Skip to main content
Log in

The Role of COX-2 Inhibitors in Pain Modulation

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

NSAIDs are the analgesics that are most commonly used world-wide. In the past few years, there have been significant advances in explaining the mechanism of action and clinical efficacy of the drugs belonging to this pharmacological family. Recent data relating to the role of cyclo-oxygenase (COX)-2 in the development of neuronal hyperexcitability and pain hypersensitivity have opened new perspectives in our understanding of the therapeutic effects of these drugs in several painful conditions. The main objective of this brief review is to deal with some physiopathological and pharmacological aspects concerning the role of NSAIDs, with special reference to COX-2 inhibitors, in the treatment of pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science 2000; 288: 1765–8

    Article  PubMed  CAS  Google Scholar 

  2. Samad TA, Moore KA, Sapirstein A, et al. Interleukin-1beta-mediated induction of COX-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature 2001; 410: 471–5

    Article  PubMed  CAS  Google Scholar 

  3. Baba H, Kohno T, Moore KA, et al. Direct activation of rat spinal dorsal horn neurons by prostaglandin E 2. J Neurosci 2001; 21: 1750–6

    PubMed  CAS  Google Scholar 

  4. Cashman JN. The mechanism of action of NSAIDs in analgesia. Drugs 1996; 52 Suppl. 5: 13–23

    Article  PubMed  CAS  Google Scholar 

  5. Steinmeyer J. Pharmacological basis for the therapy of pain and inflammation with nonsteroidal anti-inflammatory drugs. Arthritis Res 2000; 2: 379–85

    Article  PubMed  CAS  Google Scholar 

  6. Woolf CJ, Thompson S. The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states. Pain 1991; 44: 293–9

    Article  PubMed  CAS  Google Scholar 

  7. Beiche F, Scheurer S, Brune K, et al. Upregulation of COX-2 mRNA in the rat spinal cord following peripheral inflammation. FEBS Lett 1996; 390: 165–9

    Article  PubMed  CAS  Google Scholar 

  8. Sorkin LS, Xiao WH, Wagner R, et al. Tumor necrosis factor-alpha induces ectopic activity in nociceptive primary afferent fibers. Neuroscience 1997; 81: 255–62

    Article  PubMed  CAS  Google Scholar 

  9. Junger H, Sorkin LS. Nociceptive and inflammatory effects of subcutaneous TNF-α. Pain 2000; 85: 145–51

    Article  PubMed  CAS  Google Scholar 

  10. Laflamme N, Lacroix S, Rivest S. An essential role of interleukin-1 beta in mediating NF-κB activity and COX-2 transcription in cells of the blood brain barrier in response to a systemic and localized inflammation but not during endotoxemia. J Neurosci 1999; 19: 10923–30

    PubMed  CAS  Google Scholar 

  11. Samad TA, Sapirstein A, Woolf CJ. Prostanoids and pain: unraveling mechanisms and revealing therapeutic targets. Trends Mol Med 2002; 8: 390–6

    Article  PubMed  CAS  Google Scholar 

  12. Matsumura K, Cao C, Ozaki M, et al. Brain endothelial cells express cyclooxygenase-2 during lipopolysaccharide-induced fever: light and electron microscopic immunocytochemical studies. J Neurosci 1998; 18 Suppl 16: 6279–89

    PubMed  CAS  Google Scholar 

  13. Smith CJ, Zhang Y, Koboldt CM, et al. Pharmacological analysis of cyclooxygenase-1 in inflammation. Proc Natl Acad Sci USA 1998; 15: 13313–8

    Article  Google Scholar 

  14. Malmberg AB, Yaksh TL. Hyperalgesia mediated by spinal glutamate or substance P receptor blocked by spinal cyclooxygenase inhibition. Science 1992; 257: 1276–9

    Article  PubMed  CAS  Google Scholar 

  15. Hinz B, Brune K. Cyclooxygenase-2 —10 years later. J. Pharmacol Exp Ther 2002; 300: 367–75

    Article  PubMed  CAS  Google Scholar 

  16. Willingale HL, Gardiner NJ, Mclymont N, et al. Prostanoids synthesized by cyclo-oxygenase isoforms in rat spinal cord and their contribution to the development of neuronal hyperexcitability. Br J Pharmacol 1997; 122: 1593–1604

    Article  PubMed  CAS  Google Scholar 

  17. Turnbach ME, Spraggins DS, Randich A. Spinal administration of prostaglandin E2 or prostaglandin F primarily produces mechanical hyperalgesia that is mediated by nociceptive specific spinal dorsal horn neurons. Pain 2002; 97: 33–45

    Article  PubMed  CAS  Google Scholar 

  18. McCormack K. Non-steroidal anti-inflammatory drugs and spinal nociceptive processing. Pain 1994; 59: 9–43

    Article  PubMed  CAS  Google Scholar 

  19. Quattrini M, Paladin S. A double-blind study comparing nimesulide with naproxen in the treatment of osteoarthrosis of the hip. Clin Drug Invest 1995; 10: 139–46

    Article  CAS  Google Scholar 

  20. Hosie J, Distel M, Bluhmki E. Meloxicam in osteoarthritis. A six month, double-blind comparison with diclofenac sodium. Br J Rheumatol 1996; 35 Suppl. 1: 39–43

    CAS  Google Scholar 

  21. Lightfoot R. Comparison of the efficacy and safety of etodolac and piroxicam in patients with rheumatoid arthritis. J. Rheumatol 1997; 24 Suppl.47: 10–16

    Google Scholar 

  22. Emery P, Zeidler H, Kvien TK, et al. Celecoxib versus diclofenac in long-term management of rheumatoid arthritis: double-blind comparison. Lancet 1999; 354: 2106–11

    Article  PubMed  CAS  Google Scholar 

  23. Bombardier C, Laine L, Reicin A, et al., for the VIGOR Study Group. Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. N Engl J Med 2000; 343: 1520–8

    Article  PubMed  CAS  Google Scholar 

  24. Silverstein FE, Faich G, Goldstein JL, et al. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study: a randomized controlled trial. JAMA 2000; 284: 1247–55

    Article  PubMed  CAS  Google Scholar 

  25. Simon LS, Weaver AL, Graham DY, et al. Anti-inflammatory and upper gastrointestinal effects of celecoxib in rheumatoid arthritis. JAMA 1999; 282: 1921–8

    Article  PubMed  CAS  Google Scholar 

  26. Langman MJ, Jensen DM, Watson DJ, et al. Adverse upper gastrointestinal effects of rofecoxib compared with NSAIDs. JAMA 1999; 282: 1929–33

    Article  PubMed  CAS  Google Scholar 

  27. Ormrod D, Wellington K, Wagstaff AJ. Valdecoxib. Drugs 2002; 62: 2059–71

    Article  PubMed  CAS  Google Scholar 

  28. Vane JR. Towards a better aspirin. Nature 1994; 367: 215–6

    Article  PubMed  CAS  Google Scholar 

  29. Vane JR, Botting RM. New insights into the mode of action of anti-inflammatory drugs. Inflamm Res 1995; 44: 1–10

    Article  PubMed  CAS  Google Scholar 

  30. Frölich JC. A classification of NSAIDs according to the relative inhibition of cyclooxygenase isoenzymes. Trends Pharmacol Sci 1997; 18: 30–4

    Article  PubMed  Google Scholar 

  31. van Ryn J, Pairet M. Clinical experience with cyclooxygenase-2 inhibitors. Inflamm Res 1999; 48: 247–54

    Article  PubMed  Google Scholar 

  32. Warner TD, Giuliano F, Vojnovic I, et al. Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclooxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proc Natl Acad Sci USA 1999; 96: 7563–8

    Article  PubMed  CAS  Google Scholar 

  33. Tavares IA, Bishai PM, Bennett A. Activity of nimesulide on constitutive and inducible cyclooxygenase. Arzneimittel Forschung 1995; 45: 1093–5

    PubMed  CAS  Google Scholar 

  34. Grossman CJ, Wiseman J, Lucas FS, et al. Inhibition of constitutive and inducible cyclooxygenase activity in human platelets and mononuclear cells by NSAIDs and COX-2 inhibitors. Inflamm Res 1995; 44: 253–7

    Article  PubMed  CAS  Google Scholar 

  35. Famaey JP. In vitro and in vivo pharmacological evidence of selective cyclooxygenase-2 inhibition by nimesulide: an overview. Inflamm Res 1997; 46: 437–46

    Article  PubMed  CAS  Google Scholar 

  36. Fitzgerald D, McCrory C. Pharmacology of COX-2 inhibition in man. Anti-inflammatory and analgesic effects of nimesulide. Drugs Today 2001; 37 Suppl B: 15–20

    CAS  Google Scholar 

  37. Bevilacqua M, Vago T, Beretta A. Nimesulide as inhibitor of superoxide anions (O2-) production by human polymorphonuclear leucocytes. Pain Reproduct 1988; 31: 265–72

    Google Scholar 

  38. Casolaro V, Meliota S, Marino O, et al. Nimesulide, a sulfoanilide nonsteroidal anti-inflammatory drug, inhibits mediator release from human basophiles and mast cells. J Pharmacol Exp Ther 1994; 267: 1375–85

    Google Scholar 

  39. Ferreira SH. The role of interleukins and nitric oxide in the mediation of inflammatory pain and its control by peripheral analgesics. Drugs 1993; 46 Suppl 1: 1–9

    Article  PubMed  CAS  Google Scholar 

  40. Di Battista JA, Fahmi H, He Y, et al. Differential regulation of interleukin-1b-induced cyclooxygenase-2 gene expression by nimesulide in human synovial fibroblasts. Clin Exp Rheumatol 2001; 19 Suppl 22: 3–5S

    Google Scholar 

  41. Bennett A, Villa G. Nimesulide: an NSAID that preferentially inhibits COX-2, and has various unique pharmacological activities. Exp Opin Pharmacother 2000; 1: 277–86

    Article  CAS  Google Scholar 

  42. Bevilacqua M, Vago T, Baldi G, et al. Nimesulide decreases superoxide production by inhibiting phosphodiesterase type IV Eur J Pharmacol 1994; 268: 415–23

    Article  PubMed  CAS  Google Scholar 

  43. Capecchi PL, Ceccatelli L, Beermann U, et al. Inhibition of neutrophil function in vitro by nimesulide. Preliminary evidence of an adenosine mediated mechanism. Arzneimittel Forschung 1993; 43: 992–6

    CAS  Google Scholar 

  44. Azab A, Fraifeld V, Kaplanski J. Nimesulide prevents lipopolysaccharide-induced elevation in plasma tumor necrosis factor-alfa in rats. Life Sci 1998; 63: 323–7

    Article  Google Scholar 

  45. Bennett A. Nimesulide: a well-established cyclooxygenase-2 inhibitor with many other pharmacological properties relevant to inflammatory diseases. In: Vane J, Botting RM, editors. Therapeutic roles of selective COX-2 inhibitors. London: William Harvey Press, 2001: 524–40

    Google Scholar 

  46. Wober W Comparative efficacy and safety of nimesulide and diclofenac in patients with acute shoulder, and a meta-analysis of controlled studies with nimesulide. Rheumatology 1999; 38 Suppl. 1: 33–8

    Article  PubMed  CAS  Google Scholar 

  47. Rainsford KD. An analysis from clinico-epidemiological data of the principal adverse events from COX-2 selective NSAID, nimesulide, with particular reference to hepatic injury. Inflammopharmacology 1998; 6: 203–21

    Article  PubMed  CAS  Google Scholar 

  48. McCormack KJ, Brune K. Dissociation between the antinociceptive and anti-inflammatory effects of the nonsteroidal anti-inflammatory drugs: a survey of their analgesic efficacy. Drugs 1991; 41: 533–47

    Article  PubMed  CAS  Google Scholar 

  49. Voilley N, deWeille J, Mamet J, et al. Nonsteroidal anti-inflammatory drugs inhibit both the activity and inflammation-induced expression of acid-sens in ion channels in nociceptors. J Neurosci 2001; 21: 8026–33

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic Camu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camu, F., Shi, L. & Vanlersberghe, C. The Role of COX-2 Inhibitors in Pain Modulation. Drugs 63 (Suppl 1), 1–7 (2003). https://doi.org/10.2165/00003495-200363001-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200363001-00002

Keywords

Navigation