Skip to main content
Log in

Intestinal Graft-Versus-Host Disease

Mechanisms and Management

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Allogeneic haematopoietic stem cell transplantation remains the treatment of choice for a number of malignancies. However, graft-versus-host disease (GVHD) has long been regarded as a serious complication of this procedure. Although GVHD may affect any organ, intestinal GVHD is particularly important because of its frequency, severity and impact on the general condition of the patient.

Recent studies have led to progressive elucidation of the mechanism of GVHD. Donor T cells are critical for the induction of GVHD, because depletion of T cells from bone marrow grafts effectively prevents GVHD but also results in an increase of leukaemia relapse. It has been shown that the gastrointestinal tract plays a major role in the amplification of systemic disease because gastrointestinal damage increases the translocation of endotoxins, which promotes further inflammation and additional gastrointestinal damage. Consequently, the management of intestinal GVHD (and the intestine itself) is a subject that should be highlighted.

In this article, approaches to the prevention of intestinal GVHD are discussed after being classified into three categories: regimens in common clinical use, regimens under investigation and original regimens used at our hospital. The standard regimen that is used most widely for prevention of GVHD is cyclosporin plus short-term methotrexate. Corticosteroids can be added to this regimen but careful consideration of the adverse effects of these hormones should be considered. Tacrolimus is a newer, more potent alternative to cyclosporin. T-cell depletion (TCD) after transplantation has been shown to prevent acute GVHD, however, the survival benefit of TCD has not been as great as expected. Mycophenolate mofetil can be useful for the treatment of acute GVHD as part of combination therapy. Regimens currently under investigation in animal experiments include suppression of inflammatory cytokines and inhibition of T-cell activation, and, specifically at our institution, hepatocyte growth factor gene therapy. The evidence-based therapy used at our institution includes systemic antibacterial therapy (including eradication of intestinal bacteria) to prevent the intestinal translocation of lipopolysaccharide and avoid the subsequent increase of various inflammatory cytokines. In addition, because of the similarities between intestinal GVHD and ulcerative colitis, sulfasalazine, betamethasone enemas and eicosapentaenoic acid have been used to treat intestinal GVHD in some patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I
Fig. 3
Fig. 4
Fig. 5
Table II

Similar content being viewed by others

References

  1. Childs R, Chernoff A, Contentin N, et al. Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell tansplantation. N Engl J Med 2000; 343: 750–8

    Article  PubMed  CAS  Google Scholar 

  2. Martin PJ, Hansen JA, Storb R, et al. Human marrow transplantation: an immunological perspective. Adv Immunol 1987; 40: 379–438

    Article  PubMed  CAS  Google Scholar 

  3. Ferrara JL, Deeg HJ. Graft-versus-host disease. N Engl J Med 1991; 325: 357–8

    Google Scholar 

  4. Vogelsang GB, Hess AD. Graft-versus-host disease: new directions for a persistent problem. Blood 1994; 84: 2061–7

    PubMed  CAS  Google Scholar 

  5. Hill GR, Ferrara JL. The primacy of the gastrointestinal tract as a target organ of acute graft-versus-host disease: rationale for the use of cytokine shields in allogeneic bone marrow transplantation. Blood 2000; 95: 2754–9

    PubMed  CAS  Google Scholar 

  6. Chao NJ. Graft-versus-host disease: the viewpoint from the donor T cell. Biol Blood Marrow Transplant 1997; 3: 1–10

    PubMed  CAS  Google Scholar 

  7. Ferrara JL, Levy R, Chao NJ. Pathophysiologic mechanisms of acute graft-vs.-host disease. Biol Blood Marrow Transplant 1995; 5: 347–56

    Article  Google Scholar 

  8. Nash RA, Pepe MS, Storb R, et al. Acute graft-versus-host disease: analysis of risk factors after allogeneic marrow transplantation and prophylaxis with cyclosporin and methotrexate. Blood 1992; 80: 1838–45

    PubMed  CAS  Google Scholar 

  9. Shlomchik WD, Couzens MS, Tang CB, et al. Prevention of graft versus host disease by inactivation of host antigenpresenting cells. Science 1999; 285: 412–5

    Article  PubMed  CAS  Google Scholar 

  10. Hill GR, Crawford JM, Cooke KR, et al. Total body irradiation and acute graft-versus-host disease: the role of gastrointestinal damage and inflammatory cytokines. Blood 1997; 90: 3204–13

    PubMed  CAS  Google Scholar 

  11. Hill GR, Teshima T, Gerbitz A, et al. Differential roles of IL-1 and TNF-alpha on graft-versus-host disease and graft versus leukemia. J Clin Invest 1999; 104: 459–67

    Article  PubMed  CAS  Google Scholar 

  12. Piguet PF, Grau GE, Allet B, et al. Tumor necrosis factor/ cachectin is an effector of skin and gut lesions of the acute phase of graft-vs.-host disease. JExp Med 1987; 166: 1280–9

    Article  CAS  Google Scholar 

  13. Holler E, Kolb HJ, Moller A, et al. Increased serum levels of tumor necrosis factor alpha precede major complications of bone marrow transplantation. Blood 1990; 75: 1011–6

    PubMed  CAS  Google Scholar 

  14. Antin JH, Weinstein HJ, Guinan EC, et al. Recombinant human interleukin-1 receptor antagonist in the treatment of steroid-resistant graft-versus-host disease. Blood 1994; 84: 1342–8

    PubMed  CAS  Google Scholar 

  15. Holler E, Kolb HJ, Mittermuller J, et al. Modulation of acute graft-versus-host-disease after allogeneic bone marrow transplantation by tumor necrosis factor alpha (TNF alpha) release in the course of pretransplant conditioning: role of conditioning regimens and prophylactic application of a monoclonal antibody neutralizing human TNF alpha (MAK 195 F). Blood 1995; 86: 890–9

    PubMed  CAS  Google Scholar 

  16. Cooke KR, Hill GR, Crawford JM, et al. Tumor necrosis factor-alpha production to lipopolysaccharide stimulation by donor cells predicts the severity of experimental acute graftversus-host disease. J Clin Invest 1998; 102: 1882–91

    Article  PubMed  CAS  Google Scholar 

  17. Hattori K, Hirano T, Miyajima H, et al. Differential effects of anti-Fas ligand ad anti-tumor necrosis factor a antibodies on acute graft-versus-host disease pathologies. Blood 1998; 91: 4051–5

    PubMed  CAS  Google Scholar 

  18. Lin T, Brunner T, Tietz B, et al. Fas ligand-mediated killing by intestinal intraepithelial lymphocytes. Participation in intestinal graft-versus-host disease. J Clin Invest 1998; 101: 570–7

    CAS  Google Scholar 

  19. Stuber E, Buschenfeld A, von Freier A, et al. Intestinal crypt cell apoptosis in murine acute graft versus host disease is mediated by tumor necrosis factor alpha and not by the FasL-Fas interaction: effect of pentoxifylline on the development of mucosal atrophy. Gut 1999; 45: 229–35

    Article  PubMed  CAS  Google Scholar 

  20. Baker MB, Altman NH, Podack ER, et al. The role of cell-mediated cytotoxicity in acute GVHD after MHC-matched allogeneic bone marrow transplantation in mice. J Exp Med 1996; 183: 2645–56

    Article  PubMed  CAS  Google Scholar 

  21. Storb R, Deeg HJ, Whitehead J, et al. Methotrexate and cyclosporin compared with cyclosporine alone for prophylaxis of acute graft versus host disease after marrow transplantation for leukemia. N Engl J Med 1986; 314: 729–35

    Article  PubMed  CAS  Google Scholar 

  22. Borel JF, Fewer C, Magnee C, et al. Effects of the new anti-lymphocytic peptide cyclosporin A in animals. Immunology 1977; 32: 1017–25

    PubMed  CAS  Google Scholar 

  23. Borel JF, Feurer C, Gubler HU, et al. Biological effects of cyclosporin A: a new antilymphocytic agent. Agents Actions 1994; 43: 179–86

    Article  PubMed  CAS  Google Scholar 

  24. Liu J, Farmer JD, Lane WS, et al. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 1991; 66: 807–15

    Article  PubMed  CAS  Google Scholar 

  25. Fruman DA, Klee CB, Bierer BE, et al. Calcineurin phosphatase activity in T lymphocytes is inhibited by FK506 and cyclosporin A. Proc Natl Acad Sci USA 1992; 89: 3686–90

    Article  PubMed  CAS  Google Scholar 

  26. O'keefe SJ, Tamura J, Kincaid RL, et al. FK-506-and CsA-sensitive activation of the interleukin-2 promoter by calcineurin. Nature 1992; 357: 692–4

    Article  PubMed  Google Scholar 

  27. Shibasaki F, Price ER, Milan D, et al. Role of kinases and the phosphatase calcineurin in the nuclear shutting of transcription factor NF-AT4. Nature 1996; 382: 370–3

    Article  PubMed  CAS  Google Scholar 

  28. Lazarus HM, Vogelsang GB, Rowe JM. Prevention and treatment of acute graft-versus-host disease: the old and the new. A report from the Eastern Cooperative Oncology Group (ECOG). Bone Marrow Transplant 1997; 19: 577–600

    PubMed  CAS  Google Scholar 

  29. Forman SJ, Blume KG, Krance RA, et al. A prospective randomized study of acute graft-v-host disease in 107 patients with leukemia: methotexate/ prednisone v cyclosporin/prednisone. Transplant Proc 1987; 19: 2605–7

    PubMed  CAS  Google Scholar 

  30. Santos GW, Tutschka PJ, Brookmeyer R, et al. Cyclosporin plus methyl-prednisolone versus cyclophosphamide plus methylprednisolone as prophylaxis for graft-versus-host disease: a randomized double-blind study in patients undergoing allogeneic marrow transplantation. Clin Transplantation 1987; 1: 21–8

    Google Scholar 

  31. Chao NJ, Schmidt GM, Niland JC, et al. Cyclosporin, methotrexate, and prednisone compared with cyclosporin and prednine foprophylaxis of acute graft-versus-host disease. N Engl J Med 1993; 329: 1225–30

    Article  PubMed  CAS  Google Scholar 

  32. Deeg HJ, Lin D, Leisenring W, et al. Cyclosporin or cyclosporin plus methylprednisolone for prophylaxis of graft-versus-host disease: a prospective, randomized trial. Blood 1997; 89: 3880–7

    PubMed  CAS  Google Scholar 

  33. Zikos P, Van Lint MT, Frassoni F, et al. Low transplant mortality in allogeneic bone marrow transplantation for acute myeloid leukemia: a randomized study of low-dose cyclosporin versus low-dose cyclosporin and low-dose methotrexate. Bood 1998; 91: 3503–8

    CAS  Google Scholar 

  34. Evans RM. The steroid and thyroid hormone receptor superfamily. Science 1988; 240: 889–95

    Article  PubMed  CAS  Google Scholar 

  35. Bamberger CM, Schulte HM, Chrousos GP. Molecular determinants of gluco-corticoid receptor function and tissue sensitivity to glucocorticoids. Endocr Rev 1996; 17: 245–61

    PubMed  CAS  Google Scholar 

  36. Pratt WB, Toft DO. Steroid receptor interactions with heat shock protein and immunophilin chaperons. Endocr Rev 1997; 18: 303–60

    Article  Google Scholar 

  37. Yang-Yen HF, Chambard JC, Sun YL, et al. Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct proteinprotein interaction. Cell 1990; 62: 1205–15

    Article  PubMed  CAS  Google Scholar 

  38. Ray A, Prefontaine KE. Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proc Natl Acad Sci USA 1994 Jan 18; 91(2): 752–6

    Article  PubMed  CAS  Google Scholar 

  39. Heck S, Bender K, Kullmann M, et al. I kappaB alpha-independent downregulation of NF-kappaB activity by glucocorticoid receptor. EMBO J 1997; 16: 4698–707

    Article  PubMed  CAS  Google Scholar 

  40. Kino T, Hatanaka H, Hashimoto M, et al. FK-506, a novel immunosuppressant isolated a Streptomyces. I. Fermentation, isolation, and physicochemical and biological characteristics. J Antibiot (Tokyo) 1987; 40: 1249–55

    CAS  Google Scholar 

  41. Starzl TE, Todo S, Fung J, et al. FK506 for liver, kidney, and pancreas transplantation. Lancet 1989; 28: 1000–4

    Article  Google Scholar 

  42. Tocci MJ, Matkovich DA, Collier KA, et al. The immunosuppressant FK506 selectively inhibits expression of early T cell activation genes. J Immunol 1989; 143: 718–26

    PubMed  CAS  Google Scholar 

  43. Ratanatharathorn V, Nash RA, Przepiorka D, et al. Phase III study comparing methotrexate and tacrolimus (prograf, FK506) with methotrexate and cyclosporin for graft-versus-host disease prophylaxis after HLA-identical sibling. Blood 1998; 92: 2303–14

    PubMed  CAS  Google Scholar 

  44. Nash RA, Antin JH, Karanes C, et al. Phase 3 study comparing methotrexate and tacrolimus with methotrexate and cyclosporine for prophylaxis of acute graft-versus-host disease after marrow transplantation from unrelated donors. Blood 2000; 96: 2062–8

    PubMed  CAS  Google Scholar 

  45. Hiraoka A, Ohashi Y, Okamoto S, et al. Phase III study comparing tacrolimus (FK506) with cyclosporin for graft-versushost disease prophylaxis after allogeneic bone marrow transplantation. Bone Marrow Transplant 2001; 28: 181–5

    Article  PubMed  CAS  Google Scholar 

  46. Przepiorka D, Devine S, Fay J, et al. Practical considerations in the use of tacrolimus for allogeneic marrow transplantation. Bone Marrow Transplant 1999; 24: 1053–6

    Article  PubMed  CAS  Google Scholar 

  47. Kernan NA, Flomenberg N, Dupont B, et al. Graft rejection in recipients of T-cell-depleted HLA-nonidentical marrow transplants for leukemia: identification of host-derived anti-donor allocytotoxic T lymphocytes. Transplantation 1987; 43: 842–7

    PubMed  CAS  Google Scholar 

  48. Reisner Y, Kapoor N, Kirkpatrick D, et al. Transplantation for acute leukaemia with HLA-A and B nonidentical parental marrow cells fractionated with soybean agglutinin and sheep red blood cells. Lancet 1981; 2: 327–31

    Article  PubMed  CAS  Google Scholar 

  49. Hale G, Cobbold S, Waldmann H. T cell depletion with CAMPATH-1 in allogeneic bone marrow transplantation. Transplantation 1988; 45: 753–9

    Article  PubMed  CAS  Google Scholar 

  50. Maraninchi D, Gluckman E, Blaise D, et al. Impact of T-cell depletion on outcome of allogeneic bone marrow transplantation for standard-risk leukaemias. Lancet 1987; 2: 175–8

    Article  PubMed  CAS  Google Scholar 

  51. Prentice HG, Blacklock HA, Janossy G, et al. Depletion of T lymphocytes in donor marrow prevents significant graftversus-host disease in matched allogeneic leukaemic marrow transplant recipients. Lancet 1984; 1: 472–6

    Article  PubMed  CAS  Google Scholar 

  52. Soiffer RJ, Fairclough D, Robertson M, et al. CD6-depleted allogeneic bone marrow transplantation for acute leukemia in first complete remission. Blood 1997; 89: 3039–47

    PubMed  CAS  Google Scholar 

  53. Bunjes D, Hertenstein B, Wiesneth M, et al. In vivo/ex vivo T cell depletion reduces the morbidity of allogeneic bone marrow transplantation in patients with acute leukaemias in first remission without increasing the risk of treatment failure: comparison with cyclosporin/methotrexate. Bone Marrow Transplant 1995; 15: 563–8

    PubMed  CAS  Google Scholar 

  54. Drobyski WR, Ash RC, Casper J, et al. Effect of T-cell depletion as graft-versus-host disease prophylaxis on engraftment, relapse, and disease-free survival in unrelated marrow transplantation for chronic myelogenous leukemia. Blood 1994; 83: 1980–7

    PubMed  CAS  Google Scholar 

  55. Oakhill A, Pamphilon DH, Potter MN, et al. Unrelated donor bone marrow transplantation for children with relapsed acute lymphoblastic leukaemia in second complete remission. Br J Haematol 1996; 94: 574–8

    Article  PubMed  CAS  Google Scholar 

  56. Allison AC, Almquist SJ, Muller CD, et al. In vitro immunosuppressive effects of mycophenoic acid and an ester prodrug, RS-61443. Transplant Proc 1991; 23: 10–4

    PubMed  CAS  Google Scholar 

  57. Allison AC, Eugui EM. Purine metabolism and immunosuppressive effects of mycophenolate mofetil (MMF). Clin Transplant 1996; 10: 77–84

    PubMed  CAS  Google Scholar 

  58. Basara N, Blau WI, Romer E, et al. Mycophenolate mofetil for the treatment of acute and chronic GVHD in bone marrow transplant patients. Bone Marrow Transplant 1998; 22: 61–5

    Article  PubMed  CAS  Google Scholar 

  59. Ferrara JL. Monoclonal antibody and receptor antagonist therapy for GVHD. Cancer Treat Res 1999; 101: 331–68

    Article  PubMed  CAS  Google Scholar 

  60. Hill GR, Cooke KR, Teshima T, et al. Interleukin-11 promotes T cell polarization and prevents acute graft-versus-host disease after allogeneic bone marrow transplantation. J Clin Invest 1998; 102: 115–23

    Article  PubMed  CAS  Google Scholar 

  61. Krijanovski OI, Hill GR, Cooke KR, et al. keratinocyte growth factor separates graft-versus-leukemia effects from graftversus-host disease. Blood 1999; 94: 825–31

    PubMed  CAS  Google Scholar 

  62. Teshima T, Hill GR, Pan L, et al. IL-11 separates graft-versus-leukemia effects from graft-versus-host disease after bone marrow transplantation. J Clin Invest 1999; 104: 317–25

    Article  PubMed  CAS  Google Scholar 

  63. Cooke KR, Gerbitz A, Crawford JM, et al. LPS antagonism reduces graft-versus-host disease and preserves graft-versus-leukemia activity after experimental bone marrow transplantation. J Clin Invest 2001; 107: 1581–9

    Article  PubMed  CAS  Google Scholar 

  64. Antin JH, Lee SJ, Neuberg D, et al. A phase I/II double-blind, placebo-controlled study of recombinant human interleukin-11 for mucositis and acute GVHD prevention in allogeneic stem cell transplantation. Bone Marrow Transplant 2002; 29: 373–7

    Article  PubMed  CAS  Google Scholar 

  65. Kobbe G, Schneider P, Rohr U, et al. Treatment of severe steroid refractory acute graft-versus-host disease with infliximab, a chimeric human/mouse antiTNFalpha antibody. Bone Marrow Transplant 2001; 28: 47–9

    Article  PubMed  CAS  Google Scholar 

  66. Chiang KY, Abhyankar S, Bridges K, et al. Recombinant human tumor necrosis factor receptor fusion protein as complementary treatment for chronic graft-versus-host disease. Transplantation 2002; 73: 665–7

    Article  PubMed  CAS  Google Scholar 

  67. Fraser JD, Straus D, Weiss A. Signal transduction events leading to T-cell lymphokine gene expression. Immunol Today 1993; 14: 357–62

    Article  PubMed  CAS  Google Scholar 

  68. Toyooka K, Maruo S, Iwahori T, et al. CD28 co-stimulatory signals induce IL-2 receptor expression on antigen-stimulated virgin T cells by an IL-2-independent mechanism. Int Immunol 1996; 8: 159–66

    Article  PubMed  CAS  Google Scholar 

  69. Mueller DL, Jenkins MK, Schwartz RH. Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 1989; 7: 445–80

    Article  PubMed  CAS  Google Scholar 

  70. Schwartz RH. A cell culture model for T lymphocyte clonal anergy. Science 1990; 248: 1349–56

    Article  PubMed  CAS  Google Scholar 

  71. Harding FA, McArthur JG, Gross JA, et al. CD28-mediated signalling co-stimulates mutine T cells and prevents induction of anergy in T-cell clones. Nature 1992; 356: 607–9

    Article  PubMed  CAS  Google Scholar 

  72. Liu Y, Linsley PS. Costimulation of T-cell growth. Curr Opin Immunol 1992; 4: 265–70

    Article  PubMed  CAS  Google Scholar 

  73. Linsley PS, Ledbetter JA. The role of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol 1993; 11: 191–212

    Article  PubMed  CAS  Google Scholar 

  74. June CH, Bluestone JA, Nadler LM, et al. The B7 and CD28 receptor families. Immunol Today 1994; 15: 321–31

    Article  PubMed  CAS  Google Scholar 

  75. Anasetti C, Martin PJ, Storb R, et al. Treatment of acute graft-versus-host disease with a nonmitogenic anti-CD3 monoclonal antibody. Transplantation 1992; 54: 844–51

    Article  PubMed  CAS  Google Scholar 

  76. Freeman GJ, Borriello F, Hodes RJ, et al. Uncovering of functional alternative CTLA-4 counter-receptor in B7-deficient mice. Science 1993; 262: 907–9

    Article  PubMed  CAS  Google Scholar 

  77. Lenschow DJ, Zeng Y, Thistlethwaite JR, et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4Ig. Science 1992; 257: 751

    Article  Google Scholar 

  78. Blazar BR, Sharpe AH, Taylor PA, et al. Infusion of anti-B7.1 (CD80) and anti-B7.2 (CD86) monoclonal antibodies inhibits murine graft-versus-host disease lethality in part via direct effects on CD4+ and CD8+ T cells. J Immunol 1996; 157: 3250–9

    PubMed  CAS  Google Scholar 

  79. Przepiorka D, Kernan NA, Ippoliti C, et al. Daclizumab, a humanized anti-interleukin-2 receptor alpha chain antibody, for treatment of acute graft-versus-host disease. Blood 2000; 95: 83–9

    PubMed  CAS  Google Scholar 

  80. Takatsuka H, Takemoto Y, Okamoto T, et al. The levels of soluble P-selectin, von Willebrand factor and thrombomodulin in patients with neurological complications after allogeneic bone marrow transplantation. Bone Marrow Transplant 1998; 21: 809–13

    Article  PubMed  CAS  Google Scholar 

  81. Takatsuka H, Takemoto Y, Okamoto T, et al. Thrombotic microangiopathy following allogeneic bone marrow transplantation. Bone Marrow Transplant 1999; 24: 303–6

    Article  PubMed  CAS  Google Scholar 

  82. Takatsuka H, Takemoto Y, Okamoto T, et al. Predicting the severity of graft-versus-host disease from interleukin-10 levels after bone marrow transplantation. Bone Marrow Transplant 1999; 24: 1005–7

    Article  PubMed  CAS  Google Scholar 

  83. Takatsuka H, Takemoto Y, Okamoto T, et al. Adult respiratory distress syndrome-like disorders after allogeneic bone marrow transplantation. Transplantation 1999; 68: 1343–7

    Article  PubMed  CAS  Google Scholar 

  84. Yamada S, Takatsuka H, Takemoto Y, et al. Association of cytomegalovirus interstitial pneumonitis with HLA-type following allogeneic bone marrow transplantation. Bone Marrow Transplant 2000; 25: 861–5

    Article  PubMed  CAS  Google Scholar 

  85. Fujimori Y, Takatsuka H, Takemoto Y, et al. Elevated interleukin (IL)-18 levels during acute graft-versus-host disease after allogeneic bone marrow transplantation. Br J Haematol 2000; 109: 652–7

    Article  PubMed  CAS  Google Scholar 

  86. Yamada S, Takatsuka H, Takemoto Y, et al. Similarity between multiple sclerosis and idiopathic central nervous system dysfunction after bone marrow transplantation. Hematology 2001; 6: 125–9

    Google Scholar 

  87. Takatsuka H, Takemoto Y, Yamada S, et al. Cytokines and cytomegalovirus disease following allogeneic bone marrow transplantation. Hematology 2001; 6: 271–8

    Google Scholar 

  88. Takatsuka H, Takemoto Y, Yamada S, et al. Similarity between eruptions induced by sulfhydryl drugs and acute cutaneous graft-versus-host disease after bone marrow transplantation. Hematology 2002; 7: 55–7

    Article  PubMed  CAS  Google Scholar 

  89. Takatsuka H, Takemoto Y, Yamada S, et al. Complications after bone marrow transplantation are manifestations of systemic inflammatory response syndrome. Bone Marrow Transplant 2000; 26: 419–26

    Article  PubMed  CAS  Google Scholar 

  90. Yamada S, Takatsuka H, Takemoto Y, et al. Urinary trypsin inhibitor concentration can predict the immunological insult of chemotherapy and complications after bone marrow transplantation. Bone Marrow Transplant 2001; 27: 195–9

    Article  PubMed  CAS  Google Scholar 

  91. Ogawa M. Mechanisms of the development of organ failure following surgical insult: the ‘second attack’ theory. Clin Intensive Care 1996; 7: 34–8

    Google Scholar 

  92. Yamada S, Takatsuka H, Takemoto Y, et al. Acute colonic graft-versus-host disease and ulcerative colitis with respect to cytokines. Hematology 2001; 6: 315–20

    Google Scholar 

  93. Watanabe M, Watanabe N, Iwao Y, et al. The serum factor from patients with ulcerative colitis that induce T cell proliferation in the mouse thymus is interleukin-7. J Clin Immunol 1997; 17: 282–92

    Article  PubMed  CAS  Google Scholar 

  94. Watanabe M, Ueno Y, Yajima T, et al. Interleukin 7 transgenic mice develop chronic colitis with decreased interleukin 7 protein accumulation in the colonic mucosa. J Exp Med 1998; 187: 389–402

    Article  PubMed  CAS  Google Scholar 

  95. Takatsuka H, Yamada S, Okamoto T, et al. Predicting the severity of intestinal graft-versus-host disease from leukotriene B4 levels after bone marrow transplantation. Bone Marrow Transplant 2000; 26: 1313–6

    Article  PubMed  CAS  Google Scholar 

  96. Sharon P, Stenson WF. Enhanced synthesis of leukotriene B4 by colonie mucosa in inflammatory bowel disease. Gastroenterology 1984; 86: 453–60

    PubMed  CAS  Google Scholar 

  97. Roberts WG, Simon TJ, Berlin RG, et al. Leukotriene in ulcerative colitis: results of a multicenter trial of a leukotriene biosynthesis inhibitor, MK-591. Gastroenterology 1997 112: 725–32

    Article  PubMed  CAS  Google Scholar 

  98. Wanders A, Tufveson G, Gerdin B. Enhancement of the effect of low-dose cyclosporin A by sulphasalazine in prevention of cardiac allograft rejection in the rat. Transpl Int 1992; 5: 155–8

    PubMed  CAS  Google Scholar 

  99. Okada M, Okamoto T, Yamada S, et al. Successful treatment of chronic graft-versus-host disease with sulfasalazine in allogeneic bone marrow transplantation. Acta Haematol 1999; 102: 107–9

    Article  PubMed  CAS  Google Scholar 

  100. Wada H, Mori A, Okada M, et al. Treatment of intestinal graft-versus-host disease using betamethasone enemas. Transplantation 2001; 72: 1451–3

    Article  PubMed  CAS  Google Scholar 

  101. Chetty N, Vickers JD, Kinlough-Rathbone RL, et al. Eicosapentaenoic acid interferes with U46619-stimulated formation of inositol phosphates in washed rabbit platelets. Thromb Haemost 1989; 62: 1116–20

    PubMed  CAS  Google Scholar 

  102. Harker LA, Kelly AB, Hanson SR, et al. Interruption of vascular thrombus formation and vascular lesion formation by dietary n-3 fatty acids in fish oil in nonhuman primates. Circulation 1993; 87: 1017–29

    Article  PubMed  CAS  Google Scholar 

  103. Endres S, Ghorbani R, Kelley V, et al. The effect of dietary supplementation with n-3 poly-unsaturated fatty acid on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N Engl J Med 1989; 320: 265–71

    Article  PubMed  CAS  Google Scholar 

  104. Kinsella JE, Lokesh B, Broughton S, et al. Dietary polyunsaturated fatty acids and eicosanoids: potential effects on the modulation of inflammatory and immune cells: an overview. Nutrition 1990; 6: 24–44

    PubMed  CAS  Google Scholar 

  105. Meydani SN, Endres S, Woods M, et al. Oral (n-3) fatty acid supplementation suppresses cytokine production and lymphocyte proliferation: comparison between young and older women. J Nutrition 1991; 121: 547–55

    CAS  Google Scholar 

  106. Fisher M, Upchurch KS, Levine PH, et al. Effects of dietary fish oil supplementation on polymorphonuclear leukocyte inflammatory potential. Inflammation 1986; 10: 387–92

    Article  PubMed  CAS  Google Scholar 

  107. Shimokawa H, Vanhoutte PM. Dietary omega 3 fatty acids and endothelium-dependent relaxations in porcine coronary arteries. Am J Physiol 1989; 256: H968–73

    PubMed  CAS  Google Scholar 

  108. Lawson DL, Mehta JL, Saldeen K, et al. Omega-3 polyunsaturated fatty acids augment endothelium-dependent vasorelaxation by enhanced released of EDRF and vasodilator prostaglandins. Eicosanoids 1991; 4: 217–23

    PubMed  CAS  Google Scholar 

  109. Takatsuka H, Takemoto Y, Iwata N, et al. Oral eicosapentaenoic acid for complications of bone marrow transplantation. Bone Marrow Transplant 2001; 28: 769–74

    Article  PubMed  CAS  Google Scholar 

  110. Takatsuka H, Takemoto Y, Yamada S, et al. Oral eicosapentaenoic acid for acute colonie graft-versus-host disease after bone marrow transplantation. Drugs Expt Clin Res 2002. In press

  111. Nakamura T, Nawa K, Ichihara A. Partial purification and characterrization of hepatocyte growth factor from serum of hepatectomized rats. Biochem Biophys Res Commun 1984; 122: 1450–9

    Article  PubMed  CAS  Google Scholar 

  112. Nakamura T, Nishizawa T, Hagiya M, et al. Molecular cloning and expression of human hepatocyte growth factor. Nature 1989; 342: 440–3

    Article  PubMed  CAS  Google Scholar 

  113. Kawaida K, Matsumoto K, Shimazu H, et al. Hepatocyte growth factor prevents acute renal failure and accelerates renal regeneration in mice. Proc Natl Acad Sci USA 1994; 91: 4357–61

    Article  PubMed  CAS  Google Scholar 

  114. Ohmichi H, Matsumoto K, Nakamura T. In vivo mitogenic action of HGF on lung epithelial cells: pulmotrophic role in lung regenaration. Am J Physiol 1996; 14: L1031–9

    Google Scholar 

  115. Kato Y, Yu D, Lukish JR, et al. Influence of luminar hepatocytee growth factor on small intestine mucosa in vivo. J Surg Res 1997; 71: 49–53

    Article  PubMed  CAS  Google Scholar 

  116. Bardelli A, Longati P, Albero D, et al. HGF receptor associates with anti-apoptotic protein BAG-1 and prevents cell death. EMBOJ 1996; 15: 6205–12

    CAS  Google Scholar 

  117. Kmiecik TE, Keller JR, Rosen E, et al. Hepatocyte growth factor is a synergistic factor for growth of hematopoietic progenitor cells. Blood 1992; 80: 2454–7

    PubMed  CAS  Google Scholar 

  118. Matsuda Y, Matsumoto K, Ichida T, et al. Hepatocyte growth factor prevents liver cirrhosis caused by dimethylnitrosamine in rats. J Biochem 1995; 118: 643–9

    Article  PubMed  CAS  Google Scholar 

  119. Okamoto T, Takatsuka H, Fujimori Y, et al. Increased hepatocyte growth factor in serum in acute graft-versus-host disease. Bone Marrow Transplant 2001; 28: 197–200

    Article  PubMed  CAS  Google Scholar 

  120. Takayama H, LaRochelle WJ, Sharp R, et al. Diverse tumorgenesis associated withaberrant development in mice overexpressing hepatocyte growth factor/scatter factor. Proc Natl Acad Sci USA 1997; 94: 701–6

    Article  PubMed  CAS  Google Scholar 

  121. Kuroiwa T, Kakishita E, Hamano T, et al. Hepatocyte growth factor ameliorates acute graft-versus-host disease and promotes hematopoietic function. JClin Invest 2001; 107: 1365–73

    Article  CAS  Google Scholar 

  122. Terdiman JP, Linker CA, Ries CA, et al. The role of endoscopic evaluation in patients with suspected intestinal graft-versus-host disease after allogeneic bone-marrow transplantation. Endoscopy 1996; 28: 680–5

    Article  PubMed  CAS  Google Scholar 

  123. Ponec RJ, Hackman RC, McDonald GB. Endoscopic and histology diagnosis of intestinal graft-versus-host disease after marrow transplantation. Gastrointest Endosc 1999; 49: 612–21

    Article  PubMed  CAS  Google Scholar 

  124. Donnelly LF, Morris CL. Acute graft-versus-host disease in children: abdominal CT findings. Radiology 1996; 199: 265–8

    PubMed  CAS  Google Scholar 

  125. Klein SA, Martin H, Schreiber-Dietrich D, et al. A new approach to evaluating intestinal acute graft-versus-host disease by transabdominal sonography and colour Doppler imaging. Br J Haematol 2001; 115: 929–34

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors have provided no information on sources of funding or on conflicts of interest directly relevant to the content of this review/study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Takatsuka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takatsuka, H., Iwasaki, T., Okamoto, T. et al. Intestinal Graft-Versus-Host Disease. Drugs 63, 1–15 (2003). https://doi.org/10.2165/00003495-200363010-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200363010-00001

Keywords

Navigation