Abstract
Secondary hyperparathyroidism (SHPT) is a common and serious consequence of chronic kidney disease (CKD). SHPT is a complex condition characterised by a decline in 1,25-dihydroxyvitamin D and consequent vitamin D receptor (VDR) activation, abnormalities in serum calcium and phosphorus levels, parathyroid gland hyperplasia, elevated parathyroid hormone (PTH) secretion, and systemic mineral and bone abnormalities. There are three classes of drugs used for treatment of SHPT: (i) nonselective VDR activators or agonists (VDRAs); (ii) selective VDRAs; and (iii) calcimimetics. The VDRAs act on the VDR, whereas the calcimimetics act on the calcium-sensing receptor. Calcimimetics are commonly used in conjunction with VDRA therapy. By virtue of the differences in their chemical structure, the nonselective and selective VDRAs differ in their effects on gene expression, and ultimately parathyroid gland, bone and intestine function. Medications in all three classes are effective in suppression of PTH; however, clinical studies show that calcimimetics are associated with an unfavourable tolerability profile and hypocalcaemia, whereas nonselective VDRAs, and to a lesser extent selective VDRAs, are associated with dose-limiting hypercalcaemia and hyperphosphataemia. Selective VDRAs also have minimal undesirable effects on calcium absorption in the intestine, and calcium and phosphorus mobilisation in the bone compared with nonselective VDRAs. Calcium load in patients with CKD can lead to vascular calcification, accelerated progression of cardiovascular disease and increased mortality. High serum phosphorus levels are also associated with adverse effects on cardiorenal function and survival. Recent evidence suggests that VDRAs are associated with a survival benefit in CKD patients, with a more favourable effect with selective VDRAs than nonselective VDRAs. Paricalcitol, a selective VDRA, is reported to exert specific effects on gene expression in various cell types that are involved in vascular calcification and the development of coronary artery disease. This article examines the molecular mechanisms that determine selectivity of VDRAs, and reviews the evidence for clinical efficacy, safety and survival associated with the three drug classes used for treatment of SHPT in CKD patients.
This is a preview of subscription content, access via your institution.





Notes
The term vitamin D receptor activator is used throughout to denote exogenous synthetic agents regardless of whether postadministration enzymatic transformation to a biologically active form is required.
References
Slatopolsky E, Brown A, Dusso A. Pathogenesis of secondary hyperparathyroidism. Kidney Int 1999; 56 Suppl. 73: S14–9
Andress DL. Vitamin D treatment in chronic kidney disease. Semin Dial 2005; 18: 315–21
Chertow GM, Burke SK, Raggi P. Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. Kidney Int 2002; 62: 245–52
Goodman WG, Goldin J, Kuizon BD, et al. Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med 2001; 342: 1478–83
Kalpakian MA, Mehrota R. Vascular calcification and disordered mineral metabolism in dialysis patients. Semin Dial 2007; 20: 139–43
London GM, Geurin AP, Verbeke FH, et al. Mineral metabolism and arterial functions in end-stage renal disease: potential role of 25-hydroxyvitamin D deficiency. J Am Soc Nephrol 2007; 18: 613–20
Coen G, Ballanti P, Bonucci E, et al. Renal osteodystrophy in predialysis and hemodialysis patients: comparison of histologic patterns and diagnostic predictivity of intact PTH. Nephron 2002; 91: 103–11
Moe SM, Drüeke T, Cunninghham J, et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Gobal Outcomes (KDIGO). Kidney Int 2006; 69: 1945–53
Block GA, Klassen PS, Lazarus JM, et al. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol 2004; 15: 2208–18
Go AS, Chertow GM, Fan D, et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004; 351: 1296–305
Hamdy NA, Kanis JA, Beneton MN, et al. Effect of alfacalcidol on natural course of renal bone disease in mild to moderate renal failure. BMJ 1995; 310: 358–63
Maung HM, Elangovan L, Frazao JM, et al. Efficacy and side effects of intermittent intravenous and oral doxercalciferol (1alpha-hydroxyvitamin D2) in dialysis patients with secondary hyperparathyroidism: a sequential comparison. Am J Kidney Dis 2001; 37: 532–43
Nordal KP, Dahl E. Low dose calcitriol versus placebo in patients with predialysis chronic renal failure. J Clin Endocrinol Metab 1988; 67: 929–36
Block GA, Port FK. Re-evaluation of risks associated with hyperphosphatemia and hyperparathyroidism in dialysis patients: recommendations for a change in management. Am J Kidney Dis 2000; 35: 1226–37
Ma JN, Osinski M, Rose M, et al. Effects of VDR activators on intestinal calcium transport [abstract no. SA-PO613]. J Am Soc Nephrol 2004; 115: 437A
Rocaltrol® (calcitriol). Full prescribing information. Nutley (NJ); Roche Laboratories Inc., 2004
Sensipar® (cinacalcet HCl). Full prescribing information. Thousand Oaks (CA); Amgen Inc., 2004
Zemplar® (paricalcitol). Full prescribing information. North Chicago (IL); Abbott Laboratories, 2005
Tentori F, Hunt WC, Stidley CA, et al. Mortality risk among hemodialysis patients receiving different vitamin D analogs. Kidney Int 2006 Nov; 70(10): 1858–65
Hudson JQ. Secondary hyperparathyroidism in chronic kidney disease: focus on clinical consequences and vitamin D therapies. Ann Pharmacother 2006; 40: 1584–93
Jones G, Strugnell SA, DeLuca HF. Current understanding of the molecular actions of vitamin D. Physiol Rev 1998; 78: 1193–231
Andress DL. Vitamin D in chronic kidney disease: a systemic role for selective vitamin D receptor activation. Kidney Int 2005; 69: 33–43
Dusso AS, Thadhani R, Slatopolsky E. Vitamin D receptor and analogs. Semin Nephrol 2004; 24: 10–6
Martin PY, Gonzalez E, Lindberg JS, et al. Paricalcitol dosing according to body weight or severity of hyperparathyroidism: a double-blind, multicenter, randomized study. Am J Kidney Dis 2001; 38 Suppl. 5: S57–63
Brown AJ, Coyne DW. Vitamin D analogs: new therapeutic agents for secondary hyperparathyroidism. Treat Endocrinol 2002; 1: 313–27
Hirata M, Endo K, Katsumata K, et al. A comparison between 1,25-dihydroxy-22-oxavitamin D(3) and 1,25-dihydroxyvitamin D(3) regarding suppression of parathyroid hormone secretion and calcaemic action. Nephrol Dial Transplant 2002; 17 Suppl. 10: 41–5
Hirata M, Katsumata K, Endo K, et al. In subtotally nephrectomized rats 22-oxacalcitriol suppresses parathyroid hormone with less risk of cardiovascular calcification or deterioration of residual renal function than 1,25(OH)2 vitamin D3. Nephrol Dial Transplant 2003 Sep; 18(9): 1770–6
Carlberg C, Quack M, Herdick M, et al. Central role of VDR conformations for understanding selective actions of vitamin D3 analogues. Steroids 2001; 66: 213–21
Barthel TK, Mathern DR, Whitfield GK, et al. 1,25-dihydroxyvitamin D3/VDR-mediated induction of FGF23 as well as transcriptional control of other anabolic and catabolic genes that orchestrate the regulation of phosphate and calcium mineral metabolism. J Steroid Biochem Mol Biol 2007; 103: 381–8
Issa LL, Leong GM, Sutherland RL, et al. Vitamin D analogue-specific recruitment of vitamin D receptor coactivators. J Bone Miner Res 2002; 17: 879–90
Quack M, Carlberg C. Selective recognition of vitamin D receptor conformations mediates promoter selectivity of vitamin D analogs. Mol Pharmacol 1999; 55: 1077–87
Takeyama K-I, Masuhiro Y, Fuse H, et al. Selective interaction of vitamin D receptor with transcriptional coactivators by a vitamin D analog. Mol Cell Biol 1999; 19: 1049–55
Wu-Wong JR, Nakane M, Ma J, et al. Effects of vitamin D analogs on gene expression profiling in human coronary artery smooth muscle cells. Atherosclerosis 2006; 186: 20–8
Kroeger PE, Ruan X, Burton GR, et al. Microarray analysis of differentiated Caco-2 colon carcinoma cells treated with VDR activators [abstract no. TH-PO153]. American Society of Nephrology (ASN) 38th Renal Week Meeting; 2005 Nov 8–13; Philadelphia (PA)
Slatopolsky E, Finch J, Ritter C, et al. Effects of 19-nor-1,25(OH)2D2, a new analogue of calcitriol, on secondary hyperparathyroidism in uremic rats. Am J Kidney Dis 1998; 32 Suppl. 2: S40–7
Slatopolsky E, Cozzolino M, Finch JL. Differential effects of 19-nor-1,25-(OH)2D3 and 1α-hydroxyvitamin D2 on calcium and phosphorus in normal and uremic rats. Kidney Int 2002; 62: 1277–84
Nakane M, Ma J, Rose AE, et al. Differential effects of vitamin D analogs on calcium transport. J Steroid Biochem Mol Biol 2007; 103: 84–9
Nakane M, Fey TA, Dixon DB, et al. Differential effects of vitamin D analogs on bone formation and resorption. J Steroid Biochem Mol Biol 2006; 98: 72–7
Holliday LS, Gluck SL, Slatopolsky E, et al. 1,25-dihydroxy-19-nor-vitamin D2, a vitamin D analog with reduced bone resorbing activity in vitro. J Am Soc Nephrol 2000; 11: 1857–64
Zierold C, Mings JA, DeLuca HF. Regulation of 25-hydroxyvitamin D3-24-hydroxylase mRNA by 1,25-dihydroxyvitamin D3 and parathyroid hormone. J Cell Biochem 2003; 88: 234–7
Zierold C, Mings JA, DeLuca HF. 19nor-1,25-dihydroxyvitamin D2 specifically induces CYP3A9 in rat intestine more strongly than 1,25-dihydroxyvitamin D3 in vivo and in vitro. Mol Pharmacol 2006; 69: 1740–7
Petrie MS, Harrell TE, Schwartz GG, et al. Production of plasminogen activator inhibitor-1 (PAI-1) by endothelial cells: differential responses to calcitriol and paricalcitol. J Thromb Haemost 2004 Dec; 2(12): 2266–7
Nordt TK, Peter K, Ruef J, et al. Plasminogen activator inhibitor type-1 (PAI-1) and its role in cardiovascular disease. Thromb Haemost 1999; 82 Suppl. 1: 14–8
Lund R, Tian J, Melnick J, et al. Differential effects of paricalcitol and calcitriol on intestinal calcium absorption in hemodialysis patients [abstract no. SP-607]. XLIII European Renal Association-European Dialysis and Transplant Association (ERA-EDTA) Congress; 2006 Jul 15–18; Glasgow
Coyne DW, Grieff M, Ahya SN, et al. Differential effects of acute administration of 19-Nor-1,25-dihydrocy-vitamin D2 and 1,25-dihydroxy-vitamin D3 on serum calcium and phosphorus in hemodialysis patients. Am J Kidney Dis 2002; 40: 1283–8
Joist HE, Ahya SN, Giles K, et al. Differential effects of very high doses of doxercalciferol and paricalcitol on serum phosphorus in hemodialysis patients. Clin Nephrol 2006 May; 65(5): 335–41
Sprague SM, Llach F, Amdahl M, et al. Paricalcitol versus calcitriol in the treatment of secondary hyperparathyroidism. Kidney Int 2003 Apr; 63(4): 1483–90
Moriniere P, El Esper N, Viron B, et al. Improvement of severe secondary hyperparathyroidism in dialysis patients by intravenous 1α(OH) vitamin D3, oral CaCO3 and low dialysate calcium. Kidney Int 1993; 43 Suppl. 41: S121–4
Brandi L, Daugaard H, Tvedegaard E, et al. Long-term suppression of secondary hyperparathyroidism by intravenous 1α hydroxyvitamin D3 in patients on chronic hemodialysis. Am J Nephrol 1992; 12: 311–8
Rix M, Eskildsen P, Olgaard K. Effect of 18 months of treatment with alfacalcidol on bone in patients with mild to moderate chronic renal failure. Nephrol Dial Transplant 2004; 19: 870–6
Coburn JW, Maung HM, Elangovan L, et al. Doxercalciferol safely suppresses PTH levels in patients with secondary hyperparathyroidism associated with chronic kidney disease stages 3 and 4. Am J Kidney Dis 2004 May; 43(5): 877–90
Ross EA, Tian J, Abboud H, et al. Paricalcitol capsules for the treatment of secondary hyperparathyroidism in patients on HD or PD [abstract no. SA-PO551]. American Society of Nephrology (ASN) 39th Renal Week Meeting; 2006 Nov 14–19; San Diego (CA)
Martin KJ, Gonzalez EA, Gellens M, et al. 19-Nor-1-alpha-25-dihydroxyvitamin D2 (paricalcitol) safely and effectively reduces the levels of intact parathyroid hormone in patients on hemodialysis. J Am Soc Nephrol 1998 Aug; 9(8): 1427–32
Lindberg J, Martin KJ, Gonzalez EA, et al. A long-term, multicenter study of the efficacy and safety of paricalcitol in end-stage renal disease. Clin Nephrol 2001 Oct; 56(4): 315–23
Coyne D, Acharya M, Qiu P, et al. Paricalcitol capsule for the treatment of secondary hyperparathyroidism in stages 3 and 4 CKD. Am J Kidney Dis 2006 Feb; 47(2): 263–76
Gonzalez EA, Sachdeva A, Oliver DA, et al. Vitamin D insufficiency and deficiency in chronic kidney disease: a single center observational study. Am J Nephrol 2004 Sep–Oct; 24(5): 503–10
Peterlik M, Cross HS. Vitamin D and calcium deficits predispose for multiple chronic diseases. Eur J Clin Invest 2005 May; 35(5): 290–304
LaClair RE, Hellman RN, Karp SL, et al. Prevalence of calcidiol deficiency in CKD: a cross-sectional study across latitudes in the United States. Am J Kidney Dis 2005 Jun; 45(6): 1026–33
Tan X, Li Y, Liu Y. Paricalcitol attenuates renal interstitial fibrosis in obstructive nephropathy. J Am Soc Nephrol 2006 Dec; 17(12): 3382–93
Mizobuchi M, Finch JL, Martin DR, et al. Differential effects of vitamin D receptor activators on vascular calcification in uremic rats. Kidney Int. Epub 2007 Jun 27
Li YC, Kong J, Wei M, et al. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest 2002 Jul; 110(2): 229–38
Qiao G, Kong J, Uskokovic M, et al. Analogs of 1alpha,25-dihydroxyvitamin D(3) as novel inhibitors of renin biosynthesis. J Steroid Biochem Mol Biol 2005 Jun; 96(1): 59–66
Fryer RM, Rakestraw PA, Nakane M, et al. Differential inhibition of renin mRNA expression by paricalcitol and calcitriol in C57/BL6 mice. Nephron Physiol 2007; 106(4): 76–81
Balint E, Marshall CF, Sprague SM. Effect of the vitamin D analogues paricalcitol and calcitriol on bone mineral in vitro. Am J Kidney Dis 2000 Oct; 36(4): 789–96
Jokihaara J, Porsti I, Pajamaki I, et al. Paricalcitol [19-nor-1,25-(OH)2D2] in the treatment of experimental renal bone disease. J Bone Miner Res 2006 May; 21(5): 745–51
Mittman N, Khanna R, Chattopadhyay J, et al. Paricalcitol therapy for secondary hyperparathyroidism in patients on maintenance hemodialysis previously treated with calcitriol: a single-center crossover study. Kidney Int 2006; 70: S64–7
Desiraju B, Mittman N, Meyer K, et al. Treatment of secondary hyperparathyroidism (SHPT) with paricalcitol (P) versus calcitriol (C): a two year, single center crossover comparison [abstract no. SA-PO1009]. American Society of Nephrology (ASN) 39th Renal Week Meeting; 2006 Nov 14–19; San Diego (CA)
Vervloet MG, Grooteman MP, Ter Wee PM. Improved parathyroid hormone levels after conversion from intravenous alfa-calcidol to intravenous paricalcitol [abstract no. PUB343]. American Society of Nephrology (ASN) 39th Renal Week Meeting; 2006 Nov 14–19; San Diego (CA)
Llach F, Yudd M. Paricalcitol in dialysis patients with calcitriol-resistant secondary hyperparathyroidism. Am J Kidney Dis 2001 Nov; 38 (5 Suppl. 5): S45–50
Hammerland LG, Garrett JE, Hung BC, et al. Allosteric activation of the Ca2+ receptor expressed in Xenopus laevis oocytes by NPS 467 or NPS 568. Mol Pharmacol 1998; 53: 1083–8
Block GA, Martin KJ, de Francisco ALM, et al. Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N Engl J Med 2004; 350: 1516–25
Lindberg JS, Culleton B, Wong G, et al. Cinacalcet HCl, an oral calcimimetic agent for the treatment of secondary hyperparathyroidism in hemodialysis and peritoneal dialysis: a randomized, double-blind, multicenter study. J Am Soc Nephrol 2005; 16: 800–7
Moe SM, Chertow GM, Coburn JW, et al. Achieving NKF-K/DOQI™ bone metabolism and disease treatment goals with cinacalcet HCl. Kidney Int 2005; 67: 760–71
Moe SM, Cunninghham J, Bommer J, et al. Long-term treatment of secondary hyperparathyroidism with the calcimimetic cinacalcet HCl. Nephrol Dial Transplant 2005; 20: 2186–93
Indridason OS, Quarles LD, for the Durham Renal Osteodystrophy Study Group. Comparison of treatments for mild secondary hyperparathyroidism in hemodialysis patients. Kidney Int 2000; 57: 282–92
US FDA. Rocaltrol (calcitriol) oral solution and capsules [online]. Available from URL: http://www.fda.gov/cder/foi/nda/98/021068.htm [Accessed 2007 May 4]
Baker LRI, Abrams SML, Roe CJ, et al. 1,25(OH)2D3 administration in moderate renal failure: a prospective double-blind trial. Kidney Int 1989; 35: 661–9
Acharya M, Andress D, Lunde N, et al. Safety experience of paricalcitol (Zemplar®) capsule in phase 3 trials in CKD stages 3 and 4 patients with secondary hyperparathyroidism (SHPT) [abstract no. SU-PO935]. 37th Annual Meeting & Scientific Exposition of the American Society of Nephrology; 2004 Oct 27–Nov 1; St Louis (MO)
Abboud H, Coyne D, Smolenski O, et al. A comparison of dosing regimens of paricalcitol capsule for the treatment of secondary hyperparathyroidism in CKD stages 3 and 4. Am J Nephrol 2006; 26(1): 105–14
Charytan C, Coburn JW, Chonchol M, et al. Cinacalcet hydrochloride is an effective treatment for secondary hyperparathyroidism in patients with CKD not receiving dialysis. Am J Kidney Dis 2005; 46: 58–67
Hough TA, Bogani D, Cheeseman MT, et al. Activating calcium-sensing receptor mutation in the mouse is associated with cataracts and ectopic calcification. Proc Natl Acad Sci 2004; 101: 13566–71
Alvarez-Hernandez D, Santamaria I, Rodriguez-Garcia M, et al. A novel mutation in the calcium-sensing receptor responsible for autosomal dominant hypocalcemia in a family with two uncommon parathyroid hormone polymorphisms. J Mol Endocrinol 2003;31: 255–62
Messa P, Villa G, Braun J, et al. The OPTIMA study: lower doses of cinacalcet (Mimpara®/Sensipar®) are required to achieve KDOQI™ secondary hyperparathyroidism (HPT) targets in dialysis patients with less severe disease [abstract no. MP324]. XLIII European Renal Association-European Dialysis and Transplant Association (ERA-EDTA) Congress; 2006 Jul 15–18; Glasgow
Mitsopoulos E, Zanos S, Ginikopoulou E, et al. Initial dosing of paricalcitol based on PTH levels in hemodialysis patients with secondary hyperparathyroidism. Am J Kidney Dis 2006 Jul; 48(1): 114–21
Ross EA, Kant KS, Melnick JZ, et al. Comparison of two dosing regimens of oral paricalcitol for secondary hyperparathyroidism (SHPT) in peritoneal dialysis (PD) patients [abstract no. TH-PO722]. American Society of Nephrology (ASN) 39th Renal Week Meeting; 2006 Nov 14–19; San Diego (CA)
Dobrez DG, Mathes A, Amdahl M, et al. Paricalcitol-treated patients experience improved hospitalization outcomes compared with calcitriol-treated patients in real-world clinical settings. Nephrol Dial Transplant 2004 May; 19(5): 1174–81
Cunningham J, Danese M, Olson K, et al. Effects of the calcimimetic cinacalcet HCl on cardiovascular disease, fracture, and health-related quality of life in secondary hyperparathyroidism. Kidney Int 2005; 68: 1793–800
Young EW, Albert JM, Akiba T, et al. Vitamin D therapy and mortality in the Dialysis Outcomes and Practice Patterns Study (DOPPS) [abstract no. TH-PO735]. J Am Soc Nephrol 2005; 16: 278A
Teng M, Wolf M, Lowrie E, et al. Survival of patients undergoing hemodialysis with paricalcitol or calcitriol therapy. N Engl J Med 2003 Jul 31; 349(5): 446–56
Kalantar-Zadeh K, Kuwae N, Regidor DL, et al. Survival predictability of time-varying indicators of bone disease in maintenance hemodialysis patients. Kidney Int 2006; 70: 771–80
Andress D. Nonclassical aspects of differential vitamin D receptor activation: implications for survival in patients with chronic kidney disease. Drugs 2007; 67(14): 1999–2012
Acknowledgements
The authors wish to express their gratitude to Dr A. Ferreira, MD, PhD, (Hospital Curry Cabral, Lisbon, Portugal), for his valuable knowledge and understanding of bone mineral disorder, and Amy J. Yellen-Shaw, PhD, for her editorial assistance. The funding for the editorial assistance was provided by Abbott. Dr Brancaccio has received honoraria for scientific presentations from Abbott, Amgen and Shire Pharmaceuticals. Dr Bommer has received honoraria for lectures from Amgen and Abbott. Dr Coyne has received honoraria for consultancies from Abbott, INEOS and Amgen, and grants from Abbott and Amgen.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Brancaccio, D., Bommer, J. & Coyne, D. Vitamin D Receptor Activator Selectivity in the Treatment of Secondary Hyperparathyroidism. Drugs 67, 1981–1998 (2007). https://doi.org/10.2165/00003495-200767140-00002
Published:
Issue Date:
DOI: https://doi.org/10.2165/00003495-200767140-00002