric de novo renal transplant patients. Transplantation 2003; 75: 2082–5

    Article  PubMed  Google Scholar 

  194. Nishida S, Pinna A, Verzaro R, et al. Sirolimus (rapamycin)-based rescue treatment following chronic rejection after liver transplantation. Transplant Proc 2001; 33: 1495

    Article  PubMed  CAS  Google Scholar 

  195. Sindhi R, Webber S, Venkataramanan R, et al. Sirolimus for rescue and primary immunosuppression in transplanted children receiving tacrolimus. Transplantation 2001; 72: 851–5

    Article  PubMed  CAS  Google Scholar 

  196. Fishbein TM, Florman S, Gondolesi G, et al. Intestinal transplantation before and after the introduction of sirolimus. Transplantation 2002; 73: 1538–42

    Article  PubMed  CAS  Google Scholar 

  197. Ettenger R, Hoyer P-F, Grimm P, et al. Multicentre trial of everolimus in paediatric renal transplant recipients: results at three year. Pediatr Transplant 2008; 12: 456–63

    Article  PubMed  CAS  Google Scholar 

  198. Falger JC, Mueller T, Arbeiter K, et al. Conversion from calcineurin inhibitor to sirolimus in pediatric chronic allograft nephropathy. Pediatr Transplant 2006; 10: 565–9

    Article  PubMed  CAS  Google Scholar 

  199. Ibanez JP, Monteverde ML, Goldberg J, et al. Sirolimus in pediatric renal transplantation. Transplant Proc 2005; 37: 682–4

    Article  PubMed  CAS  Google Scholar 

  200. Ibanez JP, Monteverde ML, Diaz MA, et al. Sirolimus in chronic allograft nephropathy in pediatric recipients. Pediatr Transplant 2007; 11: 777–80

    Article  PubMed  CAS  Google Scholar 

  201. Powell HR, Kara T, Jones CL. Early experience with conversion to sirolimus in a pediatric renal transplant population. Pediatr Nephrol 2007; 22: 1773–7

    Article  PubMed  Google Scholar 

  202. Vester U, Kranz B, Nadalin S, et al. Sirolimus rescue of renal failure in children after combined liver-kidney transplantation. Pediatr Nephrol 2005; 20: 686–9

    Article  PubMed  Google Scholar 

  203. Pape L, Ahlenstiel T, Ehrich JHH, et al. Reversal of loss of glomerular filtration rate in children with transplant neuropathy after switch to everolimus and low dose cyclosporine A. Pediatr Transplant 2007; 11: 291–5

    Article  PubMed  CAS  Google Scholar 

  204. Sindhi R, Ganjoo J, McGhee W, et al. Preliminary immunosuppression withdrawal strategies with sirolimus in children with liver transplants. Transplant Proc 2002; 34: 1972–3

    Article  PubMed  CAS  Google Scholar 

  205. Markiewicz M, Kalicinski P, Teisseyre J, et al. Rapamycin in children after liver transplantation. Transplant Proc 2003; 35: 2284–6

    Article  PubMed  CAS  Google Scholar 

  206. Casas-Melley AT, Falkenstein KP, Flynn LM, et al. Improvement in renal function and rejection control in pediatric liver transplant recipients with the introduction of sirolimus. Pediatr Transplant 2004; 8: 362–6

    Article  PubMed  CAS  Google Scholar 

  207. Sindhi R, Seward J, Mazariegos G, et al. Replacing calcineurin inhibitors with mTOR inhibitors in children. Pediatr Transplant 2005; 9: 391–7

    Article  PubMed  CAS  Google Scholar 

  208. Horslen S, Torres C, Collier D, et al. Initial experience using rapamycin immunosuppression in pediatric intestinal transplant recipients. Transplant Proc 2002; 34: 934–5

    Article  PubMed  CAS  Google Scholar 

  209. Lobach NE, Pollock-BarZiv SM, West LJ, et al. Sirolimus immunosuppression in pediatric heart transplant recipients: a single centre experience. J Heart Lung Transplant 2005; 24: 184–9

    Article  PubMed  Google Scholar 

  210. Balfour IC, Srun SW, Wood EG, et al. Early renal benefit of rapamycin combined with reduced calcineurin inhibitor dose in pediatric heart transplantation patients. J Heart Lung Transplant 2006; 25: 518–22

    Article  PubMed  Google Scholar 

  211. Schachter AD, Meyers KE, Spaneas LD, et al. Short sirolimus half-life in pediatric renal transplant recipients on a calcineurin inhibitor-free protocol. Pediatr Transplant 2004; 8: 171–7

    Article  PubMed  CAS  Google Scholar 

  212. Wyeth Pharmaceuticals Inc. Rapamune® package insert. Philadelphia (PA): Wyeth Pharmaceuticals Inc., 2008 Mar

    Google Scholar 

  213. Schuberta M, Venkataramanan R, Holt DW, et al. Pharmacokinetics of sirolimus and tacrolimus in pediatric liver transplant recipients. Am J Transplant 2004; 4: 767–73

    Article  CAS  Google Scholar 

  214. Schachter AD, Benfield M, Wyatt RJ, et al. Sirolimus pharmacokinetics in pediatric renal transplant recipients receiving calcineurin inhibitor cotherapy. Pediatr Transplant 2006; 10: 914–9

    Article  PubMed  CAS  Google Scholar 

  215. Salvadori M, Budde K, Charpentier B, et al. FTY720 versus MMF with cyclosporine in de novo renal transplantation: a 1-year randomized controlled trial in Europe and Australasia. Am J Transplant 2006; 6: 2912–21

    Article  PubMed  CAS  Google Scholar 

  216. Vanrenterghem Y, Van Hooff JP, Klinger M, et al. The effects of FK778 in combination with tacrolimus and steroids: a phase II multicenter study in renal transplant patients. Transplantation 2004; 78: 9–14

    Article  PubMed  CAS  Google Scholar 

  217. Nohima M, Yoshimoto T, Nakao A, et al. Combined therapy of deoxyspergualin and plasmapheresis: a useful treatment for antibody-mediated acute rejection after kidney transplantation. Transplant Proc 2005; 37: 930–3

    Article  CAS  Google Scholar 

  218. Webster A, Taylor RS, Chapman JR, et al. Tacrolimus versus cyclosporin as primary immunosuppression for kidney transplant recipients. Cochrane Database Syst Rev 2005; (4): CD003961

  219. McAlister VC, Haddad E, Renouf E, et al. Cyclosporin versus tacrolimus as primary immunosuppressant after liver transplantation: a meta-analysis. Am J Transplant 2006; 6: 1578–85

    Article  PubMed  CAS  Google Scholar 

  220. Neuberger JN, Gunson BK, Hubscher SG, et al. Immunosuppression affects the rate of recurrent primary biliary cirrhosis after liver transplantation. Liver Transplant 2004; 10: 488–91

    Article  Google Scholar 

  221. Pomfret EA, Fryer JP, Sima CS, et al. Liver and Intestine transplantation in the United States, 1996–2005. Am J Transplant 2007; 7: 1376–89

    Article  PubMed  CAS  Google Scholar 

  222. Florman S, Alloway R, Kalayoglu M, et al. Once-daily tacrolimus extended release formulation: experience at 2 years post-conversion from a Prograf-based regimen in stable liver transplant recipients. Transplantation 2007; 83: 1639–42

    Article  PubMed  CAS  Google Scholar 

  223. Heffron TG, Pillen T, Smallwood GA, et al. Pediatric liver transplantation with daclizumab induction. Transplantation 2003; 75: 2040–3

    Article  PubMed  CAS  Google Scholar 

  224. Frauca E, Diaz MZ, de la Vega A, et al. Cyclosporine monitoring in the early post-transplant period in pediatric liver transplant recipients. Pediatr Transplant 2007; 11: 530–5

    Article  PubMed  CAS  Google Scholar 

  225. Iacono AT, Johnson BA, Grgurich WF, et al. A randomized trial of inhaled cyclosporine in lung-transplant recipients. N Engl J Med 2006; 354: 141–50

    Article  PubMed  Google Scholar 

  226. Kim JS, Aviles DH, Silverstein DM, et al. Effect of age, ethnicity and glucocorticoid use on tacrolimus pharmacokinetics in pediatric renal transplant patients. Pediatr Transplant 2005; 9: 162–9

    Article  PubMed  CAS  Google Scholar 

  227. Montini G, Ujka F, Varagnolo C, et al. The pharmacokinetics and immunosuppressive response of tacrolimus in pediatric renal transplant recipients. Pediatr Nephrol 2006; 21: 719–24

    Article  PubMed  Google Scholar 

  228. Naesens M, Salvatierra O, Kambham N, et al. Maturation of dose-corrected tacrolimus predose trough levels in pediatric kidney allograft recipients. Transplantation 2008; 85: 1139–45

    Article  PubMed  CAS  Google Scholar 

  229. Kausman JY, Patel B, Marks SD. Standard dosing of tacrolimus leads to overexposure in pediatric renal transplntation recipients. Pediatr Transplant 2008; 12: 329–35

    Article  PubMed  CAS  Google Scholar 

  230. Filler G, Rocha de Barros V, Jagger JE, et al. Cyclosporin twice or three times daily dosing in pediatric transplant patients: it is not the same! Pediatr Transplant 2006; 10: 953–6

    Article  PubMed  CAS  Google Scholar 

  231. Samyn M, Cheeseman P, Bevis L, et al. Cystatin C, an easy and reliable marker for assessment of renal function in children with liver disease and after liver transplantation. Liver Transplant 2005; 11: 344–9

    Article  Google Scholar 

  232. Filler G, Sharma AP. How to monitor renal function in pediatric solid organ transplant receipients. Pediatr Transplant 2008; 12: 393–401

    Article  PubMed  Google Scholar 

  233. Christians U, Reisdorph N, Klawitter J, et al. Biomarkers of immunosuppressive drug toxicity. Curr Opin Organ Transplant 2005; 10: 284–94

    Article  Google Scholar 

  234. Kurian SM, Flechner SM, Salomon DR. Genomics and proteomics in transplantation. Curr Opin Organ Transplant 2005; 10: 191–7

    Article  Google Scholar 

  235. Holt DW, Johnston A. Monitoring immunosuppressive drugs: has it a future? Ther Drug Monit 2004; 26: 244–7

    Article  PubMed  Google Scholar 

  236. Capron A, Lerut J, Verbandert C, et al. Validation of a liquid chromatography mass spectrophotometric assay for tacrolimus in liver biopsies after hepatic transplantation: correlation with histopathologic staging for rejection. Ther Drug Monit 2007; 29: 340–8

    Article  PubMed  CAS  Google Scholar 

  237. Undre NA. Pharmacokinetics of tacrolimus-based combination therapies. Nephrol Dialysis Transplant 2003; 18: i12–5

    Article  Google Scholar 

  238. Ting LSL, Villeneuve E, Ensom MHH. Beyond cyclosporine: a systematic review of limited sampling strategies for other immunosuppressants. Ther Drug Monit 2006; 28: 419–30

    Article  PubMed  CAS  Google Scholar 

  239. Citterio F. Evolution of the therapeutic drug monitoring of cyclosporine. Transplant Proc 2004; 36: 420–5S

    Article  CAS  Google Scholar 

  240. Cole E, Midtvedt K, Johnston A, et al. Recommendations for the implementation of Neoral C2 monitoring in clinical practice. Transplantation 2002; 73: S19–22

    Article  PubMed  Google Scholar 

  241. Jorga A, Holt DW, Johnston A. Therapeutic drug monitoring of cyclosporine. Transplant Proc 2004; 36: 396–403S

    Article  CAS  Google Scholar 

  242. Trompeter R, Fitzpatrick M, Hutchinson C, et al. Longitudinal evaluation of the pharmacokinetics of cyclosporin microemulsion (Neoral) in pediatric renal transplant recipients and assessment of C2 level as a marker for absorption. Pediatr Transplant 2003; 7: 282–8

    Article  PubMed  CAS  Google Scholar 

  243. Hmiel SP, Canter CE, Lassa-Claxton S, et al. Limitations of cyclosporine C2 monitoring in pediatric heart transplant recipients. Pediatr Transplant 2007; 11: 524–9

    Article  PubMed  CAS  Google Scholar 

  244. Marin JG, Levine M, Ensom MHH. Is C2 monitoring or another limited sampling strategy superior to CO monitoring in improving clinical outcomes in adult liver transplant recipients? Ther Drug Monit 2006; 28: 637–42

    Article  PubMed  CAS  Google Scholar 

  245. De Winter BCM, Mathot RAA, van Hest RM, et al. Therapeutic drug monitoring of mycophenolic acid: does it improve patient outcome? Exp Opin Drug Metab Toxicol 2007; 3: 251–61

    Article  Google Scholar 

  246. Filler G. Value of therapeutic drug monitoring of MMF therapy in pediatric transplantation. Pediatr Transplant 2006; 10: 707–11

    Article  PubMed  CAS  Google Scholar 

  247. Kuypers DRJ, Naesens M, Vermiere S, et al. The impact of uridine diphosphate glucuronyltransferase 1A9 (UGT1A9) gene promoter region single nucleotide polymorphism T-275A and C2152T on early mycophenolic acid dose interval exposure in de novo renal allograft recipients. Clin Pharmacol Ther 2005; 78: 351–61

    Article  PubMed  CAS  Google Scholar 

  248. Holt DW. Monitoring mycophenolic acid. Ann Clin Biochem 2002; 39: 173–83

    Article  PubMed  CAS  Google Scholar 

  249. van Gelder T, Silva HT, de Fijter H, et al. A prospective randomised study comparing fixed dose vs concentration controlled MMF regimens for de novo patients following renal transplantation (the FDCC trial) [abstract no. 819]. Am J Transplant 2006; 6: 343

    Google Scholar 

  250. Bloom R, Naraghi R, Cibrik DM, et al. OPTICEPT trial: interim results of 6-month efficacy and safety of monitored mycophenolate mofetil (MMF) in combination with CNI in renal transplantation [abstract no. 822]. Am J Transplant 2006; 6: 344

    Google Scholar 

  251. Le Meur Y, Buchler M, Theierry A, et al. Individualized mycophenolate mofetil dosing based on drug exposure significantly improves patient outcomes after renal transplantation. Am J Transplant 2007; 7: 2496–503

    Article  PubMed  CAS  Google Scholar 

  252. ISBA. Immunosuppressants Bayesian dose adjustments. 2008 [online]. Available from URL: https://pharmaco.chulimoges.fr/abis.htm [Accessed 2008 May 30]

  253. Laroche ML, Marquet P, Vergnenegre A, et al. Mycophenolate mofetil monitoring in kidney transplant recipients: a cost effectiveness study [abstract no. 488]. Ther Drug Monit 2007; 29: 489

    Google Scholar 

  254. Aw MM, Brown N, Itsuka T, et al. Mycophenolic acid pharmacokinetics in pediatric liver transplant recipients. Liver Transplant 2003; 9: 383–8

    Article  Google Scholar 

  255. Filler G, Zimmering M, Mai I. Pharmacokinetics of mycophenolate mofetil are influenced by concomitant immunosuppression. Pediatr Nephrol 2000; 14: 100–4

    Article  PubMed  CAS  Google Scholar 

  256. Cattaneo D, Gaspari F, Gotti E, et al. Glucocorticoids interfere with mycophenolate mofetil bioavailability in kidney transplantation. Kidney Int 2002; 62: 1060–7

    Article  PubMed  CAS  Google Scholar 

  257. Schmidt LE, Rasmussen A, Norelykke MR, et al. The effect of selective bowel decontamination on the pharmacokinetics of mycophenolate mofetil in liver transplant recipients. Liver Transplant 2001; 7: 739–42

    Article  CAS  Google Scholar 

  258. Brown NW, Pires MS, Einarsdottir EN, et al. Likely clinical advantage to monitoring mycophenolic acid by liquid chromatography tandem mass spectrometry versus immunoassay [abstract no. 163]. Ther Drug Monit 2007; 29: 511

    Google Scholar 

  259. Yamani MH, Starling RC, Goormastic M, et al. The impact of routine mycophenolate drug monitoring on the treatment of cardiac allograft rejection. Transplantation 2000; 69: 2326–30

    Article  PubMed  CAS  Google Scholar 

  260. Mourad M, Malaise J, Chaib Eddour D, et al. Correlation of mycophenolic acid pharmacokinetic parameters with side effects in kidney transplant patients treated with mycophenolate mofetil. Clin Chem 2001; 47: 88–94

    PubMed  CAS  Google Scholar 

  261. Armstrong VW, Shipkova M, Schütz E, et al. Monitoring of mycophenolic acid in pediatric renal transplant recipients. Transplant Proc 2001; 33: 1040–3

    Article  PubMed  CAS  Google Scholar 

  262. Willis C, Taylor PJ, Salm P, et al. Evaluation of limited sample strategies for estimation of 12 hour mycophenolic acid area under the plasma concentration: time curve in adult renal transplant recipients. Ther Drug Monit 2000; 22: 549–54

    Article  PubMed  CAS  Google Scholar 

  263. Budde K, Bauer S, Hambach P, et al. Pharmacokinetic and pharmacodynamic comparison of enteric-coated mycophenolate sodium and mycophenolate mofetil in maintenance renal transplant recipients. Am J Transplant 2007; 7: 888–98

    Article  PubMed  CAS  Google Scholar 

  264. Kahan BD, Napoli KL, Kelly PA, et al. Therapeutic drug monitoring of sirolimus: correlations with efficacy and toxicity. Clin Transplant 2000; 14: 97–109

    Article  PubMed  CAS  Google Scholar 

  265. Kovarik JM, Tedesco H, Pascual J, et al. Everolimus therapeutic concentration range defined from a prospective trial with reduced exposure cyclosporine in de novo kidney transplantation. Ther Drug Monit 2004; 26: 499–505

    Article  PubMed  CAS  Google Scholar 

  266. Kaplan B, Meier-Kriesche H, Napoli KL, et al. A limited sampling strategy for estimating sirolimus area-under-the-concentration curve. Clin Chem 1997; 43: 539–40

    PubMed  CAS  Google Scholar 

  267. MacDonald A, Scarola J, Burke JT, et al. Clinical pharmacokinetics and therapeutic drug monitoring of sirolimus. Clin Ther 2000; 22: B101–21

    Article  PubMed  CAS  Google Scholar 

  268. Zimmerman JJ, Ferron GM, Lim HK. The effect of a high fat meal on the oral bioavailability of the immunosuppressant sirolimus (rapamycin). J Clin Pharmacol 1999; 39: 1155–61

    PubMed  CAS  Google Scholar 

  269. Cattaneo D, Merlini S, Perico N, et al. Therapeutic drug monitoring of sirolimus; effect of concomitant immunosuppressive therapy and clinical management. Am J Transplant 2004; 4: 1345–51

    Article  PubMed  CAS  Google Scholar 

  270. Filler G, Womilojou T, Feber J, et al. Adding sirolimus to tacrolimus-based immunosuppression in pediatric renal transplant recipients reduces tacrolimus exposure. Am J Transplant 2005; 5: 2005–10

    Article  PubMed  CAS  Google Scholar 

  271. Heffron TG, Pescovitz MD, Florman S, et al. Once-daily tacrolimus extended-release formulation: 1-year post-conversion in stable pediatric liver transplant recipients. Am J Transplant 2007; 7: 1609–15

    Article  PubMed  CAS  Google Scholar 

  272. Op den Buijsch RAM, Van de Plas A, Stolk LML, et al. Evaluation of limited sampling strategies for tacrolimus. Eur J Clin Pharmacol 2007; 63: 1039–44

    Article  CAS  Google Scholar 

  273. Halloran PF, Helms LMH, Kung L, et al. The temporal profile of calcineurin inhibition by cyclosporine in vivo. Transplantation 1999; 68: 1356–61

    Article  PubMed  CAS  Google Scholar 

  274. Kowlalski R, Post D, Schneider MC, et al. Immune cell function testing: an adjunct to therapeutic drug monitoring in transplant patient management. Clin Transplant 2003; 17: 77–88

    Article  Google Scholar 

  275. Israeli M, Klein T, Sredni B, et al. Immuknow: a new parameter in immune monitoring of pediatric liver transplantation recipients. Liver Transplant 2008; 14: 893–8

    Article  Google Scholar 

  276. El-Safa EA, Fredericks S, MacPhee IAM, et al. Paradoxical responses to tacrolimus assessed by interleukin-2 gene expression. Transplant Proc 2006; 38: 3327–30

    Article  PubMed  CAS  Google Scholar 

  277. Martinez-Llordella M, Puig-Pey I, Orlando G, et al. Multiparameter immune profiling of operational tolerance in liver transplantation. Am J Transplant 2007; 7: 309–19

    Article  PubMed  CAS  Google Scholar 

  278. Tapirdamaz O, Pravica V, Metselaar HJ, et al. Polymorphisms in the T cell regulatory gene cytotoxic T lymphocyte antigen 4 influence the rate of acute rejection after transplantation. Gut 2006; 55: 863–8

    Article  PubMed  CAS  Google Scholar 

  279. Khan F, Agrawal S, Agrawal S. Genetic predisposition and renal allograft failure: implication of non-HLA genetic variants. Molec Diag Ther 2006; 10: 205–19

    Article  CAS  Google Scholar 

  280. Warle MC, Metselaar HJ, Hop WCJ, et al. Cytokine gene polymorphisms and acute liver graft rejection: a meta-analysis. Liver Transplant 2005; 11: 19–26

    Article  Google Scholar 

  281. Kimball P, Baker M, Fisher RA. Allograft TNFbeta and IL16 polymorphisms influence HCV recurrence and severity after liver transplantation. Liver Transplant 2006; 12: 247–52

    Article  Google Scholar 

  282. Schroppel B, Murphy B. Gene variants affecting bioavailability of drugs: towards individualized immunosuppressive therapy? J Am Soc Nephrol 2003; 14: 1955–7

    Article  PubMed  Google Scholar 

  283. Grinyo JM, Venrenterghem Y, Nashan B, et al. Association of three polymorphisms with acute rejection after kidney transplantation: an exploratory pharmacogenetic analysis of a randomized multicenter clinical trial (the CAESAR study) [abstract no. 1020]. Am J Transplant 2006; 6: 480–1

    Article  CAS  Google Scholar 

  284. Anderer G, Scharappe M, Brechlin AM, et al. Polymorphisms within glutathione S-transferase genes and initial response to glucocorticoids in childhood acute lymphoblastic leukaemia. Pharmacogenetics 2000; 10: 715–26

    Article  PubMed  CAS  Google Scholar 

  285. Ruiz M, Gafvels M, Eggertsen G, et al. Characterization of two novel mutations in the glucocorticoid receptor gene in patients with cortisol resistance. Clin Endocrinol (Oxf) 2001; 55: 363–71

    Article  CAS  Google Scholar 

  286. Cervera C, Lozano F, Saval N, et al. The influence of innate immunity gene receptors polymorphisms in renal transplant infections. Transplantation 2007; 83: 1493–500

    Article  PubMed  CAS  Google Scholar 

  287. Eid AJ, Brown RA, Paya CV, et al. Association between Toll-like receptor polymorphisms and the outcome of liver transplantation for chronic hepatitis C virus. Transplantation 2007; 84: 511–6

    Article  PubMed  CAS  Google Scholar 

  288. Bouwman LH, Roos A, Terpstra OT, et al. Mannose binding lectin gene polymorphisms confer a major risk for severe infections after liver transplantation. Gastroenterology 2005; 129: 408–14

    PubMed  Google Scholar 

  289. Laing ME, Dicker P, Moloney FJ, et al. Association of methylenetetrahydrofolate reductase polymorphism and the risk of squamous cell carcinoma in renal transplant recipients. Transplantation 2007; 84: 113–6

    Article  PubMed  CAS  Google Scholar 

  290. Wu L, Xu X, Shen J, et al. MDR1 gene polymorphisms and risk of recurrence in patients with hepatocellular transplantation after liver transplantation. J Surg Oncol 2007; 96: 62–8

    Article  PubMed  CAS  Google Scholar 

  291. Gallon L, Akalin E, Lynch P, et al. ACE gene D/D genotype as a risk factor for chronic nephrotoxicity from calcineurin inhibitors in liver transplant recipients. Transplantation 2006; 81: 463–8

    Article  PubMed  CAS  Google Scholar 

  292. Hauser IA, Schaeffeler E, Gauer S, et al. ABCB1 genotype of the donor but not the recipient is a major risk factor for cyclosporin-related nephrotoxicity after renal transplantation. J Am Soc Nephrol 2005; 16: 1501–11

    Article  PubMed  CAS  Google Scholar 

  293. Viklicky O, Hubacek JA, Kvasnicka JA, et al. Association of methylene tetrahydrofolate reductase T677 allele with early development of chronic allograft nephropathy. Clin Biochem 2004; 37: 919–24

    Article  PubMed  CAS  Google Scholar 

  294. Kusztal M, Radwad-Oczko M, Koscielska-Kasprzak K, et al. Possible association of CTLA-4 gene polymorphism with cyclosporine induced gingival overgrowth in kidney transplant recipients. Transplant Proc 2008; 39: 2763–5

    Article  CAS  Google Scholar 

  295. Hoffmann TW, Halimi J–M, Buchler M, et al. Association between a polymorphism in the IL-12p40 gene and cytomegalovirus reactivation after kidney transplantation. Transplantation 2008; 85(10): 1406–11

    Article  PubMed  CAS  Google Scholar 

  296. Marin LA, Muro M, Moya-Quiles MR, et al. Study of Fas (DC95) and FasL (CD178) polymorphisms in liver transplant recipients. Tissue Antigens 2006; 67: 117–26

    Article  PubMed  CAS  Google Scholar 

  297. MacPhee IAM, Fredericks S, Tai T, et al. Tacrolimus pharmacogenetics: polymorphisms associated with expression of cytochrome P4503A5 and p-glycoprotein correlate with dose requirement. Transplantation 2002; 74: 1486–9

    Article  PubMed  CAS  Google Scholar 

  298. Masuda S, Inui K. An up-date review on individualized dosage adjustment of calcineurin inhibitors in organ transplant patients. Pharmacol Ther 2006; 112: 184–98

    Article  PubMed  CAS  Google Scholar 

  299. Thervet E, Anglichaeu D, King B, et al. Impact of cytochrome P450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. Transplantation 2003; 76: 1233–5

    Article  PubMed  CAS  Google Scholar 

  300. Naesens M, Kuypers DRJ, Verbeke K, et al. Multidrug resistance protein 2 genetic polymorphisms influence mycophenolic acid exposure in renal allograft recipients. Transplantation 2006; 82: 1074–84

    Article  PubMed  CAS  Google Scholar 

  301. Anglicheau D, Legendre C, Thervet E. Pharmacogenetics in solid organ transplantation: present knowledge and future perspectives. Transplantation 2004; 78: 311–5

    Article  PubMed  CAS  Google Scholar 

  302. Elens L, Capron A, Van Kerckhove V, et al. 1199G>A and 2677G>T/A polymorphisms of ABCB1 independently affect tacrolimus concentration in hepatic tissue after liver transplantation. Pharmacogenet Genom 2007; 17: 873–83

    Article  CAS  Google Scholar 

  303. Armstrong VW, Shipkova M, van Ahsen N, et al. Analytic aspects of monitoring therapy with thiopurine medications. Ther Drug Monit 2004; 26: 220–6

    Article  PubMed  CAS  Google Scholar 

  304. Rumbo C. Azathioprine metabolite measurements: its use in current clinical practice. Pediatr Transplant 2004; 8: 606–8

    Article  PubMed  CAS  Google Scholar 

  305. Hesselink DA, Van Gelder T. Genetic and non-genetic determinants of between-patient variability in the pharmacokinetics of mycophenolic acid. Clin Pharmacol Ther 2005; 78: 317–21

    Article  PubMed  CAS  Google Scholar 

  306. Kruger B, Schroppel B, Murphy BT. Genetic polymorphisms and the fate of the transplanted organ. Transplant Rev 2008; 22: 131–40

    Article  Google Scholar 

  307. Cattaneo D, Perico N, Remuzzi G. From pharmacokinetics to pharmacogenomics: a new approach to tailor immunosuppressive therapy. Am J Transplant 2004; 4: 299–310

    Article  PubMed  CAS  Google Scholar 

  308. Di Filippo S, Zeevi A, McDade KK, et al. Impact of TGF-B1 gene polymorphisms on late renal function in pediatric heart transplantation. Hum Immunol 2005; 66: 133–9

    Article  PubMed  CAS  Google Scholar 

  309. Ng FL, Holt DW, MacPhee IAM. Pharmacogenetics as a tool for optimising drug therapy in solid-organ transplantation. Exp Opin Pharmacother 2007; 8: 2045–58

    Article  CAS  Google Scholar 

  310. Djebli N, Picard N, Rerolle J–P, et al. Influence of the UGT2B7 promoter region and exon 2 polymorphisms and comediacations on acyl-MPAG production in vitro and in adult renal transplant patients. Pharmacogenet Genom 2007; 17: 321–30

    Article  CAS  Google Scholar 

  311. Heller T, Van Gelder T, Budde K, et al. Plasma concentrations of mycophenolic acid acyl glucuronide are not associated with diarrhea in renal transplant recipients. Am J Transplant 2007; 7: 1822–31

    Article  PubMed  CAS  Google Scholar 

  312. Fredericks EM, Lopez MJ, Magee JC, et al. Psychological functioning, nonadherence and health outcomes after pediatric liver transplantation. Am J Transplant 2007; 7: 1974–83

    Article  PubMed  CAS  Google Scholar 

  313. Dudley C, Pohanka E, Riad H, et al. Mycophenolate mofetil substitution for cyclosporine A in renal transplant recipients with chronic progressive allograft dysfunction: the “creeping creatinine” study. Transplantation 2005; 79: 466–75

    Article  PubMed  CAS  Google Scholar 

  314. Kahan BD, Etheridge WB. Minimization of calcineurin inhibitors: a review of de-novo strategies and conversion algorithms. Curr Opin Organ Transplant 2007; 12: 624–35

    Article  Google Scholar 

  315. Mulay AV, Cockfield S, Stryker R, et al. Conversion for calcineurin inhibitors to sirolimus for chronic renal allograft dysfunction: a systematic review of the evidence. Transplantation 2006; 82: 1153-62

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Siham Al Baghani for her contributions to data collection during the early stages of preparing this review. No sources of funding were used in the preparation of this review. Professor Dhawan has received unrestricted educational grants from Astellas, Novartis and Roche, and Dr Tredger from Astellas. Dr Brown has declared no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Michael Tredger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tredger, J.M., Brown, N.W. & Dhawan, A. Calcineurin Inhibitor Sparing in Paediatric Solid Organ Transplantation. Drugs 68, 1385–1414 (2008). https://doi.org/10.2165/00003495-200868100-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200868100-00004

Keywords

Navigation