Skip to main content
Log in

Novel Therapies for Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The rapid expansion in the therapeutic modalities available for the treatment of anti-neutrophil cytoplasmic antibody-associated vasculitides (AAV), with clear limitations in existing strategies, prompted us to undertake a review of novel therapies reported in MEDLINE and EMBASE.

Tumour necrosis factor (TNF)-α antagonism with infliximab is described favourably in retrospective series and open-label trials. However, evidence from the WGET (Wegener’s Granulomatosis Etanercept Trial) does not support the clinical use of etanercept, and a significantly higher malignancy rate following TNFα inhibition questions the role of this approach. Uncontrolled evidence alone supports remission induction with rituximab-mediated B-lymphocyte depletion and may be less effective in predominantly granulomatous AAV. Remission following T-lymphocyte depletion can be achieved with alemtuzumab and anti-thymocyte globulin, but it is not yet clear what the clinical role will be for these agents in AAV. In addition, these agents are associated with prolonged lymphopenia and pulmonary complications, respectively. Stem cell transplantation to support immune reconstitution following the use of such agents has been trialled in AAV, but studies included very few patients.

Purine and pyrimidine antimetabolites mycophenolate mofetil and leflunomide are likely to play an important role in the treatment of AAV, but results supporting remission maintenance and induction in the former are limited to uncontrolled trials, such that their use remains experimental at this time. Similarly, 15-deoxyspergualin may provide an alternative to cyclophosphamide but awaits randomized controlled trial evidence. The MEPEX (MEthylprednisolone versus Plasma EXchange) trial supports plasma exchange in renal disease but this may be limited by pulmonary complications. Randomized controlled evidence also exists for intravenous immunoglobulin, although improvement may not be sustained. Antimicrobial therapy may be of use in Wegener’s granulomatosis patients with predominantly upper respiratory tract involvement.

Safety concerns, notably of infection and malignancy, were common and need to be explored in subsequent trials. In addition, concomitant immunosuppressants and non-standardized definitions were major limitations, and future studies of these and newer agents must follow agreed standards of study design and reporting to facilitate clearer interpretation of the circumstances (e.g. disease stage, severity or organ involvement) under which these agents perform optimally. Consequently, use is still limited to centres experienced in such agents and mostly in the context of clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jennette JC, Falk RJ, Andrassy K, et al. Nomenclature of systemic vasculitides: proposal of an international consensus conference. Arthritis Rheum 1994; 37(2): 187–92

    PubMed  CAS  Google Scholar 

  2. Leavitt RY, Fauci AS, Bloch DA, et al. The American College of Rheumatology 1990 criteria for the classification of Wegener’s granulomatosis. Arthritis Rheum 1990; 33(8): 1101–7

    PubMed  CAS  Google Scholar 

  3. Masi AT, Hunder GG, Lie JT, et al. The American College of Rheumatology 1990 criteria for the classification of Churg-Strauss syndrome (allergic granulomatosis and angiitis). Arthritis Rheum 1990; 33(8): 1094–100

    PubMed  CAS  Google Scholar 

  4. Lüdemann J, Utecht B, Gross WL. Anti-neutrophil cytoplasm antibodies in Wegener’s granulomatosis recognize an elastinolytic enzyme. J Exp Med 1990; 171(1): 357–62

    PubMed  Google Scholar 

  5. Schreiber A, Luft FC, Kettritz R. Membrane proteinase 3 expression and ANCA-induced neutrophil activation. Kidney Int 2004; 65(6): 2172–83

    PubMed  CAS  Google Scholar 

  6. Falk RJ, Jennette JC. Anti-neutrophil cytoplasmic autoanti-bodies with specificity for myeloperoxidase in patients with systemic vasculitis and idiopathic necrotizing and crescentic glomerulonephritis. N Engl J Med 1988; 318(25): 1651–7

    PubMed  CAS  Google Scholar 

  7. Falk RJ, Terrell RS, Charles LA, et al. Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc Natl Acad Sci U S A 1990; 87(11): 4115–9

    PubMed  CAS  Google Scholar 

  8. Grimminger F, Hattar K, Papavassilis C, et al. Neutrophil activation by anti-proteinase 3 antibodies in Wegener’s granulomatosis: role of exogenous arachidonic acid and leukotriene B4 generation. J Exp Med 1996; 184(4): 1567–72

    PubMed  CAS  Google Scholar 

  9. Reumaux D, Vossebeld PJ, Roos D, et al. Effect of tumor necrosis factor-induced integrin activation on Fc gamma receptor II-mediated signal transduction: relevance for activation of neutrophils by anti-proteinase 3 or anti-myeloperoxidase antibodies. Blood 1995; 86(8): 3189–95

    PubMed  CAS  Google Scholar 

  10. Savage CO, Pottinger BE, Gaskin G, et al. Autoantibodies developing to myeloperoxidase and proteinase 3 in systemic vasculitis stimulate neutrophil cytotoxicity toward cultured endothelial cells. Am J Pathol 1992; 141(2): 335–42

    PubMed  CAS  Google Scholar 

  11. Radford DJ, Luu NT, Hewins P, et al. Antineutrophil cytoplasmic antibodies stabilize adhesion and promote migration of flowing neutrophils on endothelial cells. Arthritis Rheum 2001; 44(12): 2851–61

    PubMed  CAS  Google Scholar 

  12. Heeringa P, Brouwer E, Tervaert JW, et al. Animal models of anti-neutrophil cytoplasmic antibody associated vasculitis. Kidney Int 1998; 53(2): 253–63

    PubMed  CAS  Google Scholar 

  13. Brouwer E, Huitema MG, Klok PA, et al. Antimyeloperoxidase-associated proliferative glomerulonephritis: an animal model. J Exp Med 1993; 177(4): 905–14

    PubMed  CAS  Google Scholar 

  14. Xiao H, Heeringa P, Hu P, et al. Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulo-nephritis and vasculitis in mice. J Clin Invest 2002; 110(7): 955–63

    PubMed  CAS  Google Scholar 

  15. Little MA, Smyth CL, Yadav R, et al. Antineutrophil cytoplasm antibodies directed against myeloperoxidase augment leuko-cyte-microvascular interactions in vivo. Blood 2005; 106(6): 2050–8

    PubMed  CAS  Google Scholar 

  16. Pfister H, Ollert M, Fröhlich LF, et al. Antineutrophil cytoplasmic autoantibodies against the murine homolog of proteinase 3 (Wegener autoantigen) are pathogenic in vivo. Blood 2004; 104(5): 1411–8

    PubMed  CAS  Google Scholar 

  17. De’Oliviera J, Gaskin G, Dash A, et al. Relationship between disease activity and anti-neutrophil cytoplasmic antibody concentration in long-term management of systemic vasculitis. Am J Kidney Dis 1995; 25(3): 380–9

    PubMed  Google Scholar 

  18. Schlieben DJ, Korbet SM, Kimura RE, et al. Pulmonary-renal syndrome in a newborn with placental transmission of AN-CAs. Am J Kidney Dis 2005; 45(4): 758–61

    PubMed  Google Scholar 

  19. Savige J, Gillis D, Benson E, et al. International consensus statement on testing and reporting of antineutrophil cytoplasmic antibodies (ANCA). Am J Clin Pathol 1999; 111(4): 507–13

    PubMed  CAS  Google Scholar 

  20. Walton EW. Giant-cell granuloma of the respiratory tract (Wegener’s granulomatosis). BMJ 1958; 2(5091): 265–70

    PubMed  CAS  Google Scholar 

  21. Hoffman GS, Kerr GS, Leavitt RY, et al. Wegener granulomatosis: an analysis of 158 patients. Ann Intern Med 1992; 116(6): 488–98

    PubMed  CAS  Google Scholar 

  22. Fauci AS, Wolff SM. Wegener’s granulomatosis: studies in eighteen patients and a review of the literature. 1973. Medicine (Baltimore) 1994; 73(6): 315–24

    CAS  Google Scholar 

  23. Fauci AS, Haynes BF, Katz P. Wegener’s granulomatosis: prospective clinical and therapeutic experience with 85 patients for 21 years. Ann Intern Med 1983; 98(1): 76–85

    PubMed  CAS  Google Scholar 

  24. De Groot K, Jayne D, Tesar V, et al. Randomised controlled trial of daily oral versus pulse cyclophosphamide for induction of remission in ANCA-associated systemic vasculitis [abstract]. Kidney Blood Press Res 2005; 28: 195

    Google Scholar 

  25. De Groot K, Adu D, Savage CO, EUVAS (European Vasculitis Study Group). The value of pulse cyclophosphamide in ANCA-associated vasculitis: meta-analysis and critical review. Nephrol Dial Transplant 2001; 16(10): 2018–27

    PubMed  Google Scholar 

  26. Jayne D, Rasmussen N, Andrassy K, et al. A randomized trial of maintenance therapy for vasculitis associated with antineutrophil cytoplasmic autoantibodies. N Engl J Med 2003; 349(1): 36–44

    PubMed  CAS  Google Scholar 

  27. Langford CA, Talar-Williams C, Barron KS, et al. A staged approach to the treatment of Wegener’s granulomatosis: induction of remission with glucocorticoids and daily cyclophosphamide switching to methotrexate for remission maintenance. Arthritis Rheum 1999; 42: 2666–73

    PubMed  CAS  Google Scholar 

  28. Groot KD, Rasmussen N, Bacon PA, et al. Randomized trial of cyclophosphamide versus methotrexate for induction of remission in early systemic antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum 2005; 52(8): 2461–9

    PubMed  Google Scholar 

  29. Hollander D, Manning RT. The use of alkylating agents in the treatment of Wegener’s granulomatosis. Ann Intern Med 1967; 67(2): 393–8

    PubMed  CAS  Google Scholar 

  30. Beutler B, Cerami A. Cachectin: more than a tumor necrosis factor. N Engl J Med 1987; 316(7): 379–85

    PubMed  CAS  Google Scholar 

  31. Noronha IL, Krüger C, Andrassy K, et al. In situ production of TNF-alpha, IL-1 beta and IL-2R in ANCA-positive glomerulo-nephritis. Kidney Int 1993; 43(3): 682–92

    PubMed  CAS  Google Scholar 

  32. Lúdvíksson BR, Sneller MC, Chua KS, et al. Active Wegener’s granulomatosis is associated with HLA-DR+ CD4+ T cells exhibiting an unbalanced Th1-type T cell cytokine pattern: reversal with IL-10. J Immunol 1998; 160(7): 3602–9

    PubMed  Google Scholar 

  33. Little MA, Bhangal G, Smyth CL, et al. Therapeutic effect of anti-TNF-alpha antibodies in an experimental model of antineutrophil cytoplasm antibody-associated systemic vasculitis. J Am Soc Nephrol 2006; 17(1): 160–9

    PubMed  CAS  Google Scholar 

  34. Jónasdóttir O, Petersen J, Bendtzen K. Tumour necrosis factor-alpha (TNF), lymphotoxin and TNF receptor levels in serum from patients with Wegener’s granulomatosis. APMIS 2001; 109(11): 781–6

    PubMed  Google Scholar 

  35. Booth AD, Jayne DRW, Kharbanda RK, et al. Infliximab improves endothelial dysfunction in systemic vasculitis: a model of vascular inflammation. Circulation 2004; 109(14): 1718–23

    PubMed  CAS  Google Scholar 

  36. Moreland LW, Schiff MH, Baumgartner SW, et al. Etanercept therapy in rheumatoid arthritis: a randomized, controlled trial. Ann Intern Med 1999; 130(6): 478–86

    PubMed  CAS  Google Scholar 

  37. Weinblatt ME, Kremer JM, Bankhurst AD, et al. A trial of etanercept, a recombinant tumor necrosis factor receptor:Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N Engl J Med 1999; 340(4): 253–9

    PubMed  CAS  Google Scholar 

  38. Stone JH, Uhlfelder ML, Hellmann DB, et al. Etanercept combined with conventional treatment in Wegener’s granulomatosis: a six-month open-label trial to evaluate safety. Arthritis Rheum 2001; 44(5): 1149–54

    PubMed  CAS  Google Scholar 

  39. The WGET Group. Etanercept plus standard therapy for Wegener’s granulomatosis. N Engl J Med 2005; 352(4): 351–61

    Google Scholar 

  40. Stone JH, Holbrook JT, Marriott MA, et al. Solid malignancies among patients in the Wegener’s Granulomatosis Etanercept Trial. Arthritis Rheum 2006; 54(5): 1608–18

    PubMed  CAS  Google Scholar 

  41. Seo P, Min Y, Holbrook JT, et al., W.G.E.T. Research Group. Damage caused by Wegener’s granulomatosis and its treatment: prospective data from the Wegener’s Granulomatosis Etanercept Trial (WGET). Arthritis Rheum 2005; 52(7): 2168–78

    PubMed  CAS  Google Scholar 

  42. Feldmann M. Development of anti-TNF therapy for rheumatoid arthritis. Nat Rev Immunol 2002; 2(5): 364–71

    PubMed  CAS  Google Scholar 

  43. Lamprecht P, Voswinkel J, Lilienthal T, et al. Effectiveness of TNF-alpha blockade with infliximab in refractory Wegener’s granulomatosis. Rheumatology (Oxford) 2002; 41(11): 1303–7

    CAS  Google Scholar 

  44. Booth AD, Jefferson HJ, Ayliffe W, et al. Safety and efficacy of TNFalpha blockade in relapsing vasculitis [letter]. Ann Rheum Dis 2002; 61(6): 559

    PubMed  CAS  Google Scholar 

  45. Bartolucci P, Ramanoelina J, Cohen P, et al. Efficacy of the anti-TNF-alpha antibody infliximab against refractory systemic vasculitides: an open pilot study on 10 patients. Rheumatology (Oxford) 2002; 41(10): 1126–32

    CAS  Google Scholar 

  46. Booth A, Harper L, Hammad T, et al. Prospective study of TNF-alpha blockade with infliximab in anti-neutrophil cytoplasmic antibody-associated systemic vasculitis. J Am Soc Nephrol 2004; 15(3): 717–21

    PubMed  CAS  Google Scholar 

  47. Aeberli D, Oertle S, Mauron H, et al. Inhibition of the TNF-pathway: use of infliximab and etanercept as remission-inducing agents in cases of therapy-resistant chronic inflammatory disorders. Swiss Med Wkly 2002; 132(29–30): 414–22

    PubMed  CAS  Google Scholar 

  48. Arbach O, Gross WL, Gause A. Treatment of refractory Churg-Strauss-Syndrome (CSS) by TNF-alpha blockade. Immunobiology 2002; 206(5): 496–501

    PubMed  CAS  Google Scholar 

  49. Sangle SR, Hughes GRV, D’Cruz DP. Infliximab in patients with systemic vasculitis that is difficult to treat: poor outcome and significant adverse effects. Ann Rheum Dis 2007; 66(4): 564–5

    PubMed  CAS  Google Scholar 

  50. Sandborn WJ, Hanauer SB, Katz S, et al. Etanercept for active Crohn’s disease: a randomized, double-blind, placebo-controlled trial. Gastroenterology 2001; 121(5): 1088–94

    PubMed  CAS  Google Scholar 

  51. Hanauer SB, Feagan BG, Lichtenstein GR, et al.,ACCENT I Study Group. Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet 2002; 359(9317): 1541–9

    PubMed  CAS  Google Scholar 

  52. Scallon B, Cai A, Solowski N, et al. Binding and functional comparisons of two types of tumor necrosis factor antagonists. J Pharmacol Exp Ther 2002; 301(2): 418–26

    PubMed  CAS  Google Scholar 

  53. Askling J, Fored CM, Baecklund E, et al. Haematopoietic malignancies in rheumatoid arthritis: lymphoma risk and characteristics after exposure to tumour necrosis factor antagonists. Ann Rheum Dis 2005; 64(10): 1414–1420

    PubMed  CAS  Google Scholar 

  54. Wallis RS, Broder MS, Wong JY, et al. Granulomatous infectious diseases associated with tumor necrosis factor antagonists. Clin Infect Dis 2004; 38(9): 1261–5

    PubMed  CAS  Google Scholar 

  55. Keane J. TNF-blocking agents and tuberculosis: new drugs illuminate an old topic. Rheumatology (Oxford) 2005; 44(6): 714–20

    CAS  Google Scholar 

  56. Pisetsky DS. Tumor necrosis factor alpha blockers and the induction of anti-DNA autoantibodies. Arthritis Rheum 2004; 3(11): 2381–2

    Google Scholar 

  57. Eriksson C, Engstrand S, Sundqvist K, et al. Autoantibody formation in patients with rheumatoid arthritis treated with anti-TNF alpha. Ann Rheum Dis 2005; 64(3): 403–7

    PubMed  CAS  Google Scholar 

  58. Csernok E, Trabandt A, Müller A, et al. Cytokine profiles in Wegener’s granulomatosis: predominance of type 1 (Th1) in the granulomatous inflammation. Arthritis Rheum 1999; 42(4): 742–50

    PubMed  CAS  Google Scholar 

  59. Müller A, Trabandt A, Gloeckner-Hofmann K, et al. Localized Wegener’s granulomatosis: predominance of CD26 and IFN-gamma expression. J Pathol 2000; 192(1): 113–20

    PubMed  Google Scholar 

  60. Voswinkel J, Mueller A, Kraemer JA, et al. B lymphocyte maturation in Wegener’s granulomatosis: a comparative analysis of VH genes from endonasal lesions. Ann Rheum Dis 2006; 65(7): 859–64

    PubMed  CAS  Google Scholar 

  61. Cupps TR, Edgar LC, Fauci AS. Suppression of human B lymphocyte function by cyclophosphamide. J Immunol 1982; 128(6): 2453–7

    PubMed  CAS  Google Scholar 

  62. Silverman GJ, Weisman S. Rituximab therapy and autoimmune disorders: prospects for anti-B cell therapy. Arthritis Rheum 2003; 48(6): 1484–92

    PubMed  CAS  Google Scholar 

  63. Edwards JCW, Szczepanski L, Szechinski J, et al. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med 2004; 350(25): 2572–81

    PubMed  CAS  Google Scholar 

  64. Looney RJ, Anolik JH, Campbell D, et al. B cell depletion as a novel treatment for systemic lupus erythematosus: a phase I/II dose-escalation trial of rituximab. Arthritis Rheum 2004; 50(8): 2580–9

    PubMed  CAS  Google Scholar 

  65. Specks U, Fervenza FC, McDonald TJ, et al. Response of Wegener’s granulomatosis to anti-CD20 chimeric monoclonal antibody therapy. Arthritis Rheum 2001; 44(12): 2836–40

    PubMed  CAS  Google Scholar 

  66. Keogh KA, Wylam ME, Stone JH, et al. Induction of remission by B lymphocyte depletion in eleven patients with refractory antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum 2005; 52(1): 262–8

    PubMed  Google Scholar 

  67. Eriksson P. Nine patients with anti-neutrophil cytoplasmic antibody-positive vasculitis successfully treated with rituximab. J Intern Med 2005; 257(6): 540–8

    PubMed  CAS  Google Scholar 

  68. Keogh KA, Ytterberg SR, Fervenza FC, et al. Rituximab for refractory Wegener’s granulomatosis: report of a prospective, open-label pilot trial. Am J Respir Crit Care Med 2006; 173(2): 180–7

    PubMed  CAS  Google Scholar 

  69. Henes JC, Fritz J, Koch S, et al. Rituximab for treatment-resistant extensive Wegener’s granulomatosis-additive effects of a maintenance treatment with leflunomide. Clin Rheumatol 2007; 26(10): 1711–5

    PubMed  CAS  Google Scholar 

  70. Aries PM, Hellmich B, Voswinkel J, et al. Lack of efficacy of rituximab in Wegener’s granulomatosis with refractory granulomatous manifestations. Ann Rheum Dis 2006; 65(7): 853–8

    PubMed  CAS  Google Scholar 

  71. Aries PM, Lamprecht P, Gross WL. Rituximab in refractory Wegener’s granulomatosis: favorable or not? Am J Respir Crit Care Med 2006; 173(7): 815–6

    PubMed  Google Scholar 

  72. Omdal R, Wildhagen K, Hansen T, et al. Anti-CD20 therapy of treatment-resistant Wegener’s granulomatosis: favourable but temporary response. Scand J Rheumatol 2005; 34(3): 229–32

    PubMed  CAS  Google Scholar 

  73. Brihaye B, Aouba A, Pagnoux C, et al. Adjunction of rituximab to steroids and immunosuppressants for refractory/relapsing Wegener’s granulomatosis: a study on 8 patients. Clin Exp Rheumatol 2007, S27

  74. Bacon PA. The spectrum of Wegener’s granulomatosis and disease relapse. N Engl J Med 2005; 352(4): 330–2

    PubMed  CAS  Google Scholar 

  75. Smith KGC, Jones RB, Burns SM, et al. Long-term comparison of rituximab treatment for refractory systemic lupus erythematosus and vasculitis: remission, relapse, and re-treatment. Arthritis Rheum 2006; 54(9): 2970–82

    PubMed  CAS  Google Scholar 

  76. Stasi R, Stipa E, Poeta GD, et al. Long-term observation of patients with anti-neutrophil cytoplasmic antibody-associated vasculitis treated with rituximab. Rheumatology (Oxford) 2006; 45(11): 1432–6

    CAS  Google Scholar 

  77. Golbin J, Keogh K, Fervenza F, et al. Repeated use of rituximab in refractory Wegener’ s granulomatosis: efficacy for glucocor-ticoid-free remission maintenance [abstract]. Arthritis Rheum 2006; 54 Suppl. 9: S527

    Google Scholar 

  78. Kallenbach M, Duan H, Ring T. Rituximab induced remission in a patient with Wegener’s granulomatosis. Nephron Clin Pract 2005; 99(3): c92–6

    PubMed  CAS  Google Scholar 

  79. Cheung CMG, Murray PI, Savage COS. Successful treatment of Wegener’s granulomatosis associated scleritis with rituximab. Br J Ophthalmol 2005; 89(11): 1542

    PubMed  CAS  Google Scholar 

  80. Ferraro AJ, Day CJ, Drayson MT, et al. Effective therapeutic use of rituximab in refractory Wegener’s granulomatosis. Ne-phrol Dial Transplant 2005; 20(3): 622–5

    Google Scholar 

  81. Bachmeyer C, Cadranel J, Demontis R. Rituximab is an alternative in a case of contra-indication of cyclophosphamide in Wegener’s granulomatosis. Nephrol Dial Transplant 2005; 20(6): 1274

    PubMed  Google Scholar 

  82. Kaushik VV, Reddy HV, Bucknall RC. Successful use of rituximab in a patient with recalcitrant Churg-Strauss Syndrome. Ann Rheum Dis 2006; 65(8): 1116–7

    PubMed  CAS  Google Scholar 

  83. Koukoulaki M, Smith KGC, Jayne DRW. Rituximab in Churg-Strauss Syndrome. Ann Rheum Dis 2006; 65(4): 557–9

    PubMed  CAS  Google Scholar 

  84. Manz RA, Radbruch A. Plasma cells for a lifetime? Eur J Immunol 2002; 32(4): 923–7

    PubMed  CAS  Google Scholar 

  85. Reff ME, Carner K, Chambers KS, et al. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 1994; 83(2): 435–45

    PubMed  CAS  Google Scholar 

  86. Kuus-Reichel K, Grauer LS, Karavodin LM, et al. Will immunogenicity limit the use, efficacy, and future development of therapeutic monoclonal antibodies? Clin Diagn Lab Immunol 1994; 1(4): 365–72

    PubMed  CAS  Google Scholar 

  87. Edwards JCW, Szczepanski L, Szechinski J, et al. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med 2004; 350(25): 2572–81

    PubMed  CAS  Google Scholar 

  88. Eisenberg R. Update on rituximab. Ann Rheum Dis 2005; 64 Suppl. 4: iv55-7

    Google Scholar 

  89. Anolik JH, Campbell D, Felgar RE, et al. The relationship of FcgammaRIIIa genotype to degree of B cell depletion by rituximab in the treatment of systemic lupus erythematosus. Arthritis Rheum 2003; 48(2): 455–9

    PubMed  CAS  Google Scholar 

  90. FDA. Information for healthcare professionals: rituximab [online]. Available from URL: http://www.fda.gov/CDER/Drug/InfoSheets/HCP/rituximab.pdf [Accessed 2008 Feb 14]

  91. Calabrese LH, Molloy ES, Huang D, et al. Progressive multifocal leukoencephalopathy in rheumatic diseases: evolving clinical and pathologic patterns of disease. Arthritis Rheum 2007; 56(7): 2116–28

    PubMed  Google Scholar 

  92. Schlesier M, Kaspar T, Gutfleisch J, et al. Activated CD4+ and CD8+ T-cell subsets in Wegener’s granulomatosis. Rheumatol Int 1995; 14(5): 213–9

    PubMed  CAS  Google Scholar 

  93. Moosig F, Csernok E, Wang G, et al. Costimulatory molecules in Wegener’s granulomatosis (WG): lack of expression of CD28 and preferential up-regulation of its ligands B7-1 (CD80) and B7-2 (CD86) on T cells. Clin Exp Immunol 1998; 114(1): 113–8

    PubMed  CAS  Google Scholar 

  94. Komocsi A, Lamprecht P, Csernok E, et al. Peripheral blood and granuloma CD4(+)CD28(−) T cells are a major source of interferon-gamma and tumor necrosis factor-alpha in Wegener’s granulomatosis. Am J Pathol 2002; 160(5): 1717–24

    PubMed  CAS  Google Scholar 

  95. Abdulahad WH, Stegeman CA, Limburg PC, et al. CD4-posi-tive effector memory T cells participate in disease expression in ANCA-associated vasculitis. Ann N Y Acad Sci 2007; 1107: 22–31

    PubMed  CAS  Google Scholar 

  96. Brouwer E, Tervaert JW, Horst G, et al. Predominance of IgGl and IgG4 subclasses of anti-neutrophil cytoplasmic autoanti-bodies (ANCA) in patients with Wegener’s granulomatosis and clinically related disorders. Clin Exp Immunol 1991; 83(3): 379–86

    PubMed  CAS  Google Scholar 

  97. Domagata A, Kurpisz M. CD52 antigen-a review. Med Sci Monit 2001;7(2): 325–31

    Google Scholar 

  98. Lockwood CM, Thiru S, Stewart S, et al. Treatment of refractory Wegener’s granulomatosis with humanized monoclonal antibodies. QJM 1996; 89(12): 903–12

    PubMed  CAS  Google Scholar 

  99. Walsh M, Chaudhry A, Jayne DR. Long-term follow-up of relapsing/refractory ANCA associated vasculitis treated with the lymphocyte depleting antibody alemtuzumab (CAMPATH-1H). Ann Rheum Dis. Epub 2007 Nov 29

  100. Hagen EC, de Keizer RJ, Andrassy K, et al. Compassionate treatment of Wegener’s granulomatosis with rabbit anti-thymocyte globulin. Clin Nephrol 1995; 43(6): 351–9

    PubMed  CAS  Google Scholar 

  101. Lukas R, Keller F. Anti-thymocyte globulin therapy in a patient with pANCA vasculitis and crescentic glomerulonephritis [letter]. Nephron 1998; 78(2): 231

    PubMed  CAS  Google Scholar 

  102. Schmitt WH, Hagen EC, Neumann I, et al. Treatment of refractory Wegener’s granulomatosis with antithymocyte globulin (ATG): an open study in 15 patients. Kidney Int 2004; 65(4): 1440–8

    PubMed  CAS  Google Scholar 

  103. Tyndall A, Saccardi R. Haematopoietic stem cell transplantation in the treatment of severe autoimmune disease: results from phase I/II studies, prospective randomized trials and future directions. Clin Exp Immunol 2005; 141(1): 1–9

    PubMed  CAS  Google Scholar 

  104. Kötter I, Daikeler T, Amberger C, et al. Autologous stem cell transplantation of treatment-resistant systemic vascularis: a single centre experience and review of the literature. Clin Nephrol 2005; 64(6): 485–9

    PubMed  Google Scholar 

  105. Kötter I, Daikeler T, Amberger C, et al. Autologous stem cell transplantation of treatment-resistant systemic vasculitis-a single center experience and review of the literature. Clin Nephrol 2005; 4(6): 485–9

    Google Scholar 

  106. Daikeler T, Kötter I, Tyndall CB, et al. Haematopoietic stem cell transplantation for vasculitis including Behcet’s disease and polychondritis: a retrospective analysis of patients recorded in the European Bone Marrow Transplantation and European League Against Rheumatism databases and a review of the literature. Ann Rheum Dis 2007; 66(2): 202–7

    PubMed  Google Scholar 

  107. Allison AC, Eugui EM. Purine metabolism and immunosup-pressive effects of mycophenolate mofetil (MMF). Clin Transplant 1996; 10 (1 Pt 2): 77–84

    PubMed  CAS  Google Scholar 

  108. Nowack R, Göbel U, Klooker P, et al. Mycophenolate mofetil for maintenance therapy of Wegener’s granulomatosis and microscopic polyangiitis: a pilot study in 11 patients with renal involvement. J Am Soc Nephrol 1999; 10(9): 1965–71

    PubMed  CAS  Google Scholar 

  109. Langford CA, Talar-Williams C, Sneller MC. Mycophenolate mofetil for remission maintenance in the treatment of Wegener’s granulomatosis. Arthritis Rheum 2004; 51(2): 278–83

    PubMed  CAS  Google Scholar 

  110. Joy MS, Hogan SL, Jennette JC, et al. A pilot study using mycophenolate mofetil in relapsing or resistant ANCA small vessel vasculitis. Nephrol Dial Transplant 2005; 20(12): 2725–32

    PubMed  CAS  Google Scholar 

  111. Koukoulaki M, Jayne DRW. Mycophenolate mofetil in anti-neutrophil cytoplasm antibodies-associated systemic vasculitis. Nephron Clin Pract 2006; 102(3-4): c100–7

    PubMed  CAS  Google Scholar 

  112. Haubitz M, de Groot K. Tolerance of mycophenolate mofetil in end-stage renal disease patients with ANCA-associated vasculitis. Clin Nephrol 2002; 57(6): 421–4

    PubMed  CAS  Google Scholar 

  113. Maes B, Oellerich M, Ceuppens JL, et al. A new acute inflammatory syndrome related to the introduction of mycophenolate mofetil in patients with Wegener’s granulomatosis. Nephrol Dial Transplant 2002; 17(5): 923–6

    PubMed  Google Scholar 

  114. Stassen PM, Tervaert JWC, Stegeman CA. Induction of remission in active anti-neutrophil cytoplasmic antibody-associated vasculitis with mycophenolate mofetil in patients who cannot be treated with cyclophosphamide. Ann Rheum Dis 2007; 66(6): 798–802

    PubMed  CAS  Google Scholar 

  115. Fox RI, Herrmann ML, Frangou CG, et al. Mechanism of action for leflunomide in rheumatoid arthritis. Clin Immunol 1999; 93(3): 198–208

    PubMed  CAS  Google Scholar 

  116. Manna SK, Aggarwal BB. Immunosuppressive leflunomide metabolite (A77 1726) blocks TNF-dependent nuclear factor-kappa B activation and gene expression. J Immunol 1999; 162(4): 2095–102

    PubMed  CAS  Google Scholar 

  117. Smolen JS, Kalden JR, Scott DL, et al. Efficacy and safety of leflunomide compared with placebo and sulphasalazine in active rheumatoid arthritis: a double-blind, randomised, multi-centre trial. European Leflunomide Study Group. Lancet 1999; 353(9149): 259–66

    CAS  Google Scholar 

  118. Poór G, Strand V, Group LMS. Efficacy and safety of leflunomide 10mg versus 20mg once daily in patients with active rheumatoid arthritis: multinational double-blind, randomized trial. Rheumatology (Oxford) 2004; 43(6): 744–9

    Google Scholar 

  119. Kremer JM, Genovese MC, Cannon GW, et al. Concomitant leflunomide therapy in patients with active rheumatoid arthritis despite stable doses of methotrexate: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 2002; 137(9): 726–33

    PubMed  CAS  Google Scholar 

  120. Bruyn GA, Griep EN, Korff KJ. Leflunomide for active rheumatoid arthritis [letter]. Lancet 1999; 353(9167): 1883

    PubMed  CAS  Google Scholar 

  121. Chan ATY, Bradlow A, McNally J. Leflunomide induced vasculitis-a dose-response relationship. Rheumatology (Oxford) 2003; 42(3): 492–3

    CAS  Google Scholar 

  122. Metzler C, Fink C, Lamprecht P, et al. Maintenance of remission with leflunomide in Wegener’s granulomatosis. Rheumatology (Oxford) 2004; 43(3): 315–20

    CAS  Google Scholar 

  123. Metzler C, Miehle N, Manger K, et al. Elevated relapse rate under oral methotrexate versus leflunomide for maintenance of remission in Wegener’s granulomatosis. Rheumatology (Oxford) 2007; 46(7): 1087–91

    CAS  Google Scholar 

  124. Umezawa H, Kondo S, Iinuma H, et al. Structure of an an-titumor antibiotic, spergualin. J Antibiot (Tokyo) 1981; 34(12): 1622–4

    CAS  Google Scholar 

  125. Nadler SG, Tepper MA, Schacter B, et al. Interaction of the immunosuppressant deoxyspergualin with a member of the Hsp70 family of heat shock proteins. Science 1992; 258(5081): 484–6

    PubMed  CAS  Google Scholar 

  126. Tepper MA, Nadler SG, Esselstyn JM, et al. Deoxyspergualin inhibits kappa light chain expression in 70Z/3 pre-B cells by blocking lipopolysaccharide-induced NF-kappa B activation. J Immunol 1995; 155(5): 2427–36

    PubMed  CAS  Google Scholar 

  127. Takeuchi T, Iinuma H, Kunimoto S, et al. A new antitumor antibiotic, spergualin: isolation and antitumor activity. J Antibiot (Tokyo) 1981; 34(12): 1619–21

    CAS  Google Scholar 

  128. Amemiya H, Suzuki S, Ota K, et al. A novel rescue drug, 15-deoxyspergualin: first clinical trials for recurrent graft rejection in renal recipients. Transplantation 1990; 49(2): 337–43

    PubMed  CAS  Google Scholar 

  129. Birck R, Newman M, Braun C, et al. 15-Deoxyspergualin and cyclophosphamide, but not mycophenolate mofetil, prolong survival and attenuate renal disease in a murine model of ANCA-associated crescentic nephritis. Nephrol Dial Transplant 2006; 21(1): 58–63

    PubMed  CAS  Google Scholar 

  130. Birck R, Warnatz K, Lorenz HM, et al. 15-Deoxyspergualin in patients with refractory ANCA-associated systemic vasculitis: a six-month open-label trial to evaluate safety and efficacy. J Am Soc Nephrol 2003; 14(2): 440–7

    PubMed  CAS  Google Scholar 

  131. Schmitt WH, Birck R, Heinzel PA, et al. Prolonged treatment of refractory Wegener’s granulomatosis with 15-deoxyspergualin: an open study in seven patients. Nephrol Dial Transplant 2005; 20(6): 1083–92

    PubMed  CAS  Google Scholar 

  132. Kälsch A, Schmitt WH, Breedijk A, et al. In vivo effects of cyclic administration of 15-deoxyspergualin on leucocyte function in patients with Wegener’s granulomatosis. Clin Exp Immunol 2006; 146(3): 455–62

    PubMed  Google Scholar 

  133. Flossmann O, Cohen Tervaert JW, Hellmich B, et al. Deoxys-pergaulin for refractory Wegener’s granulomatosis [abstract]. 13th International ANCA/vasculitis workshop; 2007 Apr 28; Cancun

  134. Rossi F, Jayne DR, Lockwood CM, et al. Anti-idiotypes against anti-neutrophil cytoplasmic antigen autoantibodies in normal human polyspecific IgG for therapeutic use and in the remission sera of patients with systemic vasculitis. Clin Exp Immunol 1991; 83(2): 298–303

    PubMed  CAS  Google Scholar 

  135. Brooks CJ, King WJ, Radford DJ, et al. IL-1 beta production by human polymorphonuclear leucocytes stimulated by anti-neutrophil cytoplasmic autoantibodies: relevance to systemic vasculitis. Clin Exp Immunol 1996; 106(2): 273–9

    PubMed  CAS  Google Scholar 

  136. Jayne DR, Esnault VL, Lockwood CM. Anti-idiotype antibodies to anti-myeloperoxidase autoantibodies in patients with systemic vasculitis. J Autoimmun 1993; 6(2): 221–6

    PubMed  CAS  Google Scholar 

  137. Jayne DR, Chapel H, Adu D, et al. Intravenous immunoglobulin for ANCA-associated systemic vasculitis with persistent disease activity. QJM 2000; 93(7): 433–9

    PubMed  CAS  Google Scholar 

  138. Jayne DR, Davies MJ, Fox CJ, et al. Treatment of systemic vasculitis with pooled intravenous immunoglobulin. Lancet 1991; 337(8750): 1137–9

    PubMed  CAS  Google Scholar 

  139. Jayne DR, Esnault VL, Lockwood CM. ANCA anti-idiotype antibodies and the treatment of systemic vasculitis with intravenous immunoglobulin. J Autoimmun 1993; 6(2): 207–19

    PubMed  CAS  Google Scholar 

  140. Jayne DR, Lockwood CM. Intravenous immunoglobulin as sole therapy for systemic vasculitis. Br J Rheumatol 1996; 35(11): 1150–3

    PubMed  CAS  Google Scholar 

  141. Richter C, Schnabel A, Csernok E, et al. Treatment of anti-neutrophil cytoplasmic antibody (ANCA)-associated systemic vasculitis with high-dose intravenous immunoglobulin. Clin Exp Immunol 1995; 101(1): 2–7

    PubMed  CAS  Google Scholar 

  142. Ito-Ihara T, Ono T, Nogaki F, et al. Clinical efficacy of intravenous immunoglobulin for patients with MPO-ANCA-associated rapidly progressive glomerulonephritis. Nephron Clin Pract 2006; 102(1): c35–42

    PubMed  CAS  Google Scholar 

  143. Muso E, Ito-Ihara T, Ono T, et al. Intravenous immunoglobulin (IVIg) therapy in MPO-ANCA related polyangiitis with rapidly progressive glomerulonephritis in Japan. Jpn J Infect Dis 2004; 57(5): S17–8

    PubMed  Google Scholar 

  144. Tesar V, Jelínková E, Masek Z, et al. Influence of plasma exchange on serum levels of cytokines and adhesion molecules in ANCA-positive renal vasculitis. Blood Purif 1998; 16(2): 72–80

    PubMed  CAS  Google Scholar 

  145. Pusey CD, Rees AJ, Evans DJ, et al. Plasma exchange in focal necrotizing glomerulonephritis without anti-GBM antibodies. Kidney Int 1991; 40(4): 757–63

    PubMed  CAS  Google Scholar 

  146. Frascà GM, Soverini ML, Falaschini A, et al. Plasma exchange treatment improves prognosis of antineutrophil cytoplasmic antibody-associated crescentic glomerulonephritis: a case-control study in 26 patients from a single center. Ther Apher Dial 2003; 7(6): 540–6

    PubMed  Google Scholar 

  147. Nakamura T, Matsuda T, Kawagoe Y, et al. Plasmapheresis with immunosuppressive therapy vs immunosuppressive therapy alone for rapidly progressive anti-neutrophil cytoplasmic autoantibody-associated glomerulonephritis. Nephrol Dial Transplant 2004; 19(7): 1935–7

    PubMed  CAS  Google Scholar 

  148. Aasarød K, Iversen BM, Hammerström J, et al. Clinical outcome of patients with Wegener’s granulomatosis treated with plasma exchange. Blood Purif 2002; 20(2): 167–73

    PubMed  Google Scholar 

  149. Klemmer PJ, Chalermskulrat W, Reif MS, et al. Plasmapheresis therapy for diffuse alveolar hemorrhage in patients with small-vessel vasculitis. Am J Kidney Dis 2003; 42(6): 1149–53

    PubMed  Google Scholar 

  150. Jayne DRW, Gaskin G, Rasmussen N, et al. Randomized trial of plasma exchange or high-dosage methylprednisolone as adjunctive therapy for severe renal vasculitis. J Am Soc Nephrol 2007; 18(7): 2180–8

    PubMed  CAS  Google Scholar 

  151. Stegeman CA, Tervaert JW, Sluiter WJ, et al. Association of chronic nasal carriage of Staphylococcus aureus and higher relapse rates in Wegener granulomatosis. Ann Intern Med 1994; 120(1): 12–7

    PubMed  CAS  Google Scholar 

  152. Reinhold-Keller E, Groot KD, Rudert H, et al. Response to trimethoprim/sulfamethoxazole in Wegener’s granulomatosis depends on the phase of disease. QJM 1996; 89(1): 15–23

    PubMed  CAS  Google Scholar 

  153. Stegeman CA, Tervaert JW, de Jong PE, et al. Trimethoprim-sulfamethoxazole (co-trimoxazole) for the prevention of relapses of Wegener’s granulomatosis. Dutch Co-Trimoxazole Wegener Study Group. N Engl J Med 1996; 335(1): 16–20

    PubMed  CAS  Google Scholar 

  154. de Groot K, Reinhold-Keller E, Tatsis E, et al. Therapy for the maintenance of remission in sixty-five patients with generalized Wegener’s granulomatosis: methotrexate versus trimethoprim/sulfamethoxazole. Arthritis Rheum 1996; 39(12): 2052–61

    PubMed  Google Scholar 

  155. Chung JB, Armstrong K, Schwartz JS, et al. Cost-effectiveness of prophylaxis against Pneumocystis carinii pneumonia in patients with Wenger’s granulomatosis undergoing immunosuppresive therapy. Arthritis Rheum 2000; 43(8): 1841–8

    PubMed  CAS  Google Scholar 

  156. The European Vasculitis Study Group. RITUXVAS clinical trial protocol [online]. Available from URL: http://www.vasculitis.org/protocols/RITUXVAS.pdf [Accessed 2008 Feb 14]

  157. Immune Tolerance Network. RAVE: rituximab for ANCA-associated vasculitis [online]. Available from URL: http://www.immunetolerance.org/RAVE/ [Accessed 2008 Feb 12]

  158. National Institutes of Heath. RATTRAP: infliximab versus rituximab in systemic necrotizing vasculitides [online]. Available from URL: http://www.clinicaltrials.gov/show/NCT00307593 [Accessed 2008 Feb 12]

  159. The European Vasculitis Study Group. International mycophenolate mofetil protocol to reduce outbreaks of vasculitides: IMPROVE [online]. Available from URL: http://www.vascu-litis.org/protocols/IMPROVE.pdf [Accessed 2008 Feb 14]

  160. The European Vasculitis Study Group. MYCYC clinical trial protocol [online]. Available from URL: http://www.vasculitis.org/protocols/MYCYC.pdf [Accessed 2008 Feb 14]

  161. Jayne DR, Rasmussen N. Treatment of antineutrophil cytoplasm autoantibody-associated systemic vasculitis: initiatives of the European Community Systemic Vasculitis Clinical Trials Study Group. Mayo Clin Proc 1997; 72(8): 737–47

    PubMed  CAS  Google Scholar 

  162. The European Vasculitis Study Group. Clinical trial protocol: REMAIN [online]. Available from URL: http://www.vasculitis.org/protocols/REMAIN%20JAN%202006.pdf [Accessed 2008 Feb 14]

  163. Clark M. Antibody humanization: a case of the ’Emperor’s new clothes’? Immunol Today 2000; 21(8): 397–402

    PubMed  CAS  Google Scholar 

  164. The European Vasculitis Study Group. A pilot study examining the effect of abatacept in ANCA associated vasculitis: ABAVAS [online]. Available from URL: http://www.vasculitis.org/protocols/abavas.pdf [Accessed 2008 Feb 14]

  165. Kumar S, Boehm J, Lee JC. p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov 2003; 2(9): 717–26

    PubMed  CAS  Google Scholar 

  166. Karin M, Yamamoto Y, Wang QM. The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov 2004; 3(1): 17–26

    PubMed  CAS  Google Scholar 

  167. Boudes P. Purely granulomatous Wegener’s granulomatosis: a new concept for an old disease. Semin Arthritis Rheum 1990; 19(6): 365–70

    PubMed  CAS  Google Scholar 

  168. Schmitt WH, Heesen C, Csernok E, et al. Elevated serum levels of soluble interleukin-2 receptor in patients with Wegener’s granulomatosis: association with disease activity. Arthritis Rheum 1992; 35(9): 1088–96

    PubMed  CAS  Google Scholar 

  169. Wang G, Hansen H, Tatsis E, et al. High plasma levels of the soluble form of CD30 activation molecule reflect disease activity in patients with Wegener’s granulomatosis. Am J Med 1997; 102(6): 517–23

    PubMed  CAS  Google Scholar 

  170. Jayne D. Update on the European Vasculitis Study Group trials. Curr Opin Rheumatol 2001; 13(1): 48–55

    PubMed  CAS  Google Scholar 

  171. Lamprecht P, Gross WL. A brief history of Wegener’s granulomatosis: on limited, localized, and generalized forms of the disease: comment on the article by the Wegener’s Granulomatosis Etanercept Trial Research Group. Arthritis Rheum 2004; 50(1): 334–5

    PubMed  Google Scholar 

  172. Luqmani RA, Bacon PA, Moots RJ, et al. Birmingham Vasculitis Activity Score (BVAS) in systemic necrotizing vasculitis. QJM 1994; 87(11): 671–8

    PubMed  CAS  Google Scholar 

  173. Stone JH, Hoffman GS, Merkel PA, et al., for the Study of the Systemic Vasculitides (INSSYS), I.N. A disease-specific activity index for Wegener’s granulomatosis: modification of the Birmingham Vasculitis Activity Score. International Network for the Study of the Systemic Vasculitides (INSSYS). Arthritis Rheum 2001; 44(4): 912–920

    PubMed  CAS  Google Scholar 

  174. Silman A, Klareskog L, Breedveld F, et al. Proposal to establish a register for the long term surveillance of adverse events in patients with rheumatic diseases exposed to biological agents: the EULAR Surveillance Register for Biological Compounds. Ann Rheum Dis 2000; 59(6): 419–20

    PubMed  CAS  Google Scholar 

  175. Hellmich B, Flossmann O, Gross WL, et al. EULAR recommendations for conducting clinical studies and/or clinical trials in systemic vasculitis: focus on anti-neutrophil cytoplasm antibody-associated vasculitis. Ann Rheum Dis 2007; 66(5): 605–17

    PubMed  CAS  Google Scholar 

  176. Merkel PA. Part 1: the need for novel treatment regimens for ANCA-associated vasculitis. Clin Exp Rheumatol 2007; 25 (1 Suppl. 44): S72-3

    Google Scholar 

Download references

Acknowledgements

We acknowledge the comprehensive advice and assistance from evidence-based and knowledge management librarian Ben Skinner at Brighton and Sussex University Hospitals with regard to the literature search undertaken.

No sources of funding were used to assist in the preparation of this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. D’Cruz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, R.W., D’Cruz, D.P. Novel Therapies for Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis. Drugs 68, 747–770 (2008). https://doi.org/10.2165/00003495-200868060-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200868060-00003

Keywords

Navigation