Skip to main content
Log in

Pathophysiological Basis for Antioxidant Therapy in Chronic Liver Disease

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Oxidative stress is a common pathogenetic mechanism contributing to initiation and progression of hepatic damage in a variety of liver disorders. Cell damage occurs when there is an excess of reactive species derived from oxygen and nitrogen, or a defect of antioxidant molecules. Experimental research on the delicately regulated molecular strategies whereby cells control the balance between oxidant and antioxidant molecules has progressed in recent years. On the basis of this evidence, antioxidants represent a logical therapeutic strategy for the treatment of chronic liver disease. Clinical studies with large numbers of patients have not yet been performed. However, results from several pilot trials support this concept and indicate that it may be worth performing multicentre studies, particularly combining antioxidants with anti-inflammatory and/or antiviral therapy. Oxidative stress plays a pathogenetic role in liver diseases such as alcoholic liver disease, chronic viral hepatitis, autoimmune liver diseases and non-alcoholic steatohepatitis. The use of antioxidants (e.g. S-adenosylmethionine [SAMe; ademetionine], tocopherol [vitamin E], polyenylphosphatidylcholine or silymarin) has already shown promising results in some of these pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I
Table II

Similar content being viewed by others

References

  1. Sies H. Oxidative stress: introductory remarks. In: oSies H, editor. Oxidative stress. London: Academic Press, 1985: 1–8

    Google Scholar 

  2. Paradis V, Kollinger M, Fabre M, et al. In situ detection of lipid peroxidation by-products in chronic liver diseases. Hepatology 1997; 26(1): 135–42

    Article  PubMed  CAS  Google Scholar 

  3. Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 2004; 142(2): 231–55

    Article  PubMed  CAS  Google Scholar 

  4. Fridovich I. Superoxide radical and Superoxide dismutases. Annu Rev Biochem 1995; 64: 97–112

    Article  PubMed  CAS  Google Scholar 

  5. Beckman JS. Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol 1996; 9: 836–44

    Article  PubMed  CAS  Google Scholar 

  6. Suzuki YJ, Forman H, Sevanian A. Oxidants as stimulators of signal transduction. Free Radic Biol Med 1997; 22(1–2): 269–85

    Article  PubMed  CAS  Google Scholar 

  7. Ermak G, Davies K. Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 2002; 38(10): 713–21

    Article  PubMed  CAS  Google Scholar 

  8. D’Angio CT, Finkelstein J. Oxygen regulation of gene expression: a study in opposites. Mol Genet Metab 2000; 71(1–2): 371–80

    Article  PubMed  CAS  Google Scholar 

  9. Sen CK. Cellular thiols and redox-regulated signal transduction. Curr Top Cell Regul 2000; 36: 1–30

    Article  PubMed  CAS  Google Scholar 

  10. Clemens MG. Nitric oxide in liver injury. Hepatology 1999; 30(1): 1–5

    Article  PubMed  CAS  Google Scholar 

  11. Li J, Billiar T. Nitric oxide. IV: determinants of nitric oxide protection and toxicity in liver. Am J Physiol 1999; 276: G1069–73

    PubMed  CAS  Google Scholar 

  12. Billiar TR, Hoffman R, Curran R, et al. A role for inducible nitric oxide biosynthesis in the liver in inflammation and in the allogeneic immune response. J Lab Clin Med 1992; 120:192–7

    PubMed  CAS  Google Scholar 

  13. Harbrecht BG, Billiar T, Stadler J, et al. Inhibition of nitric oxide synthesis during endotoxemia promotes intrahepatic thrombosis and an oxygen radical-mediated hepatic injury. J Leukoc Biol 1992; 52: 390–4

    PubMed  CAS  Google Scholar 

  14. Pannen BH, Bauer M, Zhang J, et al. A time-dependent balance between endothelins and nitric oxide regulating portal resistance after endotoxin. Am J Physiol 1996; 271: H1953–61

    PubMed  CAS  Google Scholar 

  15. Fiorucci S, Santucci L, Antonelli E, et al. NO-aspirin protects from T cell-mediated liver injury by inhibiting caspase-dependent processing of Th1-like cytokines. Gastroenterology 2000; 118: 404–21

    Article  PubMed  CAS  Google Scholar 

  16. Fiorucci S, Mencarelli A, Palazzetti B, et al. An NO derivative of ursodeoxycholic acid protects against Fas-mediated liver injury by inhibiting caspase activity. Proc Natl Acad Sci U S A 2001; 98: 2652–7

    Article  PubMed  CAS  Google Scholar 

  17. Kim YM, Kim T, Chung H, et al. Nitric oxide prevents tumor necrosis factor alpha-induced rat hepatocyte apoptosis by the interruption of mitochondrial apoptotic signaling through Snitrosylation of caspase-8. Hepatology 2000; 32 (4 Pt 1): 770–8

    Article  PubMed  CAS  Google Scholar 

  18. Rai RM, Lee F, Rosen A, et al. Impaired liver regeneration in inducible nitric oxide synthasedeficient mice. Proc Natl Acad Sci U S A 1998; 95(23): 13829–34

    Article  PubMed  CAS  Google Scholar 

  19. Rubbo H, Radi R, Anselmi D, et al. Nitric oxide reaction with lipid peroxyl radicals spares alpha-tocopherol during lipid peroxidation: greater oxidant protection from the pair nitric oxide/alpha-tocopherol than alpha-tocopherol/ascorbate. J Biol Chem 2000; 275(15): 10812–8

    Article  PubMed  CAS  Google Scholar 

  20. van der Vliet A, Hoen P, Wong P, et al. Formation of Snitrosothiols via direct nucleophilic nitrosation of thiols by peroxynitrite with elimination of hydrogen peroxide. J Biol Chem 1998; 273(46): 30255–62

    Article  PubMed  Google Scholar 

  21. Fortenberry JD, Owens M, Brown L. S-nitrosoglutathione enhances neutrophil DNA fragmentation and cell death. Am J Physiol 1999; 276 (3 Pt 1): L435–42

    PubMed  CAS  Google Scholar 

  22. Carnovale CE, Scapini C, Alvarez M, et al. Nitric oxide release and enhancement of lipid peroxidation in regenerating rat liver. J Hepatol 2000; 32(5): 798–804

    Article  PubMed  CAS  Google Scholar 

  23. Arteel GE. Oxidants and antioxidants in alcohol-induced liver disease. Gastroenterology 2003; 124(3): 778–90

    Article  PubMed  CAS  Google Scholar 

  24. Fernandez-Checa JC, Kaplowitz N, Garcia-Ruiz C, et al. Mitochondrial glutathione: importance and transport. Semin Liver Dis 1998; 18(4): 389–401

    Article  PubMed  CAS  Google Scholar 

  25. Osman E, Owen J, Burroughs A. Review article: S-adenosyl-Lmethionine: a new therapeutic agent in liver disease? Aliment Pharmacol Ther 1993; 7(1): 21–8

    Article  PubMed  CAS  Google Scholar 

  26. Lieber CS, Leo M, Aleynik S, et al. Polyenylphosphatidylcholine decreases alcohol-induced oxidative stress in the baboon. Alcohol Clin Exp Res 1997; 21(2): 375–9

    Article  PubMed  CAS  Google Scholar 

  27. Shan X, Aw T, Smith E, et al. Effect of chronic hypoxia on detoxication enzymes in rat liver. Biochem Pharmacol 1992; 43(11): 2421–6

    Article  PubMed  CAS  Google Scholar 

  28. Nakanishi K, Tajima F, Nakamura A, et al. Effects of hypobaric hypoxia on antioxidant enzymes in rats. J Physiol 1995; 489 (Pt 3): 869–76

    PubMed  CAS  Google Scholar 

  29. Chen J, Schenker S, Frosto T, et al. Inhibition of cytochrome c oxidase activity by 4-hydroxynonenal (HNE): role of HNE adduct formation with the enzyme subunits. Biochim Biophys Acta 1998; 1380(3): 336–44

    Article  PubMed  CAS  Google Scholar 

  30. Hoek JB, Cahill A, Pastorino J. Alcohol and mitochondria: a dysfunctional relationship. Gastroenterology 2002; 122(7): 2049–63

    Article  PubMed  CAS  Google Scholar 

  31. Kono H, Rusyn I, Uesugi T, et al. Diphenyleneiodonium sulfate, an NADPH oxidase inhibitor, prevents early alcohol-induced liver injury in the rat. Am J Physiol Gastrointest Liver Physiol 2001; 280(5): G1005–12

    PubMed  CAS  Google Scholar 

  32. McKim SE, Gabele E, Isayama F, et al. Inducible nitric oxide synthase is required in alcohol-induced liver injury: studies with knockout mice. Gastroenterology 2003; 125(6): 1834–44

    Article  PubMed  CAS  Google Scholar 

  33. Kono H, Rusyn I, Bradford B, et al. Allopurinol prevents early alcohol-induced liver injury in rats. J Pharmacol Exp Ther 2000; 293(1): 296–303

    PubMed  CAS  Google Scholar 

  34. Albano E, Clot P, Morimoto M, et al. Role of cytochrome P4502El-dependent formation of hydroxyethyl free radical in the development of liver damage in rats intragastrically fed with ethanol. Hepatology 1996; 23(1): 155–63

    Article  PubMed  CAS  Google Scholar 

  35. Kono H, Bradford B, Yin M, et al. CYP2E1 is not involved in early alcohol-induced liver injury. Am J Physiol 1999; 277 (6 Pt 1): G1259–67

    PubMed  CAS  Google Scholar 

  36. Bailey SM, Pietsch E, Cunningham C. Ethanol stimulates the production of reactive oxygen species at mitochondrial complexes I and III. Free Radie Biol Med 1999; 27(7-8): 891–900

    Article  CAS  Google Scholar 

  37. Fernandez-Checa JC, Kaplowitz N, Garcia-Ruiz C, et al. GSH transport in mitochondria: defense against TNF-induced oxidative stress and alcohol-induced defect. Am J Physiol 1997; 273 (1 Pt 1): G7–17

    PubMed  CAS  Google Scholar 

  38. Colell A, Garcia-Ruiz C, Miranda A, et al. Selective glutathione depletion of mitochondria by ethanol sensitizes hepatocytes to tumor necrosis factor. Gastroenterology 1998; 115(6): 1541–51

    Article  PubMed  CAS  Google Scholar 

  39. Yin M, Wheeler M, Kono H, et al. Essential role of tumor necrosis factor alpha in alcohol-induced liver injury in mice. Gastroenterology 1999; 117(4): 942–52

    Article  PubMed  CAS  Google Scholar 

  40. Yin M, Gabele E, Wheeler M, et al. Alcohol-induced free radicals in mice: direct toxicants or signaling molecules? Hepatology 2001; 34(5): 935–42

    Article  PubMed  CAS  Google Scholar 

  41. Purohit V, Russo D, Salin M. Role of iron in alcoholic liver disease: introduction and summary of the symposium. Alcohol 2003; 30(2): 93–7

    Article  PubMed  Google Scholar 

  42. Xiong S, She H, Sung C, et al. Iron-dependent activation of NF-kappaB in Kupffer cells: a priming mechanism for alcoholic liver disease. Alcohol 2003; 30(2): 107–13

    Article  PubMed  CAS  Google Scholar 

  43. Cederbaum AI. Iron and CYP2E1-dependent oxidative stress and toxicity. Alcohol 2003; 30(2): 115–20

    Article  PubMed  CAS  Google Scholar 

  44. Mato JM, Alvarez L, Ortiz P, et al. S-adenosylmethionine synthesis: molecular mechanisms and clinical implications. Pharmacol Ther 1997; 73(3): 265–80

    Article  PubMed  CAS  Google Scholar 

  45. Duce AM, Ortiz P, Cabrero C, et al. S-adenosyl-L-methionine synthetase and phospholipid methyltransferase are inhibited in human cirrhosis. Hepatology 1988; 8(1): 65–8

    Article  PubMed  CAS  Google Scholar 

  46. Garcia-Ruiz C, Morales A, Colell A, et al. Feeding S-adenosyl-L-methionine attenuates both ethanol-induced depletion of mitochondrial glutathione and mitochondrial dysfunction in periportal and perivenous rat hepatocytes. Hepatology 1995; 21(1): 207–14

    Article  PubMed  CAS  Google Scholar 

  47. Chawla RK, Watson W, Eastin C, et al. S-adenosylmethionine deficiency and TNF-alpha in lipopolysaccharide-induced hepatic injury. Am J Physiol 1998; 275 (1 Pt 1): G125–9

    PubMed  CAS  Google Scholar 

  48. Vendemiale G, Altomare E, Trizio T, et al. Effects of oral Sadenosyl-L-methionine on hepatic glutathione in patients with liver disease. Scand J Gastroenterol 1989; 24(4): 407–15

    Article  PubMed  CAS  Google Scholar 

  49. Mato JM, Camara J, Fernandez-de-Paz J, et al. S-adenosylmethionine in alcoholic liver cirrhosis: a randomized, placebocontrolled, double-blind, multicenter clinical trial. J Hepatol 1999; 30(6): 1081–9

    Article  PubMed  CAS  Google Scholar 

  50. Li J, Kim C, Leo M, et al. Polyunsaturated lecithin prevents acetaldehyde-mediated hepatic collagen accumulation by stimulating collagenase activity in cultured lipocytes. Hepatology 1992; 15(3): 373–81

    Article  PubMed  CAS  Google Scholar 

  51. Aleynik SI, Leo M, Ma X, et al. Polyenylphosphatidylcholine prevents carbon tetrachloride-induced lipid peroxidation while it attenuates liver fibrosis. J Hepatol 1997; 27(3): 554–61

    Article  PubMed  CAS  Google Scholar 

  52. Lieber CS, Weiss D, Groszmann R, et al. II Veterans Affairs Cooperative Study of polyenylphosphatidylcholine in alcoholic liver disease. Alcohol Clin Exp Res 2003; 27(11): 1765–72

    Article  PubMed  CAS  Google Scholar 

  53. Ferenci P, Dragosics B, Dittrich H, et al. Randomized controlled trial of silymarin treatment in patients with cirrhosis of the liver. J Hepatol 1989; 9(1): 105–13

    Article  PubMed  CAS  Google Scholar 

  54. Pares A, Planas R, Torres M, et al. Effects of silymarin in alcoholic patients with cirrhosis of the liver: results of a controlled, double-blind, randomized and multicenter trial. J Hepatol 1998; 28(4): 615–21

    Article  PubMed  CAS  Google Scholar 

  55. Lieber CS. New concepts of the pathogenesis of alcoholic liver disease lead to novel treatments. Curr Gastroenterol Rep 2004; 6(1): 60–5

    Article  PubMed  Google Scholar 

  56. Evstigneeva RP, Volkov I, Chudinova V. Vitamin E as a universal antioxidant and stabilizer of biological membranes. Membr Cell Biol 1998; 12(2): 151–72

    PubMed  CAS  Google Scholar 

  57. Hill DB, Devalaraja R, Joshi-Barve S, et al. Antioxidants attenuate nuclear factor-kappa B activation and tumor necrosis factor-alpha production in alcoholic hepatitis patient monocytes and rat Kupffer cells, in vitro. Clin Biochem 1999; 32(7): 563–70

    Article  PubMed  CAS  Google Scholar 

  58. Lee KS, Buck M, Houglum K, et al. Activation of hepatic stellate cells by TGF alpha and collagen type I is mediated by oxidative stress through c-myb expression. J Clin Invest 1995; 96(5): 2461–8

    Article  PubMed  CAS  Google Scholar 

  59. De la Maza MP, Petermann M, Bunout D, et al. Effects of longterm vitamin E supplementation in alcoholic cirrhotics. J Am Coll Nutr 1995; 14(2): 192–6

    PubMed  Google Scholar 

  60. Mezey E, Potter J, Rennie-Tankersley L, et al. A randomized placebo controlled trial of vitamin E for alcoholic hepatitis. J Hepatol 2004; 40(1): 40–6

    Article  PubMed  CAS  Google Scholar 

  61. Caballeria J, Pares A, Bru C, et al. Metadoxine accelerates fatty liver recovery in alcoholic patients: results of a randomized double-blind, placebo-control trial. Spanish Group for the Study of Alcoholic Fatty Liver. J Hepatol 1998; 28(1): 54–60

    CAS  Google Scholar 

  62. Lieber CS. Role of oxidative stress and antioxidant therapy in alcoholic and nonalcoholic liver diseases. Adv Pharmacol 1997; 38: 601–28

    Article  PubMed  CAS  Google Scholar 

  63. Okuda M, Li K, Beard M, et al. Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology 2002; 122(2): 366–75

    Article  PubMed  CAS  Google Scholar 

  64. Moriya K, Nakagawa K, Santa T, et al. Oxidative stress in the absence of inflammation in a mouse model for hepatitis C virus-associated hepatocarcinogenesis. Cancer Res 2001; 61(11): 4365–70

    PubMed  CAS  Google Scholar 

  65. Majano PL, Garcia-Monzon C, Lopez-Cabrera M, et al. Inducible nitric oxide synthase expression in chronic viral hepatitis: evidence for a virus-induced gene upregulation. J Clin Invest 1998; 101(7): 1343–52

    Article  PubMed  CAS  Google Scholar 

  66. Majano P, Lara-Pezzi E, Lopez-Cabrera M, et al. Hepatitis B viras X protein transactivates inducible nitric oxide synthase gene promoter through the proximal nuclear factor kappaBbinding site: evidence that cytoplasmic location of X protein is essential for gene transactivation. Hepatology 2001; 34(6): 1218–24

    Article  PubMed  CAS  Google Scholar 

  67. Majano PL, Medina J, Zubia I, et al. N-Acetyl-cysteine modulates inducible nitric oxide synthase gene expression in human hepatocytes. J Hepatol 2004; 40(4): 632–7

    Article  PubMed  CAS  Google Scholar 

  68. Barbara G, Lorenzo GD, Asti A, et al. Hepatocellular mitochondrial alterations in patients with chronic hepatitis C: ultrastructural and biochemical findings. Am J Gastroenterol 1999; 94: 2198–205

    Article  Google Scholar 

  69. Kageyama F, Kobayashi Y, Kawasaki T, et al. Successful interferon therapy reverses enhanced hepatic iron accumulation and lipid peroxidation in chronic hepatitis C. Am J Gastroenterol 2000; 95: 1041–50

    Article  PubMed  CAS  Google Scholar 

  70. Garcia-Monzon C, Majano P, Zubia I, et al. Intrahepatic accumulation of nitrotyrosine in chronic viral hepatitis is associated with histological severity of liver disease. J Hepatol 2000; 32(2): 331–8

    Article  PubMed  CAS  Google Scholar 

  71. Mahmood S, Kawanaka M, Kamei A, et al. Immunohistochemical evaluation of oxidative stress markers in chronic hepatitis C. Antioxid Redox Signal 2004; 6(1): 19–24

    Article  PubMed  CAS  Google Scholar 

  72. Larrea E, Beloqui O, Muñoz-Navas M, et al. Superoxide dismutase in patients with chronic hepatitis C virus infection. Free Radic Biol Med 1998; 24: 1235–41

    Article  PubMed  CAS  Google Scholar 

  73. Otani K, Korenaga M, Beard M, et al. Hepatitis C virus core protein, cytochrome P4502E1 and alcohol produce combined mitochondrial injury and cytototxicity in hepatoma cells. Gastroenterology 2005; 128(1): 96–107

    Article  PubMed  CAS  Google Scholar 

  74. Wheeler M. Ethanol and HCV-induced cytotoxicity: the perfect storm. Gastroenterology 2005; 128(1): 232–4

    Article  PubMed  Google Scholar 

  75. Houglum K, Venkataramani A, Lyche K, et al. A pilot study of the effects of d-alpha-tocopherol on hepatic stellate cell activation in chronic hepatitis C. Gastroenterology 1997; 113: 1069–73

    Article  PubMed  CAS  Google Scholar 

  76. Look MP, Gerard A, Rao G, et al. Interferon/antioxidant combination therapy for chronic hepatitis C: a controlled pilot trial. Antiviral Res 1999; 43: 113–22

    Article  PubMed  CAS  Google Scholar 

  77. Mahmood S, Yamada G, Niiyama G, et al. Effect of vitamin E on serum aminotransferase and thioredoxin levels in patients with viral hepatitis C. Free Radic Res 2003; 37(7): 781–5

    Article  PubMed  CAS  Google Scholar 

  78. Saeian K, Bajaj J, Franco J, et al. High-dose vitamin E supplementation does not diminish ribavirin-associated haemolysis in hepatitis C treatment with combination standard alpha-interferon and ribavirin. Aliment Pharmacol Ther 2004; 20(10): 1189–93

    Article  PubMed  CAS  Google Scholar 

  79. Medina J, Jones E, Garcia-Monzon C, et al. Immunopathogenesis of cholestatic autoimmune liver diseases. Eur J Clin Invest 2001; 31(1): 64–71

    Article  PubMed  CAS  Google Scholar 

  80. Medina J, Garcia-Buey L, Moreno-Otero R. Review article: immunopathogenetic and therapeutic aspects of autoimmune hepatitis. Aliment Pharmacol Ther 2003; 17(1): 1–16

    Article  PubMed  CAS  Google Scholar 

  81. Aboutwerat A, Pemberton P, Smith A, et al. Oxidant stress is a significant feature of primary biliary cirrhosis. Biochim Biophys Acta 2003; 1637(2): 142–50

    Article  PubMed  CAS  Google Scholar 

  82. Sanz-Cameno P, Medina J, Garcia-Buey L, et al. Enhanced intrahepatic inducible nitric oxide synthase expression and nitrotyrosine accumulation in primary biliary cirrhosis and autoimmune hepatitis. J Hepatol 2002; 37(6): 723–9

    Article  PubMed  CAS  Google Scholar 

  83. Kaur H, Halliwell B. Evidence for nitric oxide-mediated oxidative damage in chronic inflammation: nitrotyrosine in serum and synovial fluid from rheumatoid patients. FEBS Lett 1994; 350(1): 9–12

    Article  PubMed  CAS  Google Scholar 

  84. Kimura H, Hokari R, Miura S, et al. Increased expression of an inducible isoform of nitric oxide synthase and the formation of peroxynitrite in colonie mucosa of patients with active ulcerative colitis. Gut 1998; 42(2): 180–7

    Article  PubMed  CAS  Google Scholar 

  85. Floreani A, Baragiotta A, Martines D, et al. Plasma antioxidant levels in chronic cholestatic liver diseases. Aliment Pharmacol Ther 2000; 14(3): 353–8

    Article  PubMed  CAS  Google Scholar 

  86. Serviddio G, Pereda J, Pallardo F, et al. Ursodeoxycholic acid protects against secondary biliary cirrhosis in rats by preventing mitochondrial oxidative stress. Hepatology 2004; 39(3): 711–20

    Article  PubMed  CAS  Google Scholar 

  87. Orth T, Kellner R, Diekmann O, et al. Identification and characterisation of autoantibodies against catalase and alpha-enolase in patients with primary sclerosing cholangitis. Clin Exp Immunol 1998; 112: 507–15

    Article  PubMed  CAS  Google Scholar 

  88. Prince MI, Mitchison H, Ashley D, et al. Oral antioxidant supplementation for fatigue associated with primary biliary cirrhosis: results of a multicentre, randomized, placebo-controlled, cross-over trial. Aliment Pharmacol Ther 2003; 17(1): 137–43

    Article  PubMed  CAS  Google Scholar 

  89. Angulo P, Patel T, Jorgensen R, et al. Silymarin in the treatment of patients with primary biliary cirrhosis with a suboptimal response to ursodeoxycholic acid. Hepatology 2000; 32(5): 897–900

    Article  PubMed  CAS  Google Scholar 

  90. Day CP. Non-alcoholic steatohepatitis (NASH): where are we now and where are we going? Gut 2002; 50(5): 585–8

    Article  PubMed  CAS  Google Scholar 

  91. Day CP, James O. Steatohepatitis: a tale of two “hits”? Gastroenterology 1998; 114(4): 842–5

    Article  PubMed  CAS  Google Scholar 

  92. Medina J, Fernández-Salazar L, García-Buey L, et al. Approach to the pathogenesis and treatment of non-alcoholic steatohepatitis. Diabetes Care 2004; 27(8): 2057–66

    Article  PubMed  Google Scholar 

  93. Pessayre D, Berson A, Fromenty B, et al. Mitochondria in steatohepatitis. Semin Liver Dis 2001; 21(1): 57–69

    Article  PubMed  CAS  Google Scholar 

  94. Pessayre D, Mansouri A, Fromenty B. Nonalcoholic steatosis and steatohepatitis. V: mitochondrial dysfunction in steatohepatitis. Am J Physiol Gastrointest Liver Physiol 2002; 282(2): G193–9

    PubMed  CAS  Google Scholar 

  95. Reddy JK. Nonalcoholic steatosis and steatohepatitis. III: peroxisomal beta-oxidation, PPAR alpha, and steatohepatitis. Am J Physiol Gastrointest Liver Physiol 2001; 281(6): G1333–9

    PubMed  CAS  Google Scholar 

  96. Hruszkewycz AM. Evidence for mitochondrial DNA damage by lipid peroxidation. Biochem Biophys Res Commun 1988; 153(1): 191–7

    Article  PubMed  CAS  Google Scholar 

  97. Garcia-Monzon C, Martin-Perez E, Iacono O, et al. Characterization of pathogenic and prognostic factors of nonalcoholic steatohepatitis associated with obesity. J Hepatol 2000; 33(5): 716–24

    Article  PubMed  CAS  Google Scholar 

  98. Leclercq IA, Farrell G, Field J, et al. CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J Clin Invest 2000; 105(8): 1067–75

    Article  PubMed  CAS  Google Scholar 

  99. Chalasani N, Gorski J, Asghar M, et al. Hepatic cytochrome P450 2E1 activity in nondiabetic patients with nonalcoholic steatohepatitis. Hepatology 2003; 37(3): 544–50

    Article  PubMed  CAS  Google Scholar 

  100. Robertson G, Leclercq I, Farrell G. Nonalcoholic steatosis and steatohepatitis. II: cytochrome P-450 enzymes and oxidative stress. Am J Physiol Gastrointest Liver Physiol 2001; 281 (5): G1135–9

    Google Scholar 

  101. Weltman MD, Farrell G, Hall P, et al. Hepatic cytochrome P450 2E1 is increased in patients with nonalcoholic steatohepatitis. Hepatology 1998; 27(1): 128–33

    Article  PubMed  CAS  Google Scholar 

  102. Echtay KS, Roussel D, St-Pierre J, et al. Superoxide activates mitochondrial uncoupling proteins. Nature 2002; 415(6867): 96–9

    Article  PubMed  CAS  Google Scholar 

  103. Chavin KD, Yang S, Lin H, et al. Obesity induces expression of uncoupling protein-2 in hepatocytes and promotes liver ATP depletion. J Biol Chem 1999; 274(9): 5692–700

    Article  PubMed  CAS  Google Scholar 

  104. Rashid A, Wu T, Huang C, et al. Mitochondrial proteins that regulate apoptosis and necrosis are induced in mouse fatty liver. Hepatology 1999; 29(4): 1131–8

    Article  PubMed  CAS  Google Scholar 

  105. Cortez-Pinto H, Chatham J, Chacko V, et al. Alterations in liver ATP homeostasis in human nonalcoholic steatohepatitis: a pilot study. JAMA 1999; 282(17): 1659–64

    Article  PubMed  CAS  Google Scholar 

  106. Hasegawa T, Yoneda M, Nakamura K, et al. Plasma transforming growth factor-betal level and efficacy of alpha-tocopherol in patients with non-alcoholic steatohepatitis: a pilot study. Aliment Pharmacol Ther 2001; 15(10): 1667–72

    Article  PubMed  CAS  Google Scholar 

  107. Lavine JE. Vitamine E treatment of nonalcoholic steatohepatitis in children: a pilot study. J Pediatr 2000; 136: 734–8

    PubMed  CAS  Google Scholar 

  108. Kawanaka M, Mahmood S, Niiyama G, et al. Control of oxidative stress and reduction in biochemical markers by Vitamin E treatment in patients with nonalcoholic steatohepatitis: a pilot study. Hepatol Res 2004; 29(1): 39–41

    Article  PubMed  CAS  Google Scholar 

  109. Kugelmas M, Hill D, Vivian B, et al. Cytokines and NASH: a pilot study of the effects of lifestyle modification and vitamin E. Hepatology 2003; 38(2): 413–9

    Article  PubMed  CAS  Google Scholar 

  110. Abdelmalek MF, Angulo P, Jorgensen R, et al. Betaine, a promising new agent for patients with nonalcoholic steatohepatitis: results of a pilot study. Am J Gastroenterol 2001; 96: 2711–7

    Article  PubMed  CAS  Google Scholar 

  111. Satapathy SK, Garg S, Sakhuja P, et al. Pentoxyphylline as a novel therapy for non-alcoholic steatohepatitis: a pilot study [abstract]. Gastroenterology 2003; 124: A–728

    Article  Google Scholar 

  112. Koppe SW, Sahai A, Malladi P, et al. Pentoxifylline attenuates steatohepatitis induced by the methionine choline deficient diet. J Hepatol 2004; 41(4): 592–8

    Article  PubMed  CAS  Google Scholar 

  113. Adams LA, Zein C, Angulo P, et al. A pilot trial of pentoxifylline in nonalcoholic steatohepatitis. Am J Gastroenterol 2004; 99(12): 2365–8

    Article  PubMed  CAS  Google Scholar 

  114. Lindor KD, Kowdley K, Heathcote E, et al. Ursodeoxycholic acid for treatment of nonalcoholic steatohepatitis: results of a randomized trial. Hepatology 2004; 39(3): 770–8

    Article  PubMed  CAS  Google Scholar 

  115. Ng DS. The role of statins in oxidative stress and cardiovascular disease. Curr Drug Targets Cardiovasc Haematol Disord 2005; 5(2): 165–75

    Article  PubMed  CAS  Google Scholar 

  116. Kiyici M, Gulten M, Gurel S, et al. Ursodeoxycholic acid and atorvastatin in the treatment of nonalcoholic steatohepatitis. Can J Gastroenterol 2003; 17(12): 713–8

    PubMed  Google Scholar 

  117. Lieber CS, Robins C, Li J, et al. Phosphatidylcholine protects against fibrosis and cirrhosis in the baboon. Gastroenterology 1994; 106(1): 152–9

    PubMed  CAS  Google Scholar 

  118. Toyama T, Nakamura H, Harano Y, et al. PPARalpha ligands activate antioxidant enzymes and suppress hepatic fibrosis in rats. Biochem Biophys Res Commun 2004; 324(2): 697–704

    Article  PubMed  CAS  Google Scholar 

  119. Avila MA, Berasain C, Torres L, et al. Reduced mRNA abundance of the main enzymes involved in methionine metabolism in human liver cirrhosis and hepatocellular carcinoma. J Hepatol 2000; 33(6): 907–14

    Article  PubMed  CAS  Google Scholar 

  120. Avila MA, Garcia-Trevijano E, Martinez-Chantar M, et al. Sadenosylmethionine revisited: its essential role in the regulation of liver function. Alcohol Clin Exp Res 2002; 27(3): 163–7

    CAS  Google Scholar 

  121. Mari M, Colell A, Morales A, et al. Acidic sphingomyelinase downregulates the liver-specific methionine adenosyltransferase 1A, contributing to tumor necrosis factor-induced lethal hepatitis. J Clin Invest 2004; 113(6): 895–904

    PubMed  CAS  Google Scholar 

  122. Leo MA, Rosman A, Lieber C. Differential depletion of caroteoids and tocopherol in liver disease. Hepatology 1993; 17(6): 977–86

    PubMed  CAS  Google Scholar 

  123. Hoofnagle JH. Hepatocellular carcinoma: summary and recommendations. Gastroenterology 2004; 127 (5 Suppl. 1): S319–23

    Article  PubMed  Google Scholar 

  124. Wiseman H, Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 1996; 313: 17–29

    PubMed  CAS  Google Scholar 

  125. Kasai H. Analysis of a form of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat Res 1997; 387: 147–63

    Article  PubMed  CAS  Google Scholar 

  126. Jungst C, Cheng B, Gehrke R, et al. Oxidative damage is increased in human liver tissue adjacent to hepatocellular carcinoma. Hepatology 2004; 39(6): 1663–72

    Article  PubMed  CAS  Google Scholar 

  127. Valgimigli M, Valgimigli L, Trere D, et al. Oxidative stress EPR measurement in human liver by radical-probe technique: correlation with etiology, histology and cell proliferation. Free Radic Res 2002; 36(9): 939–48

    Article  PubMed  CAS  Google Scholar 

  128. Casaril M, Corso F, Bassi A, et al. Decreased activity of scavenger enzymes in human hepatocellular carcinoma, but not in liver metastases. Int J Clin Lab Res 1994; 24(2): 94–7

    Article  PubMed  CAS  Google Scholar 

  129. Liaw KY, Lee P, Wu F, et al. Zinc, copper, and Superoxide dismutase in hepatocellular carcinoma. Am J Gastroenterol 1997; 92(12): 2260–3

    PubMed  CAS  Google Scholar 

  130. Liu DY, Peng Z, Qiu G, et al. Expression of telomerase activity and oxidative stress in human hepatocellular carcinoma with cirrhosis. World J Gastroenterol 2003; 9(8): 1859–62

    PubMed  CAS  Google Scholar 

  131. Deugnier Y. Iron and liver cancer. Alcohol 2003; 30(2): 145–50

    Article  PubMed  CAS  Google Scholar 

  132. Bissell DM, Gores G, Laskin D, et al. Drug-induced liver injury: mechanisms and test systems. Hepatology 2001; 33: 1009–13

    Article  PubMed  CAS  Google Scholar 

  133. Lee WM. Drug-induced hepatotoxicity. N Engl J Med 2003; 349: 474–85

    Article  PubMed  CAS  Google Scholar 

  134. Anzenbacher P, Anzenbacherova E. Cytochromes P450 and metabolism of xenobiotics. Cell Mol Life Sci 2001; 58(5–6): 737–47

    Article  PubMed  CAS  Google Scholar 

  135. Jaeschke H, Gores G, Cederbaum A, et al. Mechanisms of hepatotoxicity. Toxicol Sci 2002; 65(2): 166–76

    Article  PubMed  CAS  Google Scholar 

  136. Tsai CL, Chang W, Weng T, et al. A patient-tailored Nacetylcysteine protocol for acute acetaminophen intoxication. Clin Ther 2005; 27(3): 336–41

    Article  PubMed  Google Scholar 

  137. Kaplowitz N. Idiosyncratic drug hepatotoxicity. Nat Rev Drug Discov 2005; 4(6): 489–99

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported in part by grants C03/02 from Instituto de Salud Carlos-III and SAF 2004-07885 from Ministerio de Educación y Ciencia (to RMO). The authors have no conflicts of interest to declare. The authors thank Brenda Ashley for her editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Moreno-Otero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medina, J., Moreno-Otero, R. Pathophysiological Basis for Antioxidant Therapy in Chronic Liver Disease. Drugs 65, 2445–2461 (2005). https://doi.org/10.2165/00003495-200565170-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200565170-00003

Keywords

Navigation