Skip to main content
Log in

Clinical Potential of Sodium-Calcium Exchanger Inhibitors as Antiarrhythmic Agents

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The Na+/Ca2+ exchanger (NaCaX) plays an important role in calcium handling in myocytes, but in the setting of calcium overload NaCaX can also contribute to the activation of an arrhythmogenic transient inward current (Iti). Therefore, approaches to inhibit NaCaX could have potential antiarrhythmic effects in pathophysiological states such as heart failure (HF) or myocardial ischaemia and reperfusion. NaCaX typically functions in a forward (Ca2+ extrusion) mode but can also function in a reverse (Ca2+ influx) mode. The determining factors for the directionality of NaCaX ion movement are the electrochemical gradients of calcium and sodium, and membrane potential (Em). In HF, upregulated NaCaX plays a dual role: it decreases sarcoplasmic reticulum (SR) calcium load, which leads to contractile dysfunction, and it underlies the Iti responsible for delayed after-depolarisations (DADs) and ventricular arrhythmias. In myocardial ischaemia and reperfusion, increases in [Na+]i (as a result of acidosis and activation of the Na+/H+ exchanger [NHE]) lead to calcium overload via the NaCaX and arrhythmogenesis is probably mediated by Iti activation due to NaCaX. As such, inhibition of NaCaX could provide a novel therapeutic approach to the prevention and treatment of arrhythmias. Unfortunately, it is difficult to assess the efficacy of such an approach since there are no specific NaCaX inhibitors. Currently available agents are hampered by their nonspecific effects on other ion channels and carriers.

The potential utility of specific inhibition of forward or reverse mode NaCaX as an antiarrhythmic approach in the settings of HF and ischaemia/reperfusion is discussed within the context of current knowledge of myocyte calcium and sodium handling. NaCaX is a challenging and complex therapeutic target because of the delicate balance of SR calcium load (too little contributes to contractile dysfunction and too much leads to calcium overload and arrhythmogenesis). Further understanding of NaCaX function, [Na+]i and [Ca2+]i in HF and ischaemia/reperfusion, combined with the development and assessment of specific NaCaX inhibitors, will ultimately define the potential role of NaCaX inhibition in the prevention and treatment of ventricular arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bers DM. Excitation-contraction coupling and cardiac contractile force. 2nd ed. Dordrecht: Kluwer, 2001

  2. Pogwizd SM, Schlotthauer K, Li L, et al. Arrhythmogenesis and contractile dysfunction in heart failure: roles of sodium-calcium exchange, inward rectifier potassium current, and residual β-adrenergic responsiveness. Circ Res 2001; 88: 1159–67

    Article  PubMed  CAS  Google Scholar 

  3. Koster OF, Szigeti GP, Beuckelmann DJ. Characterization of a [Ca2+]i-dependent current in human atrial and ventricular cardiomyocytes in the absence of Na+ and K+. Cardiovasc Res 1999; 41: 175–87

    Article  PubMed  CAS  Google Scholar 

  4. Wit AL, Rosen MR. After depolarizations and triggered activity: distinction from automaticity as an arrhythmogenic mechanism. In: Fozzard HA, Haber E, Jennings RB, et al., editors. Heart and cardiovascular system: scientific foundations. 2nd ed. New York (NY): Raven, 1992: 2113–63

    Google Scholar 

  5. Hryshko LV. The cardiac Na+-Ca2+ exchanger. In: Page E, Fozzard HA, Solaro RJ, editors. Handbook of physiology. Section 2: the cardiovascular system. Vol. 1: the heart. New York (NY): Oxford, 2002: 388–419

    Google Scholar 

  6. Blaustein MP, Lederer WJ. Sodium/calcium exchange: its physiological implications. Physiol Rev 1999; 79: 763–854

    PubMed  CAS  Google Scholar 

  7. Egger M, Niggli E. Regulatory function of Na-Ca exchange in the heart: milestones and outlook. J Membr Biol 1999; 168: 107–30

    Article  PubMed  CAS  Google Scholar 

  8. Pogwizd SM, Bers DM. Na/Ca exchange in heart failure: contractile dysfunction and arrhythmogenesis. Ann N Y Acad Sci 2002; 976: 454–65

    Article  PubMed  CAS  Google Scholar 

  9. Sipido KR, Volders PGA, Vos MA, et al. Altered Na/Ca exchange activity in cardiac hypertrophy and heart failure: a new target for therapy? Cardiovasc Res 2002; 53: 782–805

    Article  PubMed  CAS  Google Scholar 

  10. Phillipson KD, Nicoll DA. Sodium-calcium exchange: a molecular perspective. Annu Rev Physiol 2000; 62: 111–33

    Article  Google Scholar 

  11. Reeves JP. Sodium-calcium exchange: a possible target for drug development. Drug Dev Res 1989; 18: 295–304

    Article  CAS  Google Scholar 

  12. Shigekawa M, Iwamoto M. Cardiac Na+-Ca++ exchange: molecular and pharmacological aspects. Circ Res 2001; 88: 864–76

    Article  PubMed  CAS  Google Scholar 

  13. Yashar PR, Fransua M, Frishman WH. The sodium-calcium ion membrane exchanger: physiologic significance and pharmacologic implications. J Clin Pharmacol 1998; 38: 393–401

    PubMed  CAS  Google Scholar 

  14. Bassani JWM, Bassani RA, Bers DM. Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms. J Physiol 1994; 476: 279–93

    PubMed  CAS  Google Scholar 

  15. Reeves JP, Hale CC. The stoichiometry of the cardiac sodium-calcium exchange system. J Biol Chem 1984; 259: 7733–9

    PubMed  CAS  Google Scholar 

  16. Fujioka Y, Komeda M, Matsuoka S. Stoichiometry of Na+/Ca2+ exchange in inside-out patches excised from guinea-pig ventricular myocytes. J Physiol 2000; 523: 339–51

    Article  PubMed  CAS  Google Scholar 

  17. Sipido KR, Volders PGA, de Groot M, et al. Enhanced Ca2+ release and Na/Ca exchange activity in hypertrophied canine ventricular myocytes: potential link between contractile adaptation and arrhythmogenesis. Circulation 2000; 102: 2137–44

    Article  PubMed  CAS  Google Scholar 

  18. Grantham CJ, Cannell MB. Ca2+ influx during the cardiac action potential in guinea pig ventricular myocytes. Circ Res 1996; 79: 194–200

    Article  PubMed  CAS  Google Scholar 

  19. Sipido KR, Maes M, Van de Werf F. Low efficiency of Ca2+ entry through the Na+-Ca2+ exchanger as trigger for Ca2+ release from the sarcoplasmic reticulum: a comparison between L-type Ca2+ current and reverse-mode Na+-Ca2+ exchange. Circ Res 1997; 81: 1034–44

    Article  PubMed  CAS  Google Scholar 

  20. Evans AM, Cannell MB. The role of L-type Ca2+ current and Na+ current-stimulated Na/Ca exchange in triggering SR calcium release in guinea-pig cardiac ventricular myocytes. Cardiovasc Res 1997; 35: 294–302

    Article  PubMed  CAS  Google Scholar 

  21. Litwin SE, LI J, Bridge JHB. Na-Ca exchange and the trigger for sarcoplasmic reticulum Ca release: studies in adult rabbit ventricular myocytes. Biophys J 1998; 75: 359–71

    Article  PubMed  CAS  Google Scholar 

  22. Bers DM, Christensen DM, Nguyen TX. Can Ca entry via Na-Ca exchange directly activate cardiac muscle contraction? J Mol Cell Cardiol 1988; 20: 405–14

    Article  PubMed  CAS  Google Scholar 

  23. Mattiello JA, Margulies KB, Jeevanandam V, et al. Contribution of reverse-mode sodium-calcium exchange to contractions in failing human left ventricular myocytes. Cardiovasc Res 1998; 37: 424–31

    Article  PubMed  CAS  Google Scholar 

  24. Dipla K, Mattiello JA, Margulies KB, et al. The sarcoplasmic reticulum and the Na+/Ca+ exchanger both contribute to the Ca2+ transient of failing human ventricular myocytes. Circ Res 1999; 84: 435–44

    Article  PubMed  CAS  Google Scholar 

  25. Gaughan JP, Furukawa S, Jeevanandam V, et al. Sodium/calcium exchange contributes to contraction and relaxation in failed human ventricular myocytes. Am J Physiol 1999; 277: H714–24

    PubMed  CAS  Google Scholar 

  26. Weber CR, Piacentino V, Ginsburg KS, et al. Na+-Ca2+ exchange current and submembrane [Ca2+] during the cardiac action potential. Circ Res 2002; 90: 182–9

    Article  PubMed  CAS  Google Scholar 

  27. Despa S, Islam MA, Pogwizd SM, et al. Intracellular Na+ concentration is elevated in heart failure, but Na/K-pump function is unchanged. Circulation 2002; 105: 2543–8

    Article  PubMed  CAS  Google Scholar 

  28. Undrovinas Al, Fleidervish IA, Makielski JC. Inward sodium current at resting potentials in single cardiac myocytes induced by the ischemic metabolite lysophosphatidylcholine. Circ Res 1992; 71: 1231–41

    Article  PubMed  CAS  Google Scholar 

  29. Ju YK, Saint DA, Gage PW. Hypoxia increases persistent sodium current in rat ventricular myocytes. J Physiol 1996; 497: 337–47

    PubMed  CAS  Google Scholar 

  30. Karmazyn M, Gan XH, Humphreys RA, et al. The myocardial Na+-H+ exchange: structure, regulation, and its role in heart disease. Circ Res 1999; 85: 777–86

    Article  PubMed  CAS  Google Scholar 

  31. Eigel BN, Hadley RW. Contribution of the Na+ channel and Na+/H+ exchanger to the anoxic rise of [Na+] in ventricular myocytes. Am J Physiol 1999; 277: H1817–22

    PubMed  CAS  Google Scholar 

  32. Schmidt TA, Kjeldsen K. Human myocardial Na,K-ATPase: quantification, regulation and relation to Ca. Cardiovasc Res 1998; 37: 335–45

    Article  PubMed  CAS  Google Scholar 

  33. Packer M. Sudden unexpected death in patients with congestive heart failure: a second frontier. Circulation 1985; 72: 681–5

    Article  PubMed  CAS  Google Scholar 

  34. Pogwizd SM. Nonreentrant mechanisms underlying spontaneous ventricular arrhythmias in a model of nonischemic heart failure in rabbits. Circulation 1995; 92: 1034–48

    Article  PubMed  CAS  Google Scholar 

  35. Pogwizd SM, Hoyt RH, Saffitz JE, et al. Reentrant and focal mechanisms underlying ventricular tachycardia in the human heart. Circulation 1992; 86: 1872–87

    Article  PubMed  CAS  Google Scholar 

  36. Pogwizd SM, McKenzie JP, Cain ME. Mechanisms underlying spontaneous and induced ventricular arrhythmias in patients with idiopathic dilated cardiomyopathy. Circulation 1998; 98: 2404–14

    Article  PubMed  CAS  Google Scholar 

  37. Pogwizd SM, Qi M, Yuan W, et al. Upregulation of Na+/Ca2+ exchanger expression and function in an arrhythmogenic rabbit model of heart failure. Circ Res 1999; 85: 1009–19

    Article  PubMed  CAS  Google Scholar 

  38. Vermeulen JT, McGuire MA, Opthof T, et al. Triggered activity and automaticity in ventricular trabeculae of failing human and rabbit hearts. Cardiovasc Res 1994; 28: 1547–54

    Article  PubMed  CAS  Google Scholar 

  39. Hobai IA, O’Rourke B. Enhanced Ca2-activated Na-Ca2 exchange activity in canine pacing-induced heart failure. Circ Res 2000; 87: 690–8

    Article  PubMed  CAS  Google Scholar 

  40. Studer R, Reinecke H, Bilder J, et al. Gene expression of the cardiac Na+-Ca2+-exchanger in end-stage human heart failure. Circ Res 1994; 90: 1441–58

    Google Scholar 

  41. Hasenfuss G, Schillinger W, Preuss M, et al. Relationship between Na+-Ca2+-exchanger protein levels and diastolic function of failing human myocardium. Circulation 1999; 99: 641–8

    Article  PubMed  CAS  Google Scholar 

  42. Janse MJ, Wit AL. Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol Rev 1989; 69: 1049–169

    PubMed  CAS  Google Scholar 

  43. Pogwizd SM, Corr PB. Reentrant and nonreentrant mechanisms contribute to arrhythmogenesis during early myocardial ischemia: results using three-dimensional mapping. Circ Res 1987; 61: 352–71

    Article  PubMed  CAS  Google Scholar 

  44. Pogwizd SM, Corr PB. Mechanisms underlying the development of ventricular fibrillation during early myocardial ischemia. Circ Res 1990; 66: 672–95

    Article  PubMed  CAS  Google Scholar 

  45. Furukawa T, Kimura S, Furukawa N, et al. Role of cardiac ATP-regulated potassium channels in differential responses of endocardial and epicardial cells to ischemia. Circ Res 1991; 68: 1693–702

    Article  PubMed  CAS  Google Scholar 

  46. McHowat J, Yamada KA, Wu J, et al. Recent insights pertaining to sarcolemmal phospholipid alterations underlying arrhythmogenesis in the ischemic heart. J Cardiovasc Electrophysiol 1993; 4: 288–310

    Article  PubMed  CAS  Google Scholar 

  47. Kléber A, Riegger CV, Janse MJ. Electrical uncoupling and increase in extracellular resistance after induction of ischemia in isolated, arterially perfused rabbit papillary muscle. Circ Res 1987; 61: 271–9

    Article  PubMed  Google Scholar 

  48. Beardslee MA, Lerner DL, Tadros PN, et al. Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circ Res 2000; 87: 656–62

    Article  PubMed  CAS  Google Scholar 

  49. Coetze WA, Opie LH. Effects of components of ischemia and metabolic inhibition on delayed after depolarizations in guinea pig papillary muscle. Circ Res 1987; 61: 157–65

    Article  Google Scholar 

  50. Ferrier GR, Moffat MP, Lukas A. Possible mechanisms of ventricular arrhythmias elicited by ischemia followed by reperfusion: studies on isolated canine ventricular tissues. Circ Res 1985; 56: 184–94

    Article  PubMed  CAS  Google Scholar 

  51. Xiao XH, Allen DG. Role of Na+/H+ exchanger during ischemia and preconditioning in the isolated rat heart. Circ Res 1999; 85: 723–30

    Article  PubMed  CAS  Google Scholar 

  52. Bountra C, Vaughan-Jones RD. Effect of intracellular and extracellular pH on contraction in isolated mammalian cardiac tissue. J Physiol 1989; 418: 163–87

    PubMed  CAS  Google Scholar 

  53. Yan GX, Kléber AG. Changes in extracellular and intracellular pH in ischemic rabbit papillary muscle. Circ Res 1992; 71: 460–70

    Article  PubMed  CAS  Google Scholar 

  54. Marban E, Kitakaze M, Koretsune Y, et al. Quantification of [Ca2]i in perfused hearts: critical evaluation of the 5F-BAPTA and nuclear magnetic resonance method as applied to the study of ischemia and reperfusion. Circ Res 1990; 66: 1255–67

    Article  PubMed  CAS  Google Scholar 

  55. Ch’En FFT, Vaughan-Jones RD, Clarke K, et al. Modeling myocardial ischemia and reperfusion. Prog Biophys Mol Biol 1998; 69: 515–38

    Article  PubMed  Google Scholar 

  56. Philipson KD, Ward R. Effects of fatty acids on Na+-Ca2+ exchange and Ca2+ permeability of cardiac sarcolemmal vesicles. J Biol Chem 1985; 260: 9666–71

    PubMed  CAS  Google Scholar 

  57. Pogwizd SM, Corr PB. Electrophysiologic mechanisms underlying arrhythmias due to reperfusion of ischemic myocardium. Circulation 1987; 76: 404–26

    Article  PubMed  CAS  Google Scholar 

  58. Woodcock EA, Arthur JF, Harrison SN, et al. Reperfusion-induced Ins (1,4,5)P3 generation and arrhythmogenesis require activation of the Na+/Ca2+ exchanger. J Mol Cell Cardiol 2001; 33: 1861–9

    Article  PubMed  CAS  Google Scholar 

  59. Goldhaber JI, Ji S, Lamp ST, et al. Effects of exogenous free radicals on electromechanical function and metabolism in isolated rabbit and guinea pig hearts. J Clin Invest 1989; 83: 1800–9

    Article  PubMed  CAS  Google Scholar 

  60. Goldhaber JI. Free radicals enhance Na+/Ca2+ exchange in ventricular myocytes. Am J Physiol 1996; 271: H823–33

    PubMed  CAS  Google Scholar 

  61. Barrington PL, Meier CF, Weglicki WB. Abnormal electrical activity induced by free radical generating systems in isolated cardiocytes. J Mol Cell Cardiol 1988; 20: 1163–78

    Article  PubMed  CAS  Google Scholar 

  62. Matsuura H, Shattock MJ. Membrane potential fluctuations and transient inward currents induced by reactive oxygen intermediates in isolated rabbit ventricular cells. Circ Res 1991; 68: 319–29

    Article  PubMed  CAS  Google Scholar 

  63. Josephson RA, Silverman HS, Lakatta EG, et al. Study of the mechanisms of hydrogen peroxide and hydroxyl free radical-induced cellular injury and calcium overload in cardiac myocytes. J Biol Chem 1991; 266: 2354–61

    PubMed  CAS  Google Scholar 

  64. Kaczorowski GJ, Slaughter RS, King VF, et al. Inhibitors of sodium-calcium exchange: identification and development of probes of transport activity. Biochim Biophys Acta 1989; 988: 287–302

    Article  PubMed  CAS  Google Scholar 

  65. Siegl PKS, Cragoe EJ, Trumble MJ, et al. Inhibition of Na+/Ca2+ exchange in membrane vesicle and papillary muscle preparations from guinea pig heart by analogs of amiloride. Proc Natl Acad Sci U S A 1984; 81: 3238–42

    Article  PubMed  CAS  Google Scholar 

  66. Murphy E, Perlman M, London RE, et al. Amiloride delays the ischemia-induced rise in cytosolic free calcium. Circ Res 1991; 68: 1250–8

    Article  PubMed  CAS  Google Scholar 

  67. Yoshizumi M, Kitagawa T, Masuda Y, et al. Effect of amiloride on ischaemia and reperfusion injury in isolated, perfused rat hearts. Scand Cardiovasc J 1998; 32: 167–72

    Article  PubMed  CAS  Google Scholar 

  68. Otani H, Kato Y, Ko T, et al. Effects of amiloride and an analogue on ventricular arrhythmias, contracture and cellular injury during reperfusion in isolated and perfused guinea pig heart. Jpn Circulation J 1991; 55: 845–56

    Article  CAS  Google Scholar 

  69. Duff HJ, Lester WM, Rahmberg M. Antiarrhythmic and electrophysiological activity in the dog. Circulation 1988; 78: 1469–77

    Article  PubMed  CAS  Google Scholar 

  70. Lotan CS, Miller SK, Pohost GM, et al. Amiloride in ouabain-induced acidification, inotropy and arrhythmia: 23Na & 31PNMR in perfused hearts. J Mol Cell Cardiol 1992; 24: 243–57

    Article  PubMed  CAS  Google Scholar 

  71. Bieleford DR, Hadley RW, Vassilev PM, et al. Membrane electrical properties of vesicular sodium-calcium exchange inhibitors in single atrial myocytes. Circ Res 1986; 59: 381–9

    Article  Google Scholar 

  72. Kleyman TR, Cragoe EJ. Amiloride and its analogs as tools in the study of ion transport. J Membr Biol 1988; 105: 1–21

    Article  PubMed  CAS  Google Scholar 

  73. Slaughter RS, Garcia ML, Cragoe Jr EJ, et al. Inhibition of sodium-calcium exchange in cardiac sarcolemmal vesicles: 1.mechanism of inhibition by amiloride analogues. Biochemistry 1988; 27: 2403–9

    Article  PubMed  CAS  Google Scholar 

  74. Murata Y, Harada K, Nakajima F, et al. Non-selective effects of amiloride and its analogues on ion transport systems and their cytotoxicities in cardiac myocytes. Jpn J Pharmacol 1995; 68: 279–85

    Article  PubMed  CAS  Google Scholar 

  75. Watano T, Kimura J, Morita T, et al. A novel antagonist, No. 7943, of the Na+/Ca2+ exchange current in guinea-pig cardiac ventricular cells. Br J Pharmacol 1996; 119: 555–63

    CAS  Google Scholar 

  76. Lipp P, Pott L. Voltage dependence of sodium-calcium exchange current in guinea-pig atrial myocytes determined by means of an inhibitor. J Physiol 1988; 403: 355–66

    PubMed  CAS  Google Scholar 

  77. Bush LR, Kaczorowski GJ, Siegl KS. Antiarrhythmic properties of dichlorobenzamil, a sodium-calcium exchange inhibitor. Circulation 1985; 72: III–313

    Article  Google Scholar 

  78. Murphy JG, Smith TW, Marsh JD. Mechanisms of reoxygenation-induced calcium overload in cultured chick embryo heart cells. Am J Physiol 1988; 254: HI 133–41

    Google Scholar 

  79. Floreani M, Tessari P, Debetto P, et al. Effects of N-chlorobenzyl analogues of amiloride on myocardial contractility, Na-Ca-exchange carrier and other cardiac enzymatic activities. Naunyn Schmiedebergs Arch Pharmacol 1987; 336: 661–9

    Article  PubMed  CAS  Google Scholar 

  80. Bollensdorf C, Zimmer T, Benndorf K. Amiloride derivatives are potent blockers of KATP channels. Naunyn Schmiedebergs Arch Pharmacol 2001; 364: 351–8

    Article  Google Scholar 

  81. Wettwer E, Himmel H, Ravens U. Amiloride derivatives as blockers of Na+/Ca2+ exchange: effects on mechanical and electrical function of guinea-pig myocardium. Pharmacol Toxicol 1992; 71: 95–102

    Article  PubMed  CAS  Google Scholar 

  82. de la Pena P, Reeves P. Inhibition and activation of Na+/Ca2+ exchange activity by quinacrine. Am J Physiol 1987; 252: C24–9

    PubMed  Google Scholar 

  83. Han X, Ferrier GR. Contribution of Na+-Ca2+ exchange to stimulation of transient inward current by isoproterenol in rabbit cardiac Purkinje fibers. Circ Res 1995; 76: 664–74

    Article  PubMed  CAS  Google Scholar 

  84. Garcia ML, Slaughter RS, King VF, et al. Inhibition of sodium-calcium exchange in cardiac sarcolemmal membrane vesicles. Biochemistry 1998; 27: 2410–5

    Article  Google Scholar 

  85. Li Z, Nicoll DA, Collins A, et al. Identification of a peptide inhibitor of the cardiac sarcolemmal Na+-Ca2+ exchanger. J Biol Chem 1991; 266: 1014–20

    PubMed  CAS  Google Scholar 

  86. Chin TK, Spitzer KW, Philipson KD, et al. The effect of exchanger inhibitory peptide (XIP) on sodium-calcium exchange current in guinea pig ventricular cells. Circ Res 1993; 72: 497–503

    Article  PubMed  CAS  Google Scholar 

  87. Iwamoto T, Watano T, Shigekawa M. A novel isothiourea derivative selectively inhibits the reverse mode of Na+/Ca2+ exchange in cells expressing NCX 1. J Biol Chem 1996; 271: 22391–7

    Article  PubMed  CAS  Google Scholar 

  88. Satoh H, Ginsburg KS, Qing K, et al. KB-R7943 of Ca2 influx via Na/Ca2 exchange does not alter twitches or glycoside inotropy but prevents Ca2 overload in rat ventricular myocytes. Circulation 2000; 101: 1441–6

    Article  PubMed  CAS  Google Scholar 

  89. Fujita S, Endoh M. Influence of a Na+-H+ exchange inhibitor ethylisopropylamiloride, a Na+-Ca2+ exchange inhibitor KB-R7943 and their combination on the increases in contractility and Ca2+ transient induced by angiotensin II in isolated adult rabbit ventricular myocytes. Naunyn Schmiedebergs Arch Pharmacol 1999; 360: 575–84

    Article  PubMed  CAS  Google Scholar 

  90. Yang H-T, Sakurai K, Sugawara H, et al. Role of Na+/Ca2+ exchange in endothelin-1-induced increases in Ca2+ transient and contractility in rabbit ventricular myocytes: pharmacological analysis with KB-R 7943. Br J Pharmacol 1999; 126: 1785–95

    Article  PubMed  CAS  Google Scholar 

  91. Mukai M, Terada H, Sugiyama S, et al. Effects of selective inhibitor of Na+/Ca2+ exchange, KB-R7943, on reoxygenation-induced injuries in guinea pig papillary muscles. J Cardiovasc Pharmacol 2000; 35: 121–8

    Article  PubMed  CAS  Google Scholar 

  92. Ladilov Y, Haffner C, Balser-Schafer H, et al. Cardioprotective effects of KB-R7943: a novel inhibitor of the reverse mode of Na+/Ca2+ exchanger. Am J Physiol 1999; 276: H1868–76

    PubMed  CAS  Google Scholar 

  93. Nakamura A, Harada K, Sugimoto H, et al. Effects of KB-7943, a novel Na+/Ca2+ exchange inhibitor, on myocardial ischemia/reperfusion injury. Nippon Yakurigaku Zasshi 1998; 111: 105–15

    Article  PubMed  CAS  Google Scholar 

  94. Imahashi K, Kusuoka H, Hashimoto K, et al. Intracellular sodium accumulation during ischemia as the substrate for reperfusion injury. Circ Res 1999; 84: 1401–6

    Article  PubMed  CAS  Google Scholar 

  95. Elias CL, Lukas A, Shurraw S, et al. Inhibition of Na+/Ca2+ exchange by KB-R7943: transport mode selectivity and anti-arrhythmic consequences. Am J Physiol 2001; 281: H1334–45

    CAS  Google Scholar 

  96. Lu HR, Yang P, Remeysen P, et al. Ischemia/reperfusion-induced arrhythmias in anaesthetized rats: a role of Na+ and Ca2+ influx. Eur J Pharmacol 1999; 365: 233–9

    Article  PubMed  CAS  Google Scholar 

  97. Yamamura K, Tani M, Hasegawa H, et al. Very low dose of the Na+/Ca2+ exchange inhibitor, KB-7943, protects ischemic reperfused aged Fischer 344 rat hearts: considerable strain difference in the sensitivity to KB-R 7943. Cardiovasc Res 2001; 52: 397–406

    Article  PubMed  CAS  Google Scholar 

  98. Kurogouchi F, Furukawa Y, Zhao D, et al. A Na+/Ca+ exchanger inhibitor, KB-R7943, caused negative inotropic responses and negative followed by positive chronotropic responses in isolated, blood-perfused dog heart preparations. Jpn J Pharmacol 2000; 82: 155–63

    Article  PubMed  CAS  Google Scholar 

  99. Despa S, Islam MA, Pogwizd SM, et al. Intracellular [Na+] and Na+ pump rate in rat and rabbit ventricular myocytes. J Physiol 2002; 539: 133–43

    Article  PubMed  CAS  Google Scholar 

  100. Bers DM. Cardiac Na/Ca exchange function in rabbit, mouse and man: what’s the difference?. J Mol Cell Cardiol 2002; 34: 364–73

    Article  CAS  Google Scholar 

  101. Kimura J, Watano T, Kawahara M, et al. Direction-independent block of bi-directional Na+/Ca2+ exchange current by KB-R7943 in guinea-pig cardiac myocytes. Br J Pharmacol 1999; 128: 969–74

    Article  PubMed  CAS  Google Scholar 

  102. Tanaka H, Nishimaru K, Aikawa T, et al. Effect of SEA0400, a novel inhibitor of sodium-calcium exchanger, on myocardial ionic currents. Br J Pharmacol 2002; 135: 1096–100

    Article  PubMed  CAS  Google Scholar 

  103. Matsuda T, Arakawa N, Takuma K, et al. SEA0400, a novel and selective inhibitor of the Na+-Ca2+ exchanger, attenuates reperfusion injury in the in vitro and in vivo cerebral ischemic models. J Pharmacol Exp Ther 2001; 298: 249–56

    PubMed  CAS  Google Scholar 

  104. Reuter H, Henderson SA, Han T, et al. Knockout mice for pharmacological screening: testing the specificity of Na+-Ca2+ exchange inhibitors. Circ Res 2002; 91: 90–2

    Article  PubMed  CAS  Google Scholar 

  105. Packer M, Carver JR, Rodeheffer RJ, et al. Effects of oral milrinone on mortality in severe chronic heart failure. N Engl J Med 1991; 325: 1468–75

    Article  PubMed  CAS  Google Scholar 

  106. Hasenfuss G. Alterations of calcium-regulatory proteins in heart failure. Cardiovasc Res 1998; 37: 279–89

    Article  PubMed  CAS  Google Scholar 

  107. Puglisi JL, Bers DM. LabHEART: an interactive computer model of rabbit ventricular myocytes ion channels and Ca transport. Am J Physiol 2001; 281: C2049–60

    CAS  Google Scholar 

  108. Luo C-H, Rudy Y. A dynamic model of the cardiac ventricular action potential: I. simulations of ionic currents and concentration changes. Circ Res 1994; 74: 1071–96

    CAS  Google Scholar 

  109. Priebe L, Beuckelmann DJ. Simulation study of cellular electric properties in heart failure. Circ Res 1998; 82: 1206–23

    Article  PubMed  CAS  Google Scholar 

  110. Winslow RL, Rice JJ, Jaffri S, et al. Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure: II. model studies. Circ Res 1999;84: 571-86

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This review and research work from the author herein was supported by NIH Grant HL-46929. The author thanks Dr Donald Bers for helpful discussions and critical review of this manuscript. The author has no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Pogwizd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pogwizd, S.M. Clinical Potential of Sodium-Calcium Exchanger Inhibitors as Antiarrhythmic Agents. Drugs 63, 439–452 (2003). https://doi.org/10.2165/00003495-200363050-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200363050-00001

Keywords

Navigation