Skip to main content
Log in

Can Antiarrhythmic Agents be Selected Based on Mechanism of Action?

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

When selecting an antiarrhythmic agent the clinician needs to be able to accurately predict the probability that a particular drug will serve its intended purpose in a given patient. This is difficult because of the complexity of variables which govern the relationship between drug administration and clinical outcome. The efficacy of a drug may potentially be predicted from its mechanism of action. At least two classifications of antiarrhythmic agents based on mechanism of action have been proposed. The Vaughan Williams classification is based on the predominant electrophysiological effects of a drug on the action potential. In the Sicilian Gambit approach, a number of potential targets (‘vulnerable parameters’) for drug action are identified and antiarrhythmic drugs or substances that affect cardiac electrophysiology are characterised by their actions on each of these. The usefulness of these classification systems in predicting antiarrhythmic drug efficacy are limited. Furthermore, in the Vaughan Williams classification not all drugs in the same class have identical effects, whereas some drugs in different classes have overlapping actions. The Sicilian Gambit requires in-depth knowledge regarding cellular and molecular targets of antiarrhythmic agents which may make it intimidating or simply impractical for regular clinical use. Surrogate measures such as 24-hour Holter monitoring and programmed electrical stimulation have been used to predict anti-arrhythmic drug efficacy. However, studies such the Cardiac Arrhythmia Suppression Trial (CAST) have shown that suppression of ventricular ectopy on Holter monitoring does not necessarily correlate with improved survival and may in fact be dangerous. Conversely, studies using programmed electrical stimulation to assess drug effect on variables such as tachycardia inducibility, refractory period and ventricular tachycardia cycle length show that suppression of tachycardia inducibility, prolongation of refractory period and prolongation of ventricular tachycardia cycle length, are all associated with reduced recurrence of tachycardia and possibly improved survival. The most practical use of the current classification systems applied to antiarrhythmic agents may be in their ability to predict with reasonable accuracy, the risk and type of proarrhythmia based on the mechanism of action of an agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Burns M, Barr A, Greene M, et al. VT/VF begets VT/VF: modeling of ventricular arrhythmia patterns using a Weibull distribution. PACE 1998; 21(4): 971

    Google Scholar 

  2. Greene M, Geist M, Paquette M, et al. Electrical storm in ICD patients is a common, unpredictable but treatable phenomenon. Can J Cardiol 1996; 12: 94E

    Google Scholar 

  3. Vaughan Williams EM. Classification of antiarrhythmic drugs. In: Sandoe E, Flenstedt-Jensen E, Olesen KH, editors. Symposium on cardiac arrhythmias. Sodertalje, Sweden: A.B. Astra, 1970: 440–69

    Google Scholar 

  4. Singh BN, Vaughan Williams EM. A third class of antiarrhythmic action: effects on atrial and ventricular intracellular potentials, and other pharmacological actions on cardiac muscle, of MJ1999 and AH 3474. Br J Pharmacol 1970; 39: 675–87

    Article  PubMed  CAS  Google Scholar 

  5. Singh BN, Vaughan Williams EM. A fourth class of anti-dysrhythmic action: effect of verapamil on ouabain toxicity, on atrial and ventricular intracellular potentials, and on other features of cardiac function. Cardiovasc Res 1972; 6: 109–19

    Article  PubMed  CAS  Google Scholar 

  6. Singh BN, Hauswirth O. Comparative mechanisms of action of antiarrhythmic drugs. Am Heart J 1974; 87: 367–77

    Article  PubMed  CAS  Google Scholar 

  7. Harrison DC. Is there a rational basis for the modified classification of antiarrhythmic drugs? In: Morganroth J, Moore EN, editors. Cardiac arrhythmias: new therapeutic drugs and devices. Boston: Martinus Nijhoff, 1985: 36–48

    Chapter  Google Scholar 

  8. Podrid PJ. Amiodarone: reevaluation of an old drug. Ann Intern Med 1995; 122: 689–700

    PubMed  CAS  Google Scholar 

  9. Teo KK, Yusuf S, Furberg CD. Effects of prophylactic antiarrhythmic drug therapy in acute myocardial infarction: an overview of results from randomized controlled trials. JAMA 1993; 270: 1589–95

    Article  PubMed  CAS  Google Scholar 

  10. Bloch-Thomsen PE. Progress in clinical trials: DIAMOND (Danish Investigations of Arrhythmia and Mortality on Dofetilide). Clin Cardiol 1998; 21: 53–4

    Google Scholar 

  11. Waldo AL, Camm AJ, deRuter H, et al. Effect of d-sotalol on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction. The SWORD Investigators. Survival with oral d-sotalol. Lancet 1996; 348: 7–12

    CAS  Google Scholar 

  12. Task Force of the Working Group on Arrhythmias of the European Society of Cardiology. The Sicilian Gambit: a new approach to the classification of antiarrhythmic drugs based on their actions on arrhythmogenic mechanisms. Circulation 1991; 84: 1831–51

    Article  Google Scholar 

  13. Rosen, MR. Consequences of the Sicilian Gambit. Eur Heart J 1995; 16 Suppl. G: 32–6

    Article  PubMed  Google Scholar 

  14. Schwartz PJ, Priori SG, Locati EH, et al. Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate. Implications for gene-specific therapy. Circulation 1995; 92: 3381–6

    CAS  Google Scholar 

  15. Morady F, Kou WH, Kadish AH, et al. Antagonism of quini-dine’s electrophysiologic effects by epinephrine in patients with ventricular tachycardia. J Am Coll Cardiol 1988; 12: 388–94

    Article  PubMed  CAS  Google Scholar 

  16. Newman D, Dorian P, Feder-Elituv R. Isoproterenol antagonizes drug-induced prolongation of action potential duration in humans. Can J Physiol Pharmacol 1993; 71: 755–60

    Article  PubMed  CAS  Google Scholar 

  17. Kennedy HL. Beta-blocker prevention of proarrhythmia and proischemia: clues from CAST, CAMIAT, and EMIAT. Am J Cardiol 1997; 80: 1208–11

    Article  PubMed  CAS  Google Scholar 

  18. Kääb S, Nuss HB, Chiamvimonvat N, et al. Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ Res 1996; 78: 262–73

    Article  PubMed  Google Scholar 

  19. Jazayeri MR, Van Whye G, Avitall B, et al. Isoproterenol reversal of antiarrhythmic effects in patients with inducible sustained ventricular tachyarrhythmias. J Am Coll Cardiol 1989; 14:705–11

    Article  PubMed  CAS  Google Scholar 

  20. Pfisterer ME, Kiowski W, Branner H, et al. Long terni benefit of 1-year amiodarone treatment for persistent complex ventricular arrhythmias after myocardial infarction. Circulation 1993; 87: 309–11

    Article  PubMed  CAS  Google Scholar 

  21. Epstein AE, Hallstrom AP, Rogers WJ, et al. Mortality following ventricular arrhythmia suppression by encainide, flecainide and moricizine after myocardial infarction. The original design concept of the Cardiac Arrhythmia Suppression Trial (CAST). JAMA 1993; 270: 2451–5

    PubMed  CAS  Google Scholar 

  22. Nademanee K, Feld G, Hendrickson J, et al. Electrophysiologic and antiarrhythmic effects of sotalol in patients with life-threatening ventricular tachyarrhythmias. Circulation 1985; 72: 555–64

    Article  PubMed  CAS  Google Scholar 

  23. Veltri EP, Reid P, Platia EV, et al. Amiodarone in the treatment of life-threatening ventricular tachycardia: role of Holter monitoring in predicting long-term clinical efficacy. J Am Coll Cardiol 1985; 6: 806–13

    Article  PubMed  CAS  Google Scholar 

  24. Veltri EP, Griffith LSC, Platia E, et al. The use of ambulatory monitoring in the prognostic evaluation of patients with sustained ventricular tachycardia treated with amiodarone. Circulation 1986; 74: 1054–60

    Article  PubMed  CAS  Google Scholar 

  25. Nasir N, Jr, Doyle TK, Wheeler SH, et al. Usefulness of Holter monitoring in predicting efficacy of amiodarone therapy for sustained ventricular tachycardia associated with coronary artery disease. Am J Cardiol 1994; 73: 554–8

    Article  PubMed  Google Scholar 

  26. Sokoloff NM, Spielman SR, Greenspan AM, et al. Utility of ambulatory electrocardiographic monitoring for predicting recurrence of sustained ventricular tachyarrhythmias in patients receiving amiodarone. J Am Coll Cardiol 1986; 7: 938–41

    Article  PubMed  CAS  Google Scholar 

  27. Kim SG, Felder SD, Fifura I, et al. Value of Holter monitoring in predicting long-term efficacy and inefficacy of amiodarone used alone and in combination with class 1A antiarrhythmic agents in patients with ventricular tachycardia. J Am Coll Cardiol 1987; 9: 169–74

    Article  PubMed  CAS  Google Scholar 

  28. Mason JW, Winkle RA. Electrode-catheter arrhythmia induction in the selection and assessment of antiarrhythmic drag therapy for recurrent ventricular tachycardia. Circulation 1978; 58: 971–85

    Article  PubMed  CAS  Google Scholar 

  29. Mason JW, for the Electrophysiologic Study versus Electrocardiographic Monitoring Investigators. A comparison of electrophysiologic testing with holter monitoring to predict antiarrhythmic drug efficacy for ventricular tachyarrhythmias. N Engl J Med 1993; 329: 445–51

    Article  PubMed  CAS  Google Scholar 

  30. Mitchell LB, Duff HJ, Gillis AM, et al. A randomized clinical trial of the noninvasive and invasive approaches to drag therapy or ventricular tachycardia: long-term follow-up of the Calgary trial. Prog Cardiovasc Dis 1996; 38: 377–84

    Article  PubMed  CAS  Google Scholar 

  31. Waller TJ, Kay HR, Spielman SR, et al. Reduction in sudden death and total mortality by antiarrhythmic therapy evaluated by electrophysiologic drug testing: criteria of efficacy in patients with sustained ventricular tachyarrhythmia. J Am Coll Cardiol 1987; 10: 83–9

    Article  PubMed  CAS  Google Scholar 

  32. Rodriguez LM, Sternick EB, Smeets JLRM, et al. Induction of ventricular fibrillation predicts sudden death in patients treated with amiodarone because of ventricular tachyarrhythmias after a myocardial infarction. Heart 1996; 75: 23–8

    Article  PubMed  CAS  Google Scholar 

  33. Horowitz LN, Greenspan AM, Spielman SR, et al. Usefulness of electrophysiologic testing in evaluation of amiodarone therapy for sustained ventricular tachyarrhythmias associated with coronary heart disease. Am J Cardiol 1985; 55: 367–71

    Article  PubMed  CAS  Google Scholar 

  34. Kadish AH, Buxton AE, Waxman HL, et al. Usefulness of electrophysiologic study to determine the clinical tolerance of arrhythmia recurrences during amiodarone therapy. J Am Coll Cardiol 1987; 10: 90–6

    Article  PubMed  CAS  Google Scholar 

  35. Dorian P, Newman D, Berman N, et al. Sotalol and type IA drags in combination prevent recurrence of sustained ventricular tachycardia. J Am Coll Cardiol 1993; 22: 106–13

    Article  PubMed  CAS  Google Scholar 

  36. Mitchell LB, Wyse DG, Duff HJ. Programmed electrical stimulation studies for ventricular tachycardia induction in humans. I. The role of ventricular functional refractoriness in tachycardia induction. J Am Coll Cardiol 1986; 8: 567–75

    CAS  Google Scholar 

  37. Kus T, Costi P, Dubuc M, et al. Prolongation of ventricular refractoriness by class Ia antiaarrhythmic drugs in the prevention of ventricular tachycardia induction. Am Heart J 1990; 120: 855–63

    Article  PubMed  CAS  Google Scholar 

  38. Gillis AM, Wyse DG, Duff HJ, et al. Drug response at electropharmacologic study in patients with ventricular tachyarrhythmias: the importance of ventricular refractoriness. J Am Coll Cardiol 1991; 17: 914–20

    Article  PubMed  CAS  Google Scholar 

  39. Karagounis LA, Anderson JL, Allen A, et al. Electrophysiologic effects of antiarrhythmic drag therapy in the prediction of successful suppression of induced ventricular tachycardia. Am Heart J 1995; 129: 343–9

    Article  PubMed  CAS  Google Scholar 

  40. Mason JW, for the Electrophysiologic Study versus Electrocardiographic Monitoring Investigators. A comparison of seven antiarrhythmic drugs in patients with ventricular tachyarrhythmias. N Engl J Med 1993; 329: 452–8

    Article  PubMed  CAS  Google Scholar 

  41. The CASCADE Investigators. Randomized antiarrhythmic drag therapy in survivors of cardiac arrest (the CASCADE study). Am J Cardiol 1993; 72: 280–7

    Article  Google Scholar 

  42. Furakawa T, Rozanski JJ, Moroe K, et al. Efficacy of procainamide on ventricular tachycardia: relation to prolongation of refractoriness and slowing of conduction. Am Heart J 1989; 118:702–8

    Article  Google Scholar 

  43. Singh BN, Kehoe R, Woosley RL, et al. The Sotalol Multicenter Study Group. Multicenter trial of sotalol compared with procainamide in the suppression of inducible ventricular tachycardia: a double-blind, randomized parallel evaluation. Am Heart J 1995; 129:87–97

    Article  PubMed  CAS  Google Scholar 

  44. Sager PT, Uppal P, Follmer C, et al. Frequency-dependent electrophysiologic effects of amiodarone in humans. Circulation 1993; 88: 1063–71

    Article  PubMed  CAS  Google Scholar 

  45. Chiamvimonvat N, Gillis AM, Mitchell LB, et al. Determinants of prolongation of ventricular tachycardia cycle length by amiodarone. PACE 1991; 14: 618

    Article  Google Scholar 

  46. Tai C-T, Chen S-A, Feng A-N, et al. Electropharmacologic effects of class I and class III antiarrhythmia drags on typical atrial flutter. Insights into the mechanism of termination. Circulation 1998; 97: 1935–45

    CAS  Google Scholar 

  47. Stambler BS, Wood MA, Ellenbogen KA. Antiarrhythmic actions of intravenous ibutilide compared with procainamide during human atrial flutter and fibrillation. Electrophysiological determinants of enhanced conversion efficacy. Circulation 1997; 96: 4298–306

    CAS  Google Scholar 

  48. Colatsky JJ, Follmer CH, Starmer CF. Channel specificity in antiarrhythmic drag action: mechanism of potassium channel block and its role in suppressing and aggravating cardiac arrhythmias. Circulation 1990; 82: 2235–42

    Article  PubMed  CAS  Google Scholar 

  49. Lee SD, Newman D, Ham M, et al. Electrophysiologic mechanisms of antiarrhythmic efficacy of a sotalol and class Ia drug combination: elimination of reverse use dependence. J Am Coll Cardiol 1997; 29: 100–5

    Article  PubMed  CAS  Google Scholar 

  50. Sanguinetti MC, Jurkiewicz NK. Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol 1990; 96: 195–215

    CAS  Google Scholar 

  51. Nattel S, Liu L, St-Georges D. Effects of the novel antiarrhythmic agent azimilide on experimental atrial fibrillation and atrial electrophysiologic properties. Cardiovasc Res 1998; 37: 627–35

    Article  PubMed  CAS  Google Scholar 

  52. Boutitie F, Boissel JP, Connolly SJ, et al., and the EMIAT & CAMIAT Investigators. Amiodarone interaction with β-blockers: analysis of the mCamm AJ, Cairns JA, Julian DG, Gent M, Janse MJ, Dorian P, Frangin Gerged EMIAT (European Myocardial Infarct Amiodarone Trial) and CAMIAT (Canadian Amiodarone Myocardial Infarction Trial) databases. Circulation 1999; 99: 2268–75

    Article  PubMed  CAS  Google Scholar 

  53. Sager PT, Follmer C, Uppal P, et al. The effects of beta-adrenergic stimulation on the frequency-dependent electrophysiologic actions of amiodarone and sematilide in humans. Circulation 1994; 90: 1811–9

    Article  PubMed  CAS  Google Scholar 

  54. Gillis AM, Traboulsi M, Hii JTY, et al. Antiarrhythmic drug effects on QT interval dispersion in patients undergoing electropharmacologic testing for ventricular tachycardia and fibrillation. Am J Cardiol 1998; 81: 588–93

    Article  PubMed  CAS  Google Scholar 

  55. Freedman RA, Karagounis LA, Steinberg JS. Effects of sotalol on the signal-averaged electrocardiogram in patients with sustained ventricular tachycardia: relation to suppression of inducibility and changes in tachycardia cycle length. J Am Coll Cardiol 1992; 20: 1213–19

    Article  PubMed  CAS  Google Scholar 

  56. Anderson KP, Bigger JT, Jr, Freedman RA. Electrocardio-graphic predictors in the ESVEM trial: unsustained ventricular tachycardia, heart period variability, and the signal-averaged electrocardiogram. Prog Cardiovasc Dis 1996; 38: 463–88

    Article  PubMed  CAS  Google Scholar 

  57. Flaker GC, Blackshear JL, McBride R, et al. Antiarrhythmic drug therapy and cardiac mortality in atrial fibrillation. J Am Coll Cardiol 1992; 20: 527–32

    Article  PubMed  CAS  Google Scholar 

  58. Moosvi AR, Goldstein S, Wanderbreg PS. Effect of empiric antiarrhythmic therapy in resuscitated out-of-hospital cardiac arrest victims with coronary artery disease. Am J Cardiol 1990; 65: 1192–7

    Article  PubMed  CAS  Google Scholar 

  59. Nattel S. Experimental evidence for proarrhythmic mechanisms of antiarrhythmic drugs. Cardiovasc Res 1998; 37: 567–77

    Article  PubMed  CAS  Google Scholar 

  60. Roden DM. Ionic mechanisms for prolongation of refractoriness and their proarrhythmic and antiarrhythmic correlates. Am J Cardiol 1996; 78 Suppl. 4A: 12–6

    Article  PubMed  CAS  Google Scholar 

  61. Morganroth J. Risk factors for the development of proarrhythmic events. Am J Cardiol 1987; 59: 32E–37E

    Article  PubMed  CAS  Google Scholar 

  62. Ranger S, Nattel S. Determinants and mechanisms of frecainide-induced promotion of ventricular tachycardia in anesthetized dogs. Circulation 1995; 92: 1300–11

    Article  PubMed  CAS  Google Scholar 

  63. Restivo M, Yin H, Caref EB, et al. Reentrant arrhythmias in the subacute infarction period. The proarrhythmic effect of felcainide acetate on functional circuits. Circulation 1995; 91: 1236–46

    CAS  Google Scholar 

  64. Coromilas J, Saltman AE, Waldecker B, et al. Electrophysiological effects of flecainide on anisotropic conduction and reentry in infarcted canine hearts. Circulation 1995; 91: 2245–63

    Article  PubMed  CAS  Google Scholar 

  65. Elharrar V, Zipes DP. Cardiac electrophysiologic alterations during myocardial ischemia. Am J Physiol 1977; 233: H329–45

    PubMed  CAS  Google Scholar 

  66. Janse MJ, Wit AL. Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol Rev 1989; 69: 1049–169

    PubMed  CAS  Google Scholar 

  67. Elharrar V, Gau WE, Zipes DP. Effect of drugs on conduction delay and incidence of ventricular arrhythmias induced by acute coronary occlusion in dogs. Am J Cardiol 1977; 39: 544–9

    Article  PubMed  CAS  Google Scholar 

  68. Carson DL, Cardinal R, Savard P, et al. Relationship between an arrhythmogenic action of lidocaine and its effects on excitation patterns in acutely ischemic porcine myocardium. J Cardiovasc Pharmacol 1986; 8: 126–36

    Article  PubMed  CAS  Google Scholar 

  69. Starmer CF, Lastra AA, Nesterenko VV, et al. Proarrhythmic response to sodium channel blockade. Theoretical model and numerical experiments. Circulation 1991; 84: 1364–77

    CAS  Google Scholar 

  70. Starmer CF, Biktashev VN, Romashko DN, et al. Vulnerability in an excitable medium: analytical and numerical studies of initiating unidirectional propagation. Biophys J 1993; 65: 1775–87

    Article  PubMed  CAS  Google Scholar 

  71. Krishnan SC, Antzelevitch C. Flecainide-induced arrhythmia in canine ventricular epicardium — Phase 2 reentry? Circulation 1993; 87: 562–72

    Article  PubMed  CAS  Google Scholar 

  72. Greenberg UM, Dwyer EM, Jr, Hochman JS, et al. Interaction of ischaemia and encainide/flecainide treatment: a proposed mechanism for the increased mortality in CAST I. Br Heart J 1995; 74: 631–5

    Article  PubMed  CAS  Google Scholar 

  73. January CT, Riddle JM. Early afterdepolarizations: newer insights into cellular mechanisms. Circ Res 1989; 64: 977–90

    Article  PubMed  CAS  Google Scholar 

  74. Volders PGA, Kulcsar A, Vos MA, et al. Similarities between early and delayed afterdepolarizations induced by isoproterenol in canine ventricular myocytes. Cardiovasc Res 1997; 34: 348–59

    Article  PubMed  CAS  Google Scholar 

  75. Restivo M, Caref EB, Choi B-R, et al. Bradycardia dependent non-uniform repolarization gradients in a guinea-pig model of long QT syndrome (LQTS). Circulation 1997; 96: 1554

    Google Scholar 

  76. Zhou Z, Studenik C, January CT. Properties of E-4031-induced early afterdepolarizations in rabbit ventricular myocytes: Studies using a perforated patch method. In: Vereecke J, van Bogaert PP, Verdonck F, editors. Potassium channels in normal and pathological conditions. Leuven: Leuven University Press, 1995: 375–79

    Google Scholar 

  77. Makielski JC, January CT. Proarrhythmia related to prolongation of repolarization: mechanisms, monitoring, prevention, and management. Cardiac Electrophysiol Review 1998; 2: 132–5

    Article  Google Scholar 

  78. Hirano Y, Moscucci A, January CT. L-type Ca2+ “ window” current in heart cells: separation from slowly inactivating current. Circ Res 1992; 70: 445–55

    Article  PubMed  CAS  Google Scholar 

  79. Shorofsky S, January CT. Single channel recordings of L- and T-type Ca2+ current in cardiac Purkinje cells: evidence for “window” currents. Circ Res 1992; 70: 456–64

    Article  PubMed  CAS  Google Scholar 

  80. Zhou Z, Studenik C, January CT. Mechanisms of early afterdepolarization induced by block of Ikr. Circulation 1995; 92:1–435

    Article  Google Scholar 

  81. El-Sherif N, Chinushi M, Caref EB, et al. Electrophysiological mechanism of the characteristic electrocardiographic; morphology of torsades de pointes tachyarrhythmias in the long-QT syndrome: detailed analysis of ventricular tridimensional activation patterns. Circulation 1997; 96: 4392–9

    Article  PubMed  CAS  Google Scholar 

  82. Hii JTY, Wyse DG, Gillis AM, et al. Precordial QT interval dispersion as a marker of torsade de pointes. Disparate effects of class Ia antiarrhythmic drugs and amiodarone. Circulation 1992; 86: 1376–12

    Article  PubMed  CAS  Google Scholar 

  83. Cui G, Sen L, Sager P, et al. Effects of amiodarone, sematilide, and sotalol on QT dispersion. Am J Cardiol 1994; 74: 896–900

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Dorian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lau, W., Newman, D. & Dorian, P. Can Antiarrhythmic Agents be Selected Based on Mechanism of Action?. Drugs 60, 1315–1328 (2000). https://doi.org/10.2165/00003495-200060060-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200060060-00006

Keywords

Navigation