Skip to main content
Log in

Novel Therapies for the Treatment of Small-Cell Lung Cancer

A Time for Cautious Optimism?

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Small-cell lung cancer accounts for up to one-fifth of all lung cancers diagnosed. While the response rates to chemotherapy are high, ultimately the majority of patients will relapse and die from their disease. Long-term outcomes are poor. A number of new agents and novel strategies for the treatment of small-cell lung cancer are under evaluation, and this review outlines the current most promising agents and pivotal trials.

Oblimersen, an antisense oligonuclide to the oncogene bcl-2, has been safely combined with chemotherapy. The proteosome inhibitor bortezomib has not demonstrated single-agent activity in phase II trials but is now being evaluated with proapoptotic triggers. A number of anti-angiogenic strategies have been evaluated in small-cell lung cancer. The vascular endothelial growth factor (VEGF) antibody bevacizumab and a number of VEGF receptor tyrosine kinase inhibitors are in the early phases of clinical trials. Results from trials have not demonstrated any survival advantage with the addition of matrix metalloproteinase inhibitors. A phase III trial has reported improvements in median survival with the addition of thalidomide to chemotherapy, but toxicity has been problematic. Immunotherapy with p53 vaccines and BEC2 antibodies have shown some promise and require further evaluation to determine whether humoral responses can predict for response. Trials with the immunoconjugate BB-10901 and temirolimus are ongoing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I

Similar content being viewed by others

References

  1. Sundstrom S, Bremnes RM, Kaasa S, et al. Norwegian Lung Cancer Study Group. Cisplatin and etoposide regimen is superior to cyclophosphamide, epirubicin, and vincristine regimen in small-cell lung cancer: results from a randomized phase III trial with 5 years’ follow-up. J Clin Oncol 2002; 20(24): 4665–72

    Article  PubMed  CAS  Google Scholar 

  2. Thatcher N, Qian W, Clark PI, et al. Ifosfamide, carboplatin, and etoposide with midcycle vincristine versus standard chemotherapy in patients with small-cell lung cancer and good performance status: clinical and quality-of-life results of the British Medical Research Council multicenter randomized LU21 trial. J Clin Oncol 2005; 23(33): 8371–9

    Article  PubMed  CAS  Google Scholar 

  3. Pujol JL, Daures JP, Riviere A, et al. Etoposide plus cisplatin with or without the combination of 4′-epidoxorubicin plus cyclophosphamide in treatment of extensive small-cell lung cancer: a French Federation of Cancer Institutes multicenter phase III randomized study. Natl Cancer Inst 2001; 93(4): 300–8

    Article  CAS  Google Scholar 

  4. Chute JP, Chen T, Feigal E, et al. Twenty years of phase III trials for patients with extensive-stage small-cell lung cancer: perceptible progress. J Clin Oncol 1999; 17: 1794–801

    PubMed  CAS  Google Scholar 

  5. Lorigan P, Woll PJ, O’Brien ME, et al. Randomized phase III trial of dose-dense chemotherapy supported by whole-blood hematopoietic progenitors in better-prognosis small-cell lung cancer. J Natl Cancer Inst 2005; 97(9): 666–74

    Article  PubMed  CAS  Google Scholar 

  6. Tjan-Heijnen VC, Wagener DJ, Postmus PE. An analysis of chemotherapy dose and dose-intensity in small-cell lung cancer: lessons to be drawn. Ann Oncol 2002; 13(10): 1519–30

    Article  PubMed  CAS  Google Scholar 

  7. Woll PJ, Thatcher N, Lomax L, et al. Use of hematopoietic progenitors in whole blood to support dose-dense chemotherapy: a randomized phase II trial in small-cell lung cancer patients. J Clin Oncol 2001; 19(3): 712–9

    PubMed  CAS  Google Scholar 

  8. Thatcher N, Girling DJ, Hopwood P, et al. Improving survival without reducing quality of life in small-cell lung cancer patients by increasing the dose-intensity of chemotherapy with granulocyte colony-stimulating factor support: results of a British Medical Research Council Multicenter Randomized Trial. Medical Research Council Lung Cancer Working Party. J Clin Oncol 2000; 18(2): 395–404

    PubMed  CAS  Google Scholar 

  9. Steward WP, von Pawel J, Gatzemeier U, et al. Effects of granulocyte-macrophage colony-stimulating factor and dose intensification of V-ICE chemotherapy in small-cell lung cancer: a prospective randomized study of 300 patients. J Clin Oncol 1998; 16(2): 642–50

    PubMed  CAS  Google Scholar 

  10. Ardizzoni A, Favaretto A, Boni L, et al. Platinum-etoposide chemotherapy in elderly patients with small-cell lung cancer: results of a randomized multicenter phase II study assessing attenuated-dose or full-dose with lenograstim prophylaxis. A Forza Operativa Nazionale Italiana Carcinoma Polmonare and Gruppo Studio Tumori Polmonari Veneto (FONICAP-GSTPV) study. J Clin Oncol 2005; 23(3): 569–75

    Article  PubMed  CAS  Google Scholar 

  11. Fried DB, Morris DE, Poole C, et al. Systematic review evaluating the timing of thoracic radiation therapy in combined modality therapy for limited-stage small-cell lung cancer. J Clin Oncol 2004; 22(23): 4837–45

    Article  PubMed  Google Scholar 

  12. Pijls-Johannesma MC, De Ruysscher D, Lambin P, et al. Early versus late chest radiotherapy for limited stage small cell lung cancer. Cochrane Database Syst Rev. 2005 Jan 25; (1): CD004700

  13. De Ruysscher D, Pijls-Johannesma M, Vansteenkiste J, et al. Systematic review and meta-analysis of randomised, controlled trials of the timing of chest radiotherapy in patients with limited-stage, small-cell lung cancer. Ann Oncol 2006; 17(4): 543–52

    Article  PubMed  Google Scholar 

  14. Turrisi AT 3rd, Kim K, Blum R, et al. Twice-daily compared with once-daily thoracic radiotherapy in limited small-cell lung cancer treated concurrently with cisplatin and etoposide. N Engl J Med 1999; 340(4): 265–71

    Article  PubMed  CAS  Google Scholar 

  15. Noda K, Nishiwaki Y, Kawahara M, et al. Irinotecan plus cisplatin compared with etoposide plus cisplatin for extensive small-cell lung cancer. N Engl J Med 2002; 346(2): 85–91

    Article  PubMed  CAS  Google Scholar 

  16. Hanna N, Bunn PA, Langer C, et al. Randomized phase III trial comparing irinotecan/cisplatin with etoposide/cisplatin in patients with previously untreated extensive-stage disease small-cell lung cancer. J Clin Oncol 2006; 24(13): 2038–43

    Article  PubMed  CAS  Google Scholar 

  17. Campos L, Rouault JP, Sabido O, et al. High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood 1993; 81: 3091–6

    PubMed  CAS  Google Scholar 

  18. Miyashita T, Reed JC. Bcl-2 gene transfer increases relative resistance of S49.1 and WEHI7.2 lymphoid cells to cell death and DNA fragmentation induced by glucocorticoids and multiple chemotherapeutic drugs. Cancer Res 1992; 52: 5407–11

    PubMed  CAS  Google Scholar 

  19. Dole M, Nunez G, Merchant AK, et al. Bcl-2 inhibits chemotherapy-induced apoptosis in neuroblastoma. Cancer Res 1994; 54: 3253–9

    PubMed  CAS  Google Scholar 

  20. Yan JJ, Chen FF, Tsai YC. Immunohistochemical detection of Bcl-2 protein in small cell carcinomas. Oncology 1996; 53(1): 6–11

    Article  PubMed  CAS  Google Scholar 

  21. Sartorius UA, Krammer PH. Upregulation of Bcl-2 is involved in the mediation of chemotherapy resistance in human small cell lung cancer cell lines. Int J Cancer 2002; 97(5): 584–92

    Article  PubMed  CAS  Google Scholar 

  22. Zangemeister-Wittke U, Schenker T, Luedke GH, et al. Synergistic cytotoxicity of bcl-2 antisense oligodeoxynucleotides and etoposide, doxorubicin and cisplatin on small-cell lung cancer cell lines. Br J Cancer 1998; 78(8): 1035–42

    Article  PubMed  CAS  Google Scholar 

  23. Rudin CM, Kozloff M, Hoffman PC, et al. Phase I study of G3139, a bcl-2 antisense oligonucleotide, combined with carboplatin and etoposide in patients with small-cell lung cancer. J Clin Oncol 2004; 22(6): 1110–7

    Article  PubMed  CAS  Google Scholar 

  24. Rudin CM, Salgia R, Wang XF, et al. A randomized phase II study of carboplatin and etoposide (CE) with or without G3139 in patients with extensive stage small cell lung cancer (ESSCLC) [abstract no. 7168] Proc Am Soc Clin Oncol 2005: 662s

  25. Rudin CM, Otterson GA, Mauer AM, et al. A pilot trial of G3139, a bcl-2 antisense oligonucleotide, and paclitaxel in patients with chemorefractory small-cell lung cancer. Ann Oncol 2002; 13(4): 539–45

    Article  PubMed  CAS  Google Scholar 

  26. Oltersdorf T, Elmore SW, Shoemaker AR, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005; 435(7042): 677–81

    Article  PubMed  CAS  Google Scholar 

  27. Rudin C, Wang A, Hann C. Small molecule inhibition of Bcl-2 as therapy for small cell lung cancer [abstract]. Lung Cancer 2005; 49(2): 790

    Google Scholar 

  28. Scagliotti G. Proteasome inhibitors in lung cancer. Crit Rev Oncol Hematol 2006 Jan 18, [Epub ahead of print]

  29. Adams J. The proteasome: a suitable antineoplastic target. Nat Rev Cancer 2004; 4: 349–60

    Article  PubMed  CAS  Google Scholar 

  30. Catz SD, Johnson JL. Transcriptional regulation of BCL-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene 2001; 20: 7342–51

    Article  PubMed  CAS  Google Scholar 

  31. Heckman CA, Mehew JW, Boxer LM. NF-kappaB activates BCL-2 expression in t(14;18) lymphoma cells. Oncogene 2002; 21: 3898–908

    Article  PubMed  CAS  Google Scholar 

  32. Blackhall FH, Pintilie M, Michael M, et al. Expression and prognostic significance of kit, protein kinase B, and mitogen-activated protein kinase in patients with small cell lung cancer. Clin Cancer Res 2003; 9(6): 2241–7

    PubMed  CAS  Google Scholar 

  33. Kraus AC, Ferber I, Bachmann SO, et al. In vitro chemo- and radio-resistance in small cell lung cancer correlates with cell adhesion and constitutive activation of AKT and MAP kinase pathways. Oncogene 2002; 21: 8683–95

    Article  PubMed  CAS  Google Scholar 

  34. Richardson G, Sonneveld P, Schuster MW, et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 2005; 352: 2487–98

    Article  PubMed  CAS  Google Scholar 

  35. Mortenson MM, Schlieman MG, Virudachalam S, et al. Reduction in BCL-2 levels by 26S proteasome inhibition with bortezomib is associated with induction of apoptosis in small cell lung cancer. Lung Cancer 2005; 49(2): 163–70

    Article  PubMed  Google Scholar 

  36. Johl J, Chansky C, Lara Jr. PN, et al. The proteasome inhibitor bortezomib in platinum-treated extensive-stage small cell lung cancer (E-SCLC): a phase II Southwest Oncology Group trial (S0327) 2005. Poster presented at the 2005 annual meeting of the American Society of Clinical Oncology; 2005 May 13–17; Orlando (FL)

  37. Tomita M, Wright J, Kellogg R, et al. Phase I study of topotecan and bortezomib (Vc) with pharmacokinetic and pharmocodynamic correlates [abstract]. Lung Cancer 2005; 49(2): 798

    Google Scholar 

  38. Bang JH, Han ES, Lim I, et al. Differential response of MG132 cytotoxicity against small cell lung cancer cells to changes in cellular GSH contents. Biochem Pharmacol 2004; 68: 659–66

    Article  PubMed  CAS  Google Scholar 

  39. Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 2005; 23(5): 1011–27

    Article  PubMed  CAS  Google Scholar 

  40. Presta LG, Chen H, O’Connor SJ, et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 1997; 57(20): 4593–9

    PubMed  CAS  Google Scholar 

  41. Sandler AB, Gray R, Brahmer J, et al. Randomized phase II/III trial of paclitaxel (P) plus carboplatin (C) with or without bevacizumab (NSC # 704865) in patients with advanced non-squamous non-small cell lung cancer (NSCLC): an Eastern Cooperative Oncology Group (ECOG) trial — E4599 [abstract no. LBA4]. Proceedings of the 41st Annual Meeting of the American Society of Clinical Oncology; 2005 May 13–17; Orlando (FL). J Clin Oncol 2005; 23 (16S Suppl. 1): 2s

    Google Scholar 

  42. Raefsky EL, Spigel DR, Greco FA, et al. Irinotecan (I), carboplatin (C), and radiotherapy (RT) followed by bevacizumab (B) in the treatment of limited-stage small cell lung cancer (SCLC): a phase II trial of the Minnie Pearl Cancer Research Network [abstract no. 7050]. Proceedings of the 41st Annual Meeting of the American Society of Clinical Oncology; 2005 May 13–17; Orlando (FL). J Clin Oncol 2005; 23 (16S Suppl. 1): 633s

    Google Scholar 

  43. Arteaga CL, Khuri F, Krystal G, et al. Overview of rationale and clinical trials with signal transduction inhibitors in lung cancer. Semin Oncol 2002; 29 (1 Suppl. 4): 15–26

    Article  PubMed  CAS  Google Scholar 

  44. Micke P, Basrai M, Faldum A, et al. Characterization of c-kit expression in small cell lung cancer: prognostic and therapeutic implications. Clin Cancer Res 2003; 9(1): 188–94

    PubMed  CAS  Google Scholar 

  45. Boldrini L, Ursino S, Gisfredi S, et al. Expression and mutational status of c-kit in small-cell lung cancer: prognostic relevance. Clin Cancer Res. 2004; 10 (12 Pt 1): 4101–8

    Article  PubMed  CAS  Google Scholar 

  46. Fong TA, Shawver LK, Sun L, et al. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res 1999; 59: 99–106

    PubMed  CAS  Google Scholar 

  47. Litz J, Sakuntala Warshamana-Greene G, Sulanke G, et al. The multi-targeted kinase inhibitor SU5416 inhibits small cell lung cancer growth and angiogenesis, in part by blocking kit-mediated VEGF expression. Lung Cancer 2004; 46(3): 283–91

    Article  PubMed  Google Scholar 

  48. Rosen L, Mulay M, Mayers A, et al. Phase I dose-escalating trial of SU5416, a novel angiogenesis inhibitor in patients with advanced malignancies [abstract no. 618]. Proceedings of the 35th Annual Meeting of the American Society of Clinical Oncology; 1999 May 15–18; Atlanta (GA). J Clin Oncol 1999; 18: 161a

    Google Scholar 

  49. Mendel DB, Laird AD, Xin X, et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Cancer Res 2003; 9(1): 327–37

    CAS  Google Scholar 

  50. Abrams TJ, Lee LB, Murray LJ, et al. SU11248 inhibits KIT and platelet-derived growth factor receptor beta in preclinical models of human small cell lung cancer. Mol Cancer Ther 2003; 2: 471–8

    PubMed  CAS  Google Scholar 

  51. Faivre S, Delbaldo C, Vera K, et al. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol 2006; 24(1): 25–35

    Article  PubMed  CAS  Google Scholar 

  52. Socinski M, Sanchez J, Brahmer J, et al. Efficacy and safety of sunitinib in previously treated, advanced NSCLC: preliminary results of a multicentre phase II trial [abstract no. 7001]. Proceedings of the 42nd Annual Meeting of the American Society of Clinical Oncology; 2006 Jun 2–6; Atlanta (GA). J Clin Oncol 2006; 24 (18S Suppl. 1): 364s

    Article  CAS  Google Scholar 

  53. Kulke M, Lenz H, Meropol N, et al. A phase 2 study to evaluate the efficacy and safety of SU11248 in patients with unresectable neuroendocrine tumours [abstract no. 4008]. Proceedings of the 41st Annual Meeting of the American Society of Clinical Oncology; 2005 May 13–17; Orlando. J Clin Oncol 2005; 23 (16S Suppl. 1): 310s

    Google Scholar 

  54. Ryan AJ, Wedge SR. ZD6474: a novel inhibitor of VEGFR and EGFR tyrosine kinase activity. Br J Cancer 2005; 92 Suppl. 1: S6–13

    Article  PubMed  CAS  Google Scholar 

  55. Wedge SR, Ogilvie DJ, Dukes M, et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res 2002; 62(16): 4645–55

    PubMed  CAS  Google Scholar 

  56. Yano S, Muguruma H, Matsumori Y, et al. Antitumor vascular strategy for controlling experimental metastatic spread of human small-cell lung cancer cells with ZD6474 in natural killer cell-depleted severe combined immunodeficient mice. Clin Cancer Res 2005; 11 (24 Pt 1): 8789–98

    Article  PubMed  CAS  Google Scholar 

  57. Holden SN, Eckhardt SG, Basser R, et al. Clinical evaluation of ZD6474, an orally active inhibitor of VEGF and EGF receptor signaling, in patients with solid, malignant tumors. Ann Oncol 2005; 16(8): 1391

    Article  PubMed  CAS  Google Scholar 

  58. Natale R, Bodkin D, Gavindan R, et al. ZD6474 versus gefitinib in patients with advanced NSCLC [abstract no. 7000]. Proceedings of the 42nd annual Meeting of the American Society of Clinical Oncology; 2006 Jun 2–6; Atlanta. J Clin Oncol 2006; 24 (18S Suppl. 1): 364s

    Google Scholar 

  59. Heymach J, Johnson B, Prager D, et al. A phase II trial of ZD6474 plus docetaxel in patients with previously treated NSCLC [abstract no. 7016]. Proceedings of the 42nd annual Meeeting of the American Society of Clinical Oncology; 2006 Jun 2–6; Atlanta (GA). J Clin Oncol 2006; 24 (18S Suppl. 1): 368s

    Google Scholar 

  60. Wilhelm SM, Carter C, Tang L, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004; 64(19): 7099–109

    Article  PubMed  CAS  Google Scholar 

  61. Strumberg D, Richly H, Hilger RA, et al. Phase I clinical and pharmacokinetic study of the novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J Clin Oncol 2005; 23(5): 965–72

    Article  PubMed  CAS  Google Scholar 

  62. Escudier B, Szczylik C, Eisen T, et al. Randomized phase III trial of the Raf kinase and VEGFR inhibitor sorafenib (BAY 43-9006) in patients with advanced renal cell carcinoma (RCC) [abstract no. LBA4510]. Proceedings of the 41st Annual Meeting of the American Society of Clinical Oncology; 2005 May 13–17; Orlando (FL). J Clin Oncol 2005; 23 (16S Suppl. 1): 380s

    Google Scholar 

  63. Gatzemeier U, Blumenschein G, Fosella F, et al. Phase II trial of sorafenib in patients with advanced NSCLC. J Clin Oncol 2006; 24(18S): 7002

    Google Scholar 

  64. Wedge SR, Kendrew J, Hennequin LF, et al. AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res 2005; 65(10): 4389–400

    Article  PubMed  CAS  Google Scholar 

  65. Drevs J, Medinger M, Mross K, et al. Phase I clinical evaluation of AZD2171, a highly potent VEGF receptor tyrosine kinase inhibitor, in patients with advanced tumors [abstract no. 3002]. Proceedings of the 41st Annual Meeting of the American Society of Clinical Oncology; 2005 May 13–17; Orlando (FL). J Clin Oncol 2005; 23 (16S Suppl. 1): 192s

    Google Scholar 

  66. Rygaard K, Nakamura T, Spang-Thomsen M. Expression of the proto-oncogenes c-met and c-kit and their ligands, hepatocyte growth factor/scatter factor and stem cell factor, in SCLC cell lines and xenografts. Br J Cancer 1993; 67(1): 37–46

    Article  PubMed  CAS  Google Scholar 

  67. Heinrich MC, Corless CL, Demetri GD, et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 2003; 21(23): 4342–9

    Article  PubMed  CAS  Google Scholar 

  68. Boldrini L, Ursino S, Gisfredi S, et al. Expression and mutational status of c-kit in small-cell lung cancer: prognostic relevance. Clin Cancer Res 2004; 10 (12 Pt 1): 4101–8

    Article  PubMed  CAS  Google Scholar 

  69. Krystal GW, Honsawek S, Litz J, et al. The selective tyrosine kinase inhibitor STI571 inhibits small cell lung cancer growth. Clin Cancer Res 2000; 6(8): 3319–26

    PubMed  CAS  Google Scholar 

  70. Wang WL, Healy ME, Sattler M, et al. Growth inhibition and modulation of kinase pathways of small cell lung cancer cell lines by the novel tyrosine kinase inhibitor STI 571. Oncogene 2000; 19(31): 3521–8

    Article  PubMed  CAS  Google Scholar 

  71. Johnson BE, Fischer T, Fischer B, et al. Phase II study of imatinib in patients with small cell lung cancer. Clin Cancer Res 2003; 9 (16 Pt 1): 5880–7

    PubMed  CAS  Google Scholar 

  72. Krug LM, Crapanzano JP, Azzoli CG, et al. Imatinib mesylate lacks activity in small cell lung carcinoma expressing c-kit protein: a phase II clinical trial. Cancer 2005; 103(10): 2128–31

    Article  PubMed  CAS  Google Scholar 

  73. Dy GK, Miller AA, Mandrekar S, et al. A phase II NCCTG/CALGB trial of imatinib (STI571) in patients (pts) with c-kit-expressing relapsed small cell lung cancer (SCLC) [abstract no. 7048]. Proceedings of the 41st Annual Meeting of the American Society of Clinical Oncology; 2005 May 13–17; Orlando (FL). J Clin Oncol 2005; 23 (16S Suppl. 1): 632s

    Google Scholar 

  74. Hidalgo M, Eckhardt SG. Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst 2001; 93(3): 178–193

    Article  PubMed  CAS  Google Scholar 

  75. Gonzalez-Avila G, Iturria C, Vadillo F, et al. 72-kD (MMP-2) and 92-kD (MMP-9) type IV collagenase production and activity in different histologic types of lung cancer cells. Pathobiology 1998; 66(1): 5–16

    Article  PubMed  CAS  Google Scholar 

  76. Michael M, Babic B, Khokha R, et al. Expression and prognostic significance of metalloproteinases and their tissue inhibitors in patients with small-cell lung cancer. J Clin Oncol 1999; 17(6): 1802–8

    PubMed  CAS  Google Scholar 

  77. Brown PD, Giavazzi R. Matrix metalloproteinase inhibition: a review of anti-tumour activity. Ann Oncol 1995; 6(10): 967–74

    PubMed  CAS  Google Scholar 

  78. Shepherd FA, Giaccone G, Seymour L, et al. Prospective, randomized, double-blind, placebo-controlled trial of marimastat after response to first-line chemotherapy in patients with small-cell lung cancer: a trial of the National Cancer Institute of Canada-Clinical Trials Group and the European Organization for Research and Treatment of Cancer. J Clin Oncol 2002; 20(22): 4434–9

    Article  PubMed  CAS  Google Scholar 

  79. Erlichman C, Adjei AA, Alberts SR, et al. Phase I study of the matrix metalloproteinase inhibitor, BAY 12-9566. Ann Oncol 2001; 12(3): 389–95

    Article  PubMed  CAS  Google Scholar 

  80. Brezicka T, Bergman B, Olling S, et al. Reactivity of monoclonal antibodies with ganglioside antigens in human small cell lung cancer tissues. Lung Cancer 2000; 28: 29–36

    Article  PubMed  CAS  Google Scholar 

  81. D’Amato R, Loughnan M, Flynn E, et al. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 1994; 91: 4082–5

    Article  PubMed  Google Scholar 

  82. Lee S, James LE, Mohamed-Ali V, et al. A phase II study of carboplatin/etoposide with thalidomide in small cell lung cancer (SCLC) [abstract no. 1251]. Proceedings of the 38th Annual Meeting of the American Society of Clinical Oncology; May 18–21; Orlando (FL). J Clin Oncol 2002; 21: 313a

    Google Scholar 

  83. Cooney MM, Subbiah S, Chapman R, et al. Phase II trial of maintenance daily oral thalidomide in patients with extensive-stage small cell lung cancer (ES-SCLC) in remission [abstract no. 7166]. Proceedings of the 41st Annual Meeting of the American Society of Clinical Oncology; 2005 May 13–17; Orlando (FL). J Clin Oncol 2005; 23 (16S Suppl. 1): 661s

    Google Scholar 

  84. Pujol J, Breton J, Gervais R, et al. A prospective randomised phase III, double-blind, placebo-controlled study of thalidomide in extended-disease (ED) SCLC patients after response to chemotherapy (CT) [abstract]. Lung Cancer 2005; 49 Suppl. 2: O159

    Google Scholar 

  85. D’Amico D, Carbone D, Mitsudomi T, et al. High frequency of somatically acquired p53 mutations in small cell lung cancer cell lines and tumors. Oncogene 1992; 7: 339–46

    PubMed  Google Scholar 

  86. Ishida T, Chada S, Stipanov M, et al. Dendritic cells transduced with wild type p53 gene elicit potent antitumor immune responses. Clin Exp Immunol 1999; 117: 244–51

    Article  PubMed  CAS  Google Scholar 

  87. Antonia SJ, Mirza N, Fricke I, et al. Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin Cancer Res 2006; 12 (3 Pt 1): 878–87

    Article  PubMed  CAS  Google Scholar 

  88. Masters GA, Declerck L, Blanke C, et al. Phase II trial of gemcitabine in refractory or relapsed small-cell lung cancer: Eastern Cooperative Oncology Group Trial 1597. J Clin Oncol 2003; 21: 1550–5

    Article  PubMed  CAS  Google Scholar 

  89. Ardizzoni A, Manegold C, Debruyne C, et al. European organization for research and treatment of cancer (EORTC) 08957 phase II study of topotecanin combination with cisplatin as second-line treatment of refractory and sensitive small cell lung cancer. Clin Cancer Res 2003; 9: 143–50

    PubMed  CAS  Google Scholar 

  90. Brezicka T, Bergman B, Olling S, et al. Reactivity of monoclonal antibodies with ganglioside antigens in human small cell lung cancer tissues. Lung Cancer 2000; 28(1): 29–36

    Article  PubMed  CAS  Google Scholar 

  91. McCaffery M, Yao TJ, Williams L, et al. Immunization of melanoma patients with BEC2 anti-idiotypic monoclonal antibody that mimics GD3 ganglioside: enhanced immunogenicity when combined with adjuvant. Clin Cancer Res 1996; 2: 679–86

    PubMed  CAS  Google Scholar 

  92. Grant SC, Kris MG, Houghton AN, et al. Long survival of patients with small cell lung cancer after adjuvant treatment with the anti-idiotypic antibody BEC2 plus Bacillus Calmette-Guerin. Clin Cancer Res 1999; 5: 1319–23

    PubMed  CAS  Google Scholar 

  93. Giaccone G, Debruyne C, Felip E, et al. Phase III study of adjuvant vaccination with Bec2/bacille Calmette-Guerin in responding patients with limited-disease small-cell lung cancer (European Organisation for Research and Treatment of Cancer 08971-08971B; Silva Study). J Clin Oncol 2005; 23(28): 6854–64

    Article  PubMed  CAS  Google Scholar 

  94. BB-10901 (huN901-DM1) Clinical Investigators Brochure 5th edition, Jan 2006. Cambridge (MA): ImmunoGen Inc., 02139

  95. Fossella F, McCann J, Tolcher A, et al. Phase II trial of BB-10901 (huN901-DM1) given weekly for four consecutive weeks every 6 weeks in patients with relapsed SCLC and CD56-positive small cell carcinoma. [abstract no. 7159]. Proceedings of the 41st Annual Meeting of the American Society of Clinical Oncology; 2005 May 13–17; Orlando (FL). J Clin Oncol 2005; 23 (16S Suppl. 1): 660s

    Google Scholar 

  96. Lorigan P, Woll P, O’Brien ME, et al. Phase I trial of BB-10901 (huN901-DM1) given daily by iv infusion for three consecutive days every three weeks in patients with SCLC and other CD56-positive solid tumours. Clin Cancer Res 2005; 11 (24 Pt 2 Suppl. B27): 9055s

    Google Scholar 

  97. Yuan R, Li W, Dowling P. Anti-HuD immunotoxin specifically kills small cell lung cancer cells [abstract]. Lung Cancer 2005; 49(2): P977

    Google Scholar 

  98. Ohe Y, Negoro S, Matsui K, et al. Phase I–II study of amrubicin and cisplatin in previously untreated patients with extensive stage small cell lung cancer. Ann Oncol 2005; 16(3): 430–6

    Article  PubMed  CAS  Google Scholar 

  99. Seto T, Masuda N, Takiguchi Y, et al. Phase II study of amrubicin, a new active drug in refractory or relapsed small cell lung cancer. Thoracic Oncology Research Group Trial 0301. J Clin Oncol 2006; 24(18S): 7060

    Google Scholar 

  100. Kato T, Nokihara H, Ohe Y, et al. Phase II trial of amrubicin in patients with previously treated small cell lung cancer. J Clin Oncol 2006; 24(18S): 7061

    Google Scholar 

  101. Hanna N, Ansari R, Bhatia S, et al. Pemetrexed in patients with relapsed small cell lung cancer (SCLC): a phase II study of the Hoosier Oncology Group. J Clin Oncol 2006; 24(18S): 7063

    Google Scholar 

  102. Socinski MA, Weissman C, Hart LL, et al. Randomized phase II trial of pemetrexed with either cisplatin or carboplatin in extensive stage small cell lung cancer [abstract no. 7204]. Proceedings of the 40th Annual Meeting of the American Society of Clinical Oncology; 2004 Jun 5–8; New Orleans. J Clin Oncol 2004; 22 (14S Suppl. 1): 667s

    Article  CAS  Google Scholar 

  103. Geoerger B, Kerr K, Tang CB, et al. Antitumor activity of the rapamycin analog CCI-779 in human primitive neuroectodermal tumor/medulloblastoma models as single agent and in combination chemotherapy. Cancer Res 2001; 61: 1527–32

    PubMed  CAS  Google Scholar 

  104. Yu K, Toral-Barza L, Discafani C, et al. mTOR, a novel target in breast cancer: the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer. Endocr Relat Cancer 2001; 8: 249–58

    Article  PubMed  Google Scholar 

  105. Raymond E, Alexandre J, Faivre S, et al. Safety and pharmacokinetics of escalated doses of weekly intravenous infusion of CCI-779, a novel mTOR inhibitor, in patients with cancer. J Clin Oncol 2004; 22: 2336–47

    Article  PubMed  CAS  Google Scholar 

  106. Pandya KJ, Levy DE, Hidalgo M, et al. A randomized, phase II ECOG trial of two dose levels of temsirolimus (CCI-779) in patients with extensive stage small cell lung cancer in remission after induction chemotherapy: a preliminary report [abstract no. 7005]. Proceedings of the 41st Annual Meeting of the American Society of Clinical Oncology; 2005 May 13–17; Orlando (FL). J Clin Oncol 2005; 23 (16S Suppl. 1): 622s

    Google Scholar 

  107. Moore AM, Estes D, Govindan R, et al. A phase II trial of gefitinib (Iressa) in patients with chemosensitive and chemorefractory relapsed neuroendocrine cancers: a Hoosier Oncology Group trial [abstract no. 7160]. Proceedings of the 41st Annual Meeting of the American Society of Clinical Oncology; 2005 May 13–17; Orlando (FL). J Clin Oncol 2005; 23 (16S Suppl. 1): 660s

    Google Scholar 

Download references

Acknowledgements

Drs Board and Lorigan declare they have no conflicts of interest relevant to the contents of this review. Dr Thatcher has acted as a member of advisory boards for Roche, AstraZeneca, Amgen, Pfizer, sanofi aventis and Eli Lilly, has provided expert testimony for Roche, and received grants from AstraZeneca, Eli Lilly and sanofi aventis. No funding was received for the preparation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth E. Board.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Board, R.E., Thatcher, N. & Lorigan, P. Novel Therapies for the Treatment of Small-Cell Lung Cancer. Drugs 66, 1919–1931 (2006). https://doi.org/10.2165/00003495-200666150-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200666150-00003

Keywords

Navigation