Skip to main content
Log in

The Role of Sulodexide in the Treatment of Diabetic Nephropathy

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Diabetic nephropathy is an important cause of morbidity and mortality in patients with either type 1 or type 2 diabetes mellitus. The pathogenesis and natural history of diabetic nephropathy, characterised by a progressive decline in glomerular function, were initially described in patients with type 1 diabetes. Reports that describe the glomerulopathy and progression of renal disease in patients with type 2 diabetes suggest that the disease process is similar to that observed in patients with type 1 diabetes with diabetic nephropathy. An emerging body of evidence supports the notion that glomerular capillary wall and mesangial alterations in diabetic nephropathy involve pathobiochemical alterations of glycoproteins in these structures. Evidence in experimental animals rendered diabetic, reveal that the administration of heparin and other anionic glycoproteins can effectively prevent the biochemical alterations that promote albuminuria. Clinical reports of the use of sulodexide, a preparation of low molecular weight glycosaminoglycan polysaccharides, have shown that proteinuria is significantly diminished in patients with diabetic nephropathy, even when these patients are receiving either an ACE inhibitor or angiotensin receptor antagonist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Fig. 1
Table III
Table IV
Table V

Similar content being viewed by others

References

  1. American Diabetes Association. Diabetic nephropathy. Diabetes Care 1998; 21: S50–3

    Google Scholar 

  2. United States Renal Data System. USRDS 1999 annual data report. Bethesda (MD): National Institute of Health, National Institute of Diabetes, Digestive, and Kidney Diseases, 1999: 25–164

    Google Scholar 

  3. Ritz E, Orth SR. Nephropathy in patients with type 2 diabetes mellitus. N Engl J Med 1999; 341: 1127–32

    Article  PubMed  CAS  Google Scholar 

  4. Wight JP, Edwards L, Brazier J, et al. The SF36 as an outcome measure of services for end stage renal failure. Qual Health Care 1998; 7: 209–21

    Article  PubMed  CAS  Google Scholar 

  5. Arkouche W, Traeger J, Delawari E, et al. Twenty-five years of experience with out-center hemodialysis. Kidney Int 1999; 56: 2269–75

    Article  PubMed  CAS  Google Scholar 

  6. Johnson JG, Gore SM, Firth J. The effect of age, diabetes, and other comorbidity on the survival of patients on dialysis: a systematic quantitative overview of the literature. Nephrol Dial Transplant 1999; 14: 2156–64

    Article  PubMed  CAS  Google Scholar 

  7. Remuzzi G, Schieppati A, Ruggenenti P. Nephropathy in patients with type 2 diabetes. N Engl J Med 2000; 346: 1145–51

    Article  Google Scholar 

  8. Wolf G, Ritz E. Diabetic nephropathy in type 2 diabetes prevention and patient management. J Am Soc Nephrol 2003; 14: 1396–405

    Article  PubMed  Google Scholar 

  9. Fioretta P, Mauer M, Broco E, et al. Pattern of renal injury in NIDDM patients with microalbuminuria. Diabetologia 1996; 39: 1569–76

    Article  Google Scholar 

  10. Bertani T, Gambara V, Remuzzi G. Structrual basis of diabetic nephropathy in microalbuminuric NIDDM patients: a light microscopy study. Diabetologia 1996; 39: 1625–8

    Article  PubMed  CAS  Google Scholar 

  11. Biesenbach G, Grafinger P, Janko O, et al. Influence of cigarette-smoking on the progression of clinical diabetic nephropathy in type 2 diabetic patients. Clin Nephrol 1997; 48: 146–50

    PubMed  CAS  Google Scholar 

  12. Ravid M, Brosh D, Levi Z, et al. Use of enalapril to attenuate decline in renal function in normotensive, normoalbuminuric patients with type 2 diabetes mellitus:a randomized, controlled trial. Ann Intern Med 1998; 128: 982–8

    PubMed  CAS  Google Scholar 

  13. Fioretto P, Steffes MW, Mauer M. Glomerular structure in nonproteinuric IDDM patients with various levels of albuminuria. Diabetes 1994; 43: 1358–64

    Article  PubMed  CAS  Google Scholar 

  14. Jensen T. Pathogenesis of diabetic vascular disease: evidence for the role of reduced heparan sulfate proteoglycan. Diabetes 1997; 46 Suppl. 2: S98–100

    PubMed  CAS  Google Scholar 

  15. Raats CJI, van den Born J, Berden JHM. Glomerular heparan sulfate alterations: mechanisms and relevance for proteinuria. Kidney Int 2000; 57: 385–400

    Article  PubMed  CAS  Google Scholar 

  16. van den Hoven M, Rops A, Bakker M. Increased expression of heparanase in overt diabetic nephropathy. Kidney Int 2006; 70: 2100–8

    PubMed  Google Scholar 

  17. Mauer SM, Lane P, Hattori M, et al. Renal structure and function in insulin-dependent diabetes mellitus and type I membranoproliferative glomerulonephritis in humans. J Am Soc Nephrol 1992; 2: S181–4

    PubMed  CAS  Google Scholar 

  18. Steffes MW, Bilous RW, Sutherland DE, et al. Cell and matrix components of the glomerular mesangium in type 1 diabetes. Diabetes 1992; 41: 679–84

    Article  PubMed  CAS  Google Scholar 

  19. Lei J, Silbiger S, Ziyadeh FN, et al. Serum-stimulated al type IV collagen gene transcription is mediated by TGF-β and inhibited by estradiol. Am J Physiol 1997; 274: F252–8

    Google Scholar 

  20. Oh JH, Ha H, Yu MR, et al. Sequential effects of high glucose on mesangial cell transforming growth factor-β1 and fibronectin synthesis. Kidney Int 1998; 54: 1872–8

    Article  PubMed  CAS  Google Scholar 

  21. Ellis EN, Steffes MW, Goetz FC, et al. Glomerular filtration surface in type 1 diabetes mellitus. Kidney Int 1986; 29: 889–94

    Article  PubMed  CAS  Google Scholar 

  22. Eddy AA. Molecular insights into renal interstitial fibrosis. J Am Soc Nephrol 1996; 7: 2495–508

    PubMed  CAS  Google Scholar 

  23. Remuzzi G, Bertani T. Pathophysiology of progressive nephropathies. N Engl J Med 1998; 339: 1448–56

    Article  PubMed  CAS  Google Scholar 

  24. Bader R, Bader H, Grund KE, et al. Structure and function of the kidney in diabetic glomerulosclerosis: correlations between morphological and functional parameters. Path Res Pract 1980; 167: 204–16

    Article  PubMed  CAS  Google Scholar 

  25. Bohle A, Wehrmann M, Bogenschntz O, et al. The pathogenesis of chronic renal failure in diabetic nephropathy: investigation of 488 cases of diabetic glomerulosclerosis. Path Res Pract 1991; 187: 251–9

    Article  PubMed  CAS  Google Scholar 

  26. Taft JL, Nolan CJ, Yeung SP, et al. Clinical and histological correlations of decline in renal function in diabetic patients with proteinuria. Diabetes 1994; 43: 1046–51

    Article  PubMed  CAS  Google Scholar 

  27. Mogensen CE, Christensen CK, Vittinghus E. The stages in diabetic renal disease with emphasis on the stage of incipient diabetic nephropathy. Diabetes 1983; 32: 64–78

    PubMed  Google Scholar 

  28. Inomata S, Nakamoto Y, Inoue M, et al. Relationship between urinary albumin excretion rate and renal histology in non-insulin-dependent diabetes mellitus: with reference to the clinical significance of microalbuminuria. J Diabet Complications 1989; 3: 172–8

    Article  PubMed  CAS  Google Scholar 

  29. Pedrini MT, Levey AS, Lau J, et al. The effect of dietary protein restriction on the progression of diabetic and nondiabetic renal diseases: a meta-analysis. Ann Intern Med 1996; 124: 627–32

    PubMed  CAS  Google Scholar 

  30. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329: 977–86

    Article  Google Scholar 

  31. United Kingdom Prospective Diabetes Study (UKPDS) Group. Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 39. BMJ 1998; 317: 713–20

    Article  Google Scholar 

  32. Feldt-Rasmussen B, Mathiesen ER, Hegedns L, et al. Kidney function during 12 months of strict metabolic control in insulin-dependent diabetic patients with incipient nephropathy. N Engl J Med 1986; 314: 665–70

    Article  PubMed  CAS  Google Scholar 

  33. Parving HH. Renoprotective action of angiotensin converting enzyme inhibition in diabetes mellitus. J Cardiovasc Pharmacol 1992; 19 Suppl. 6: S19–24

    Article  PubMed  CAS  Google Scholar 

  34. Lewis EJ, Hunsicker LG, Bain RP, et al. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N Engl J Med 1993; 329: 1456–62

    Article  PubMed  CAS  Google Scholar 

  35. Parving HH, Smidt UM, Hommel E, et al. Effective antihyper-tensive treatment postpones renal insufficiency in diabetic nephropathy. Am J Kidney Dis 1993; 22: 188–95

    PubMed  CAS  Google Scholar 

  36. Parving H, Rossing P, Hommel E, et al. Angiotensin-converting enzyme inhibition in diabetic nephropathy: ten years’ experience. Am J Kidney Dis 1995; 26: 99–107

    Article  PubMed  CAS  Google Scholar 

  37. Rossing P, Hommel E, Smidt UM, et al. Reduction in albuminuria predicts diminished progression in diabetic nephropathy. Kidney Int 1994; 45 Suppl. 45: S145–9

    CAS  Google Scholar 

  38. Jerums G. Differences in renal outcomes with ACE inhibitors in type 1 and type 2 diabetic patients: possible explanations. Miner Electrolyte Metab 1998; 24: 423–37

    Article  PubMed  CAS  Google Scholar 

  39. Lebovitz HE, Wiegmann TB, Cnaan A, et al. Renal protective effects of enalapril in hypertensive NIDDM: role of baseline albuminuria. Kidney Int 1994; 45 Suppl. 45: S150–5

    CAS  Google Scholar 

  40. Nielsen FS, Rossing P, Gall M, et al. Long-term effect of lisinopril and atenolol on kidney function in hypertensive NIDDM subjects with diabetic nephropathy. Diabetes 1997; 46: 1182–8

    Article  PubMed  CAS  Google Scholar 

  41. Morelli E, Loon N, Meyer T, et al. Effects of converting-enzyme inhibition on barrier function in diabetic glomerulopathy. Diabetes 1990; 39: 76–82

    Article  PubMed  CAS  Google Scholar 

  42. Ruggenenti P, Gambara V, Perna A, et al. The nephropathy of non-insulin-dependent diabetes: predictors of outcome relative to diverse patterns of renal injury. J Am Soc Nephrol 1998; 9: 2336–43

    PubMed  CAS  Google Scholar 

  43. Ruggenenti P, Remuzzi G. Nephropathy in type-2 diabetes mellitus. J Am Soc Nephrol 1998; 9: 2157–69

    PubMed  CAS  Google Scholar 

  44. Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001; 34(12): 861–9

    Article  Google Scholar 

  45. Lewis EJ, Hunsicker LG, Clarke WR, et al. Collaborative Study Group. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 2001; 345(12): 851–60

    CAS  Google Scholar 

  46. US FDA. Statistical review and evaluation: COZAAR (losartan potassium) tablets [online]. Available from URL: http://www.fda.gov/ohrms/dockets/ac/02/briefing/3849bl_04_Statistical%20review.pdf [Accessed 2007 Sep 17]

  47. Dahlof B, Devereux RB, Kjeldsen SE, et al. Cardiovascular morbidity and mortality in the losartan intervention for end-point reduction in hypertension study (LIFE): a randomized trial against atenolol. Lancet 2002; 359: 995–1003

    Article  PubMed  CAS  Google Scholar 

  48. Parving HH, Lehnert H, Brochner-Mortensen J, et al. The effects of irbesartan on the development of diabetic nephropathy in patients with type diabetes. N Engl J Med 2001; 345: 870–8

    Article  PubMed  CAS  Google Scholar 

  49. Ruggenenti P, Fassi A, Ilieva AP, et al. Preventing microalbuminuria in type 2 diabetes. N Engl J Med 2004; 351: 1941–51

    Article  PubMed  CAS  Google Scholar 

  50. Gambaro G, Van Der Woude FJ. Glycosaminoglycans: use in treatment of diabetic nephropathy. J Am Soc Nephrol 2000; 11: 359–68

    PubMed  CAS  Google Scholar 

  51. Gambaro G, Cavazzana AO, Luzi P, et al. Glycosaminoglycans prevent morphological renal alterations and albuminuria in diabetic rats. Kidney Int 1992; 42: 285–91

    Article  PubMed  CAS  Google Scholar 

  52. Gambaro G, Venturini AP, Noonan DM, et al. Treatment with glycosaminoglycan formulation ameliorates experimental diabetic nephropathy. Kidney Int 1994; 46: 797–806

    Article  PubMed  CAS  Google Scholar 

  53. Ofosu FA. Pharmacological actions of sulodexide. Semin Thromb Hemost 1998; 24(2): 127–38

    Article  PubMed  CAS  Google Scholar 

  54. Nader HB, Buonassisi V, Colburn P, et al. Heparin stimulates the synthesis and modifies the sulfation pattern of heparan sulfate proteoglycan from endothelial cells. J Cell Physiol 1989; 40(2): 305–10

    Article  Google Scholar 

  55. Xu X, Rao G, Maxihimer JB, et al. Mechanism of action of sulodexide-mediated control of diabetic proteinuria: inhibition of heparanase-1 activity [abstract]. J Am Soc Nephrol 2005; 16: 673A

    Article  Google Scholar 

  56. Caenazzo C, Garbisa S, Ceol M, et al. Heparin modulates proliferation and proteoglycan biosynthesis in murine mesangial cells: molecular clues for its activity in nephropathy. Nephrol Dial Transplant 1995; 10(2): 175–84

    PubMed  CAS  Google Scholar 

  57. Caenazzo C, Garbisa S, Onisto M, et al. Effect of glucose and heparin on mesangial αl (IV) COLL and MMP-2/TIMP-2 mRNA expression. Nephrol Dial Transplant 1997; 12(3): 443–8

    Article  PubMed  CAS  Google Scholar 

  58. Oturai P, Rolin B, Vissing H. Effects of heparin on kidney TGF-β1 mRNA in experimental diabetic nephropathy [abstract]. Diabetes 1997; 46: 120A

    Google Scholar 

  59. Wang ZQ, Liang KH, Pahl MV, et al. Effect of heparin on mesangial cell growth and gene expression of matrix proteins. Nephrol Dial Transplant 1998; 13: 3052–7

    Article  PubMed  CAS  Google Scholar 

  60. Yokokawa K, Kohno M, Mandal AK, et al. Heparin suppresses endothelin-1 (ET-1) peptide and mRNA expression in cultured endothelial cells of spontaneously hypertensive rats. J Am Soc Nephrol 1994; 4: 1683–9

    PubMed  CAS  Google Scholar 

  61. Reantragoon S, Arrigo LM, Seoud MMA, et al. Specific heparin fractions suppress ET-1 production in cultured human umbilical vein endothelial cells. Arch Biochem Biophys 1994; 314: 315–22

    Article  PubMed  CAS  Google Scholar 

  62. Zoja C, Morigi M, Figliuzzi M, et al. Proximal tubular cell synthesis and secretion of ET-1 on challenge with albumin and other proteins. Am J Kid Dis 1995; 26: 934–41

    Article  PubMed  CAS  Google Scholar 

  63. Piatti PM, Monti LD, Valsecchi G, et al. Effects of low-dose heparin infusion on arterial ET-1 release in humans. Circulation 1996; 94: 2703–7

    Article  PubMed  CAS  Google Scholar 

  64. Valencia AO, Mileva MM, Dweck HS, et al. Specificity of glycosaminoglycan suppression of ET-1 production by human umbilical vein endothelial cells. Life Sci 1999; 65(3): 279–84

    Article  PubMed  CAS  Google Scholar 

  65. Matsumoto T, Yamaguchi M, Kikuchi H, et al. Heparin reduces serum levels of ET-1 and hepatic ischemia reperfusion injury in rabbits. Surg Today 2000; 30(6): 523–5

    Article  PubMed  CAS  Google Scholar 

  66. Mizutani K, Kawashima S, Ueyama T, et al. Heparin and heparan sulfate inhibit extracellular signal-regulated kinase activation and myocardial cell hypertrophy induced by endothelin-1. Kobe J Med Sci 2001; 47(2): 47–58

    PubMed  CAS  Google Scholar 

  67. Ishikawa Y, Kitamura M. Inhibition of glomerular cell apoptosis by heparin. Kidney Int 1999; 56(3): 954–63

    Article  PubMed  CAS  Google Scholar 

  68. Tiozzo R, Cingi MR, Pietrangelo A, et al. Effect of heparin-like compounds on the in vitro proliferation and protein synthesis of various cell types. Arzneimittel-Forschung / Drug Research 1989; 39: 15–20

    CAS  Google Scholar 

  69. Barbanti M, Guizzardi S, Calanni F, et al. Antithrombotic and thrombolytic activity of sulodexide in rats. Int J Clin Lab Res 1992; 22: 179–84

    Article  PubMed  CAS  Google Scholar 

  70. Buchanan MR, Liao P, Smith LJ, et al. Prevention of thrombus formation and growth by antithrombin III and heparin cofactor II-dependent thrombin inhibitors: importance of heparin cofactor II. Thromb Res 1994; 74(5): 463–75

    Article  PubMed  CAS  Google Scholar 

  71. Lauver DA, Lucchesi BR. Sulodexide: a renewed interest in this glycosaminoglycan. Cardiovasc Drug Rev 2006; 24: 214–26

    Article  PubMed  CAS  Google Scholar 

  72. Lauver DA, Booth EA, White AJ, et al. Sulodexide attenuates myocardial ischemia/reperfusion injury and the deposition of c-reactive protein in areas of infarction without affecting hemostatic. J Pharmacol Exp Ther 2005; 312: 794–800

    Article  PubMed  CAS  Google Scholar 

  73. Crepaldi G, Fellin R, Calabro A, et al. Preliminary results of sulodexide treatment in patients with peripheral arteriosclerosis and hyperlipemia: a multicentre trial. Monogr Atheroscler 1986; 14: 215–21

    PubMed  CAS  Google Scholar 

  74. Radhakrishnamurthy B, Sharma C, Bhandara RR, et al. Studies of chemical and biologic properties of a fraction of sulodexide, a heparin-like glycosaminoglycan. Atherosclerosis 1986; 60: 141–9

    Article  PubMed  CAS  Google Scholar 

  75. Cristofori M, Mastacchi R, Barbanti M, et al. Pharmacokinetics and distribution of a fluoresceinated glycosaminoglycan, sulodexide, in rats: part I. Pharmacokinetics in rats. Arzneimittel-Forschung / Drug Research 1985; 35(2): 1513–6

    CAS  Google Scholar 

  76. Ruggeri A, Guizzardi S, Franchi M, et al. Pharmacokinetics and distribution of a fluoresceinated glycosaminoglycan, sulodexide, in rats: part II. Organ distribution in rats. Arzneimittel-Forschung / Drug Research 1985; 35(2): 1517–9

    CAS  Google Scholar 

  77. Keryx Biopharmaceuticals, Inc. Data on file, 2007

  78. Mauro M, Ferraro G, Palmieri GC, et al. Profibrinolytic and antithrombotic effects of sulodexide; a double-blind, crossover, placebo-controlled study. Curr Ther Res 1992; 51: 342–50

    Google Scholar 

  79. Busutti L, Breccia A. Pharmacokinetics of sulodexide after single oral administration in man. Euro J Clin Res 1991; 1: 25–36

    Google Scholar 

  80. Milani MR, Busutti L, Breccia A, et al. Pharmacokinetics of sulodexide evaluated from 131I-labelled fast moving heparin after single intravenous and oral administration of different does in man. Br J Clin Res 1992; 3: 161–78

    Google Scholar 

  81. Breccia A, Busutti L, Fini A. Pharmacokinetics of sulodexide evaluated from labelled fast moving heparin and from labelled dermatan sulfate after single intravenous and oral administration. Euro J Clin Res 1992; 3: 97–113

    Google Scholar 

  82. Solini A, Vergnani L, Ricci F, et al. Glycosaminoglycans delay the progression of nephropathy in NIDDM. Diabetes Care 1997; 20(5): 819–23

    Article  PubMed  CAS  Google Scholar 

  83. Velussi M, Cernigoi AM, Dapas F, et al. Glycosaminoglycans oral therapy reduces microalbuminuria, blood fibrinogen levels and limb arteriopathy clinical signs in patients with non-insulin dependent diabetes mellitus. Diabetes Nutr Metab 1996; 9: 53–8

    CAS  Google Scholar 

  84. Poplawska A, Szelachowska M, Topolska J, et al. Effect of glycosaminoglycans on urinary albumin excretion in insulin-dependent diabetic patients with micro- or macroalbuminuria. Diabetes Res Clin Pract 1997; 38: 109–14

    Article  PubMed  CAS  Google Scholar 

  85. Solini A, Vergnani L, Ricci F, et al. Therapy with glycosaming-lycans lowers excretion rate in non-insulin dependent diabetic patients with microalbuminuria. Diab Nutr Metab 1991; 7: 304–7

    Google Scholar 

  86. Dedov I, Shestakova M, Vorontzov A, et al. A randomized controlled study of sulodexide therapy for the treatment of diabetic nephropathy. Nephrol Dial Transplant 1997; 12: 2295–300

    Article  PubMed  CAS  Google Scholar 

  87. Szelanowska M, Poplawska A, Topolska J, et al. A pilot study of the effect of the glycosaminoglycan sulodexide on microalbuminuria in type 1 diabetic patients. Curr Med Res Opin 1997; 13: 539–45

    Article  PubMed  CAS  Google Scholar 

  88. Skrha J, Perusicova J, Pontuch P, et al. Glycosaminoglycan sulodexide decreases albuminuria in diabetic patients. Diabetes Res Clin Pract 1997; 38: 25–31

    Article  PubMed  CAS  Google Scholar 

  89. Sorrenti G, Grimaldi M, Canova N, et al. Glycosaminoglycans as a possible tool for micro- and macroalbuminuria in diabetic patients: a pilot study. J Int Med Res 1997; 25: 81–6

    PubMed  CAS  Google Scholar 

  90. Oksa A, Pontuch P, Kratochvilova H, et al. The effects of glycosaminoglycan sulodexide on albuminuria in patients with diabetes mellitus. Bratisl Lek Listy 1999; 100: 486–9

    PubMed  CAS  Google Scholar 

  91. Gambaro G, Kimacska I, Oksa A, et al. Oral sulodexide reduces albuminuria in microalbuminuric and macroalbuminuric type 1 and type 2 diabetic patients: the Di.N.A.S. randomized trial. J Am Soc Nephrol 2002; 13: 1615–25

    Article  CAS  Google Scholar 

  92. Achour A, Kacem M, Dibej K, et al. One year course of oral sulodexide in the management of diabetic nephropathy. J Nephrol 2005; 18(5): 568–74

    PubMed  CAS  Google Scholar 

  93. Lewis EJ, Lewis JB, Hunsicker LG. Interim analysis of a pilot trial of sulodexide type 2 diabetic nephropathy with microalbuminuria [abstract]. J Am Soc Nephrol 2005; 16: 58A

    Article  Google Scholar 

  94. Condorelli M, Chiariello M, Dagianti A, et al. IPO-V2: a prospective, multicenter, randomized, comparative clinical investigation of the effects of sulodexide in preventing cardiovascular accidents in the first year after acute myocardial infarction. J Am Coll Cardiol 1994; 23: 27–34

    Article  PubMed  CAS  Google Scholar 

  95. Coccheri S, Scondotto G, Agnelli G, et al. Sulodexide in the treatment of intermittent claudication: results of a randomized, double-blind, multicentre, placebo-controlled study. Euro Heart J 2002; 23: 1057–65

    Article  CAS  Google Scholar 

  96. 96. Lambers-Heerspink HJ, Fowler MJ, Volgi J. Rationale for and study design of the sulodexide trials in type 2 diabetic hypertensive patients with microalbuminuria or over nephropathy. Diabet Med. In press

Download references

Acknowledgements

Dr Weiss has no conflicts of interest to declare. Dr Niecestro is a consultant to Keryx Biopharmaceuticals and is managing the global clinical-regulatory development of sulodexide for the treatment of diabetic nephropathy. Dr Raz is a consultant to Keryx Biopharmaceuticals, Johnson & Johnson, Merck, Sharpe & Dohme and Pfizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Weiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, R., Niecestro, R. & Raz, I. The Role of Sulodexide in the Treatment of Diabetic Nephropathy. Drugs 67, 2681–2696 (2007). https://doi.org/10.2165/00003495-200767180-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200767180-00004

Keywords

Navigation