Skip to main content
Log in

Drospirenone for Oral Contraception and Hormone Replacement Therapy

Are its Cardiovascular Risks and Benefits the Same as Other Progestogens?

  • Current Opinion
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The use of combined estrogen/progesterone has been shown to result in an increased cardiovascular risk in randomised double-blinded trials. However, these studies used oral progestogen (progestin) preparations, which lack anti-mineralocorticoid activity and have suboptimal anti-androgenic activity compared with progesterone. Drospirenone is a unique progestogen that has clinically been shown to have anti-mineralocorticoid/anti-androgenic effects. Drospirenone in combination with estrogen is currently being used for oral contraception and hormone replacement therapy, and has been shown to have favourable effects on a number of cardiovascular risk factors. Our review of the literature suggests that because of its anti-mineralocorticoid effects, drospirenone in conjunction with estrogen may prevent the development of cardiovascular disease in both pre- and post-menopausal women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Fig. 1

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Belchetz PE. Hormonal treatment of postmenopausal women. N Engl J Med 1994; 330: 1062–71

    Article  PubMed  CAS  Google Scholar 

  2. Hersh AL, Stefanick ML, Stafford RS. National use of postmenopausal hormone therapy: annual trends and response to recent evidence. JAMA 2004; 291: 47–53

    Article  PubMed  CAS  Google Scholar 

  3. Mosca L, Collins P, Herrington DM, et al. Hormone replacement therapy and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation 2001; 104: 499–503

    Article  PubMed  CAS  Google Scholar 

  4. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 1999; 341: 709–17

    Article  PubMed  CAS  Google Scholar 

  5. Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 2003; 348: 1309–21

    Article  PubMed  CAS  Google Scholar 

  6. Conn JW, Knopf RF, Nesbit RM. Clinical characteristics of primary aldosteronism from an analysis of 145 cases. Am J Surg 1964; 107: 159–72

    Article  PubMed  CAS  Google Scholar 

  7. Okubo S, Niimura F, Nishimura H, et al. Angiotensin-independent mechanism for aldosterone synthesis during chronic extracellular fluid volume depletion. J Clin Invest 1997; 99: 855–60

    Article  PubMed  CAS  Google Scholar 

  8. Struthers AD, MacDonald TM. Review of aldosterone- and angiotensin II-induced target organ damage and prevention. Cardiovasc Res 2004; 61: 663–70

    Article  PubMed  CAS  Google Scholar 

  9. Harada E, Yoshimura M, Yasue H, et al. Aldosterone induces angiotensin-converting-enzyme gene expression in cultured neonatal rat cardiocytes. Circulation 2001; 104: 137–9

    Article  PubMed  CAS  Google Scholar 

  10. Park JB, Schiffrin EL. ET(A) receptor antagonist prevents blood pressure elevation and vascular remodeling in aldosterone-infused rats. Hypertension 2001; 37: 1444–9

    Article  PubMed  CAS  Google Scholar 

  11. Barr CS, Lang CC, Hanson J, et al. Effects of adding spironolactone to an angiotensin-converting enzyme inhibitor in chronic congestive heart failure secondary to coronary artery disease. Am J Cardiol 1995; 76: 1259–65

    Article  PubMed  CAS  Google Scholar 

  12. Rocha R, Chander PN, Khanna K, et al. Mineralocorticoid blockade reduces vascular injury in stroke-prone hypertensive rats. Hypertension 1998; 31: 451–8

    Article  PubMed  CAS  Google Scholar 

  13. Rocha R, Chander PN, Zuckerman A, et al. Role of aldosterone in renal vascular injury in stroke-prone hypertensive rats. Hypertension 1999; 33: 232–7

    Article  PubMed  CAS  Google Scholar 

  14. Luft FC. Workshop: mechanisms and cardiovascular damage in hypertension. Hypertension 2001; 37: 594–8

    Article  PubMed  CAS  Google Scholar 

  15. Rajagopalan S, Duquaine D, King S, et al. Mineralocorticoid receptor antagonism in experimental atherosclerosis. Circulation 2002; 105: 2212–6

    Article  PubMed  CAS  Google Scholar 

  16. Staessen J, Lijnen P, Fagard R, et al. Rise in plasma concentration of aldosterone during long-term angiotensin II suppression. J Endocrinol 1981; 91: 457–65

    Article  PubMed  CAS  Google Scholar 

  17. Borghi C, Boschi S, Ambrosioni E, et al. Evidence of a partial escape of renin-angiotensin-aldosterone blockade in patients with acute myocardial infarction treated with ACE inhibitors. J Clin Pharmacol 1993; 33: 40–5

    PubMed  CAS  Google Scholar 

  18. Tang WH, Vagelos RH, Yee YG, et al. Neurohormonal and clinical responses to high-versus low-dose enalapril therapy in chronic heart failure. J Am Coll Cardiol 2002; 39: 70–8

    Article  PubMed  CAS  Google Scholar 

  19. McKelvie RS, Yusuf S, Pericak D, et al. Comparison of candesartan, enalapril, and their combination in congestive heart failure: randomized evaluation of strategies for left ventricular dysfunction (RESOLVD) pilot study. The RESOLVD Pilot Study Investigators. Circulation 1999; 100: 1056–64

    Article  PubMed  CAS  Google Scholar 

  20. Silvestre JS, Robert V, Heymes C, et al. Myocardial production of aldosterone and corticosterone in the rat: physiological regulation. J Biol Chem 1998; 273: 4883–91

    Article  PubMed  CAS  Google Scholar 

  21. Gomez-Sanchez CE, Zhou MY, Cozza EN, et al. Aldosterone biosynthesis in the rat brain. Endocrinology 1997; 138: 3369–73

    Article  PubMed  CAS  Google Scholar 

  22. Takeda Y, Miyamori I, Inaba S, et al. Vascular aldosterone in genetically hypertensive rats. Hypertension 1997; 29: 45–8

    Article  PubMed  CAS  Google Scholar 

  23. Rossi GP, Andreis PG, Neri G, et al. Endothelin-1 stimulates aldosterone synthesis in Conn’s adenomas via both A and B receptors coupled with the protein kinase C- and cyclooxygenase-dependent signaling pathways. J Investig Med 2000; 48: 343–50

    PubMed  CAS  Google Scholar 

  24. Urata H, Nishimura H, Ganten D, et al. Angiotensin-converting enzyme-independent pathways of angiotensin II formation in human tissues and cardiovascular diseases. Blood Press Suppl 1996; 2: 22–8

    PubMed  CAS  Google Scholar 

  25. Pitt B, Reichek N, Willenbrock R, et al. Effects of eplerenone, enalapril, and eplerenone/enalapril in patients with essential hypertension and left ventricular hypertrophy: the 4E-left ventricular hypertrophy study. Circulation 2003; 108: 1831–8

    Article  PubMed  CAS  Google Scholar 

  26. Preston RA, White WB, Pitt B, et al. Effects of drospirenone/17-beta estradiol on blood pressure and potassium balance in hypertensive postmenopausal women. Am J Hypertens 2005; 18: 797–804

    Article  PubMed  CAS  Google Scholar 

  27. White WB, Pitt B, Preston RA, et al. Antihypertensive effects of drospirenone with 17beta-estradiol, a novel hormone treatment in postmenopausal women with stage 1 hypertension. Circulation 2005; 112: 1979–84

    Article  PubMed  CAS  Google Scholar 

  28. White WB, Hanes V, Chauhan V, et al. Effects of a new hormone therapy, drospirenone and 17-beta-estradiol, in postmenopausal women with hypertension. Hypertension 2006; 48: 246–53

    Article  PubMed  CAS  Google Scholar 

  29. Lim PO, Farquharson CA, Shiels P, et al. Adverse cardiac effects of salt with fludrocortisone in hypertension. Hypertension 2001; 37: 856–61

    Article  PubMed  CAS  Google Scholar 

  30. Korkmaz ME, Muderrisoglu H, Ulucam M, et al. Effects of spironolactone on heart rate variability and left ventricular systolic function in severe ischemic heart failure. Am J Cardiol 2000; 86: 649–53

    Article  PubMed  CAS  Google Scholar 

  31. Ramires FJ, Mansur A, Coelho O, et al. Effect of spironolactone on ventricular arrhythmias in congestive heart failure secondary to idiopathic dilated or to ischemic cardiomyopathy. Am J Cardiol 2000; 85: 1207–11

    Article  PubMed  CAS  Google Scholar 

  32. Yee KM, Pringle SD, Struthers AD. Circadian variation in the effects of aldosterone blockade on heart rate variability and QT dispersion in congestive heart failure. J Am Coll Cardiol 2001; 37: 1800–7

    Article  PubMed  CAS  Google Scholar 

  33. Kasama S, Toyama T, Kumakura H, et al. Spironolactone improves cardiac sympathetic nerve activity and symptoms in patients with congestive heart failure. J Nucl Med 2002; 43: 1279–85

    PubMed  CAS  Google Scholar 

  34. Chowdhary S, Vaile JC, Fletcher J, et al. Nitric oxide and cardiac autonomie control in humans. Hypertension 2000; 36: 264–9

    Article  PubMed  CAS  Google Scholar 

  35. Farquharson CA, Struthers AD. Spironolactone increases nitric oxide bioactivity, improves endothelial vasodilator dysfunction, and suppresses vascular angiotensin I/angiotensin II conversion in patients with chronic heart failure. Circulation 2000; 101: 594–7

    Article  PubMed  CAS  Google Scholar 

  36. Ahokas RA, Warrington KJ, Gerling IC, et al. Aldosteronism and peripheral blood mononuclear cell activation: a neuroendocrine-immune interface. Circ Res 2003; 93: e124–35

    Article  PubMed  CAS  Google Scholar 

  37. Flack JM, Oparil S, Pratt JH, et al. Efficacy and tolerability of eplerenone and losartan in hypertensive black and white patients. J Am Coll Cardiol 2003; 41: 1148–55

    Article  PubMed  CAS  Google Scholar 

  38. White WB, Duprez D, St Hillaire R, et al. Effects of the selective aldosterone blocker eplerenone versus the calcium antagonist amlodipine in systolic hypertension. Hypertension 2003; 41: 1021–6

    Article  PubMed  CAS  Google Scholar 

  39. Elstein M, Furniss HA. Advances in oral hormonal contraception. Zentralbl Gynakol 1995; 117: 559–65

    PubMed  CAS  Google Scholar 

  40. Parsey KS, Pong A. An open-label, multicenter study to evaluate Yasmin, a low-dose combination oral contraceptive containing drospirenone, a new progestogen. Contraception 2000; 61: 105–11

    Article  PubMed  CAS  Google Scholar 

  41. Fotherby K, Caldwell AD. New progestogens in oral contraception. Contraception 1994; 49: 1–32

    Article  PubMed  CAS  Google Scholar 

  42. Darney PD. The androgenicity of progestins. Am J Med 1995; 98: 104-S

    Article  Google Scholar 

  43. Fuhrmann U, Krattenmacher R, Slater EP, et al. The novel progestin drospirenone and its natural counterpart progesterone: biochemical profile and antiandrogenic potential. Contraception 1996; 54: 243–51

    Article  PubMed  CAS  Google Scholar 

  44. Laurent H, Bittier D, Hofmeister H, et al. Synthesis and activities of anti-aldosterones. J Steroid Biochem 1983; 19: 771–6

    Article  PubMed  CAS  Google Scholar 

  45. Oelkers W, Foidart JM, Dombrovicz N, et al. Effects of a new oral contraceptive containing an antimineralocorticoid progestogen, drospirenone, on the renin-aldosterone system, body weight, blood pressure, glucose tolerance, and lipid metabolism. J Clin Endocrinol Metab 1995; 80: 1816–21

    Article  PubMed  CAS  Google Scholar 

  46. Muhn P, Krattenmacher R, Beier S, et al. Drospirenone: a novel progestogen with antimineralocorticoid and antiandrogenic activity. Pharmacological characterization in animal models. Contraception 1995; 51: 99–110

    Article  PubMed  CAS  Google Scholar 

  47. Muhn P, Fuhrmann U, Fritzemeier KH, et al. Drospirenone: a novel progestogen with antimineralocorticoid and antiandrogenic activity. Ann N Y Acad Sci 1995; 761: 311–35

    Article  PubMed  CAS  Google Scholar 

  48. Oelkers W, Berger V, Bolik A, et al. Dihydrospirorenone, a new progestogen with antimineralocorticoid activity: effects on ovulation, electrolyte excretion, and the renin-aldosterone system in normal women. J Clin Endocrinol Metab 1991; 73: 837–42

    Article  PubMed  CAS  Google Scholar 

  49. Berger V, Beier S, Elger W, et al. Influence of different progestogens on blood pressure of non-anaesthetized male spontaneously hypertensive rats. Contraception 1992; 46: 83–97

    Article  PubMed  CAS  Google Scholar 

  50. Stamler J, Stamler R, Neaton JD. Blood pressure, systolic and diastolic, and cardiovascular risks: US population data. Arch Intern Med 1993; 153: 598–615

    Article  PubMed  CAS  Google Scholar 

  51. Wassertheil-Smoller S, Anderson G, Psaty BM, et al. Hypertension and its treatment in postmenopausal women: baseline data from the Women’s Health Initiative. Hypertension 2000; 36: 780–9

    Article  PubMed  CAS  Google Scholar 

  52. Manson JE, Hsia J, Johnson KC, et al. Estrogen plus progestin and the risk of coronary heart disease. N Engl J Med 2003; 349: 523–34

    Article  PubMed  CAS  Google Scholar 

  53. Vasan RS, Larson MG, Leip EP, et al. Impact of high-normal blood pressure on the risk of cardiovascular disease. N Engl J Med 2001; 345: 1291–7

    Article  PubMed  CAS  Google Scholar 

  54. Julius S, Nesbitt SD, Egan BM, et al. Feasibility of treating prehypertension with an angiotensin-receptor blocker. N Engl J Med 2006; 354: 1685–97

    Article  PubMed  CAS  Google Scholar 

  55. Cushman WC, Ford CE, Cutler JA, et al. Success and predictors of blood pressure control in diverse North American settings: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). J Clin Hypertens (Greenwich) 2002; 4: 393–404

    Article  Google Scholar 

  56. Lloyd-Jones DM, Evans JC, Larson MG, et al. Treatment and control of hypertension in the community: a prospective analysis. Hypertension 2002; 40: 640–6

    Article  PubMed  CAS  Google Scholar 

  57. White WB, Prisant LM, Wright JT Jr, et al. Management of patients with hypertension and diabetes mellitus: advances in the evidence for intensive treatment. Am J Med 2000; 108: 238–45

    Article  PubMed  CAS  Google Scholar 

  58. Nishizaka MK, Zaman MA, Calhoun DA. Efficacy of low-dose spironolactone in subjects with resistant hypertension. Am J Hypertens 2003; 16: 925–30

    Article  PubMed  CAS  Google Scholar 

  59. Preston RA, Alonso A, Panzitta D, et al. Additive effect of drospirenone/17-beta-estradiol in hypertensive postmenopausal women receiving enalapril. Am J Hypertens 2002; 15: 816–22

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. Dr Pitt has acted as a consultant for Berlex, Pfizer, Novartis and Alteon. Dr Motivala has no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertram Pitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motivala, A., Pitt, B. Drospirenone for Oral Contraception and Hormone Replacement Therapy. Drugs 67, 647–655 (2007). https://doi.org/10.2165/00003495-200767050-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200767050-00001

Keywords

Navigation