Skip to main content
Log in

Effects of β-Blockers on Neurohormonal Activation in Patients with Congestive Heart Failure

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The effect of β-adrenoceptor antagonists (β-blockers) on neurohormonal activation in patients with congestive heart failure has been the subject of study in numerous small clinical trials. Short term therapy with β-blockers is associated with a variable acute neurohormonal response which may be determined by the pharmacology of the agent under study and the baseline characteristics of the patient population. Long term therapy with β-blockers devoid of intrinsic sympathomimetic activity (partial agonist activity) is associated with evidence of decreased plasma markers of activation of the sympathetic nervous system, the renin-angiotensin system, and endothelin-1. β1-Selective and nonselective β-blockers appear to be associated with evidence of decreased neurohormonal activation, with differential effects on β-adrenoceptor density. Agents with partial agonist activity appear to differ from pure antagonists, with some studies reporting evidence of increased neurohormonal activation. The mechanisms by which β-blockers reduce neurohormonal activation and the clinical relevance of changes in adrenergic function to their use in the treatment of heart failure require further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I
Table II
Fig. 3

Similar content being viewed by others

References

  1. Packer M. Pathophysiology of chronic heart failure. [review]. Lancet 1992; 340(8811): 88–92

    Article  PubMed  CAS  Google Scholar 

  2. Katz SD. Mechanisms and implications of endothelial dysfunction in congestive heart failure. Curr Opin Cardiol 1997; 12(3): 259–64

    Article  PubMed  CAS  Google Scholar 

  3. Pfeffer MA. Angiotensin-converting enzyme inhibition in congestive heart failure: benefit and perspective. Am Heart J 1993; 126 (3 Pt 2): 789–93

    Article  PubMed  CAS  Google Scholar 

  4. Cohn JN, Levine TB, Olivari MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 1984; 311(13): 819–23

    Article  PubMed  CAS  Google Scholar 

  5. Chidsey CA, Braunwald E, Morrow AG. Catecholamine excretion and cardiac stores of norepinephrine in congestive heart failure. Am J Med 1965; 39: 442–51

    Article  PubMed  CAS  Google Scholar 

  6. Oren RM, Roach PJ, Schobel HP, et al. Sympathetic responses of patients with congestive heart failure to cold pressor stimulus. Am J Cardiol 1991; 67(11): 993–1001

    Article  PubMed  CAS  Google Scholar 

  7. Bristow MR, Ginsburg R, Minobe W, et al. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med 1982; 307(4): 205–11

    Article  PubMed  CAS  Google Scholar 

  8. Bristow MR, Ginsburg R, Umans V, et al. Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ Res 1986; 59(3): 297–309

    Article  PubMed  CAS  Google Scholar 

  9. Horn EM, Corwin SJ, Steinberg SF, et al. Reduced lymphocyte stimulatory guanine nucleotide regulatory protein and beta-adrenergic receptors in congestive heart failure and reversal with angiotensin converting enzyme inhibitor therapy. Circulation 1988; 78(6): 1373–9

    Article  PubMed  CAS  Google Scholar 

  10. Bristow MR. Mechanism of action of beta-blocking agents in heart failure. Am J Cardiol 1997; 80(11 A): 26L–40L

    Article  PubMed  CAS  Google Scholar 

  11. Mann DL, Kent RL, Parsons B, et al. Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation 1992; 85(2): 790–804

    Article  PubMed  CAS  Google Scholar 

  12. Colucci WS. The effects of norepinephrine on myocardial biology: implications for the therapy of heart failure [in process citation]. Clin Cardiol 1998; 21 12 Suppl. 1: 120–4

    Article  Google Scholar 

  13. Packer M. Beta-blockade in heart failure. Basic concepts and clinical results. Am J Hypertens 1998; 11 (1 Pt 2): 23S–37S

    Article  PubMed  CAS  Google Scholar 

  14. Hall SA, Cigarroa CG, Marcoux L, et al. Time course of improvement in left ventricular function, mass and geometry in patients with congestive heart failure treated with beta-adrenergic blockade. J Am Coll Cardiol 1995; 25(5): 1154–61

    Article  PubMed  CAS  Google Scholar 

  15. Doughty RN, Whalley GA, Gamble G, et al. Left ventricular remodeling with carvedilol in patients with congestive heart failure due to ischemic heart disease: Australia-New Zealand Heart Failure Research Collaborative Group. J Am Coll Cardiol 1997; 29(5): 1060–6

    Article  PubMed  CAS  Google Scholar 

  16. Andersson B, Stromblad SO, Lomsky M, et al. Heart rate dependency of cardiac performance in heart failure patients treated with metoprolol [see comments]. Eur Heart J 1999; 20(8): 575–83

    Article  PubMed  CAS  Google Scholar 

  17. Eichhorn EJ, Bristow MR. Practical guidelines for initiation of beta-adrenergic blockade in patients with chronic heart failure [editorial]. Am J Cardiol 1997; 79(6): 794–8

    Article  PubMed  CAS  Google Scholar 

  18. Slatton ML, Eichhorn EJ. Beta-blocker therapy for heart failure. Curr Opin Cardiol 1996; 11(3): 263–8

    Article  PubMed  CAS  Google Scholar 

  19. Doughty RN, Rodgers A, Sharpe N, et al. Effects of beta-blocker therapy on mortality in patients with heart failure. A systematic overview of randomized controlled trials. Eur Heart J 1997; 18(4): 560–5

    Article  PubMed  CAS  Google Scholar 

  20. Bristow MR, Roden RL, Lowes BD, et al. The role of third-generation beta-blocking agents in chronic heart failure. Clin Cardiol 1998; 21 12 Suppl. 1: I3–I13

    Article  PubMed  CAS  Google Scholar 

  21. Vogel JH, Chidsey CA. Cardiac adrenergic activity in experimental heart failure assessed with beta receptor blockade. Am J Cardiol 1969; 24(2): 198–208

    Article  PubMed  CAS  Google Scholar 

  22. Levett JM, Marinelli CC, Lund DD, et al. Effects of beta-blockade on neurohumoral responses and neurochemical markers in pacing-induced heart failure. Am J Physiol 1994; 266 (2 Pt 2): H468–75

    PubMed  CAS  Google Scholar 

  23. Yamada S, Ohkura T, Yamadera T, et al. Abnormality in plasma catecholamines and myocardial adrenoceptors in cardiomyopathic BIO 53.58 Syrian hamsters and improvement by metoprolol treatment. J Pharmacol Exp Ther 1997; 283(3): 1389–95

    PubMed  CAS  Google Scholar 

  24. Tomita T, Murakami T, Iwase T, et al. Chronic dynamic exercise improves a functional abnormality of the G stimulatory protein in cardiomyopathic BIO 53.58 Syrian hamsters. Circulation 1994; 89(2): 836–45

    Article  PubMed  CAS  Google Scholar 

  25. Latini R, Masson S, Jeremic G, et al. Comparative efficacy of a DA2/alpha2 agonist and a beta-blocker in reducing adrenergic drive and cardiac fibrosis in an experimental model of left ventricular dysfunction after coronary artery occlusion. J Cardiovasc Pharmacol 1998; 31(4): 601–8

    Article  PubMed  CAS  Google Scholar 

  26. Warner AL, Bellah KL, Raya TE, et al. Effects of beta-adrenergic blockade on papillary muscle function and the beta-adrenergic receptor system in noninfarcted myocardium in compensated ischemic left ventricular dysfunction. Circulation 1992; 86(5): 1584–95

    Article  PubMed  CAS  Google Scholar 

  27. Fujita N, Hiroe M, Ohta Y, et al. Chronic effects of metoprolol on myocardial beta-adrenergic receptors in doxorubicininduced cardiac damage in rats. J Cardiovasc Pharmacol 1991; 17(4): 656–61

    Article  PubMed  CAS  Google Scholar 

  28. Iaccarino G, Tomhave ED, Lefkowitz RJ, et al. Reciprocal in vivo regulation of myocardial G protein-coupled receptor kinase expression by beta-adrenergic receptor stimulation and blockade. Circulation 1998; 98(17): 1783–9

    Article  PubMed  CAS  Google Scholar 

  29. Bohm M, Deutsch HJ, Hartmann D, et al. Improvement of postreceptor events by metoprolol treatment in patients with chronic heart failure. J Am Coll Cardiol 1997; 30(4): 992–6

    Article  PubMed  CAS  Google Scholar 

  30. Swedberg K, Hjalmarson A, Holmberg S. Effects of work and acute beta-receptor blockade on myocardial noradrenaline release in congestive cardiomyopathy. Clin Cardiol 1979; 2(6): 424–30

    Article  PubMed  CAS  Google Scholar 

  31. Nemanich JW, Veith RC, Abrass IB, et al. Effects of metoprolol on rest and exercise cardiac function and plasma catecholamines in chronic congestive heart failure secondary to ischemic or idiopathic cardiomyopathy. Am J Cardiol 1990; 66(10): 843–8

    Article  PubMed  CAS  Google Scholar 

  32. Andersson B, Lomsky M, Waagstein F. The link between acute haemodynamic adrenergic beta-blockade and long-term effects in patients with heart failure. A study on diastolic function, heart rate and myocardial metabolism following intravenous metoprolol. Eur Heart J 1993; 14(10): 1375–85

    CAS  Google Scholar 

  33. Maisel AS. Beneficial effects of metoprolol treatment in congestive heart failure. Reversal of sympathetic-induced alterations of immunologie function. Circulation 1994; 90(4): 1774–80

    CAS  Google Scholar 

  34. Santostasi G, Fraccarollo D, Dorigo P, et al. Early reduction in plasma norepinephrine during beta-blocking therapy with metoprolol in chronic heart failure [in process citation]. J Card Fail 1998; 4(3): 177–84

    Article  PubMed  CAS  Google Scholar 

  35. Ishida S, Makino N, Masutomo K, et al. Effect of metoprolol on the beta-adrenoceptor density of lymphocytes in patients with dilated cardiomyopathy. Am Heart J 1993; 125 (5 Pt 1): 1311–5

    Article  PubMed  CAS  Google Scholar 

  36. Rahman MA, Hara K, Daly PA, et al. Reductions in muscle sympathetic nerve activity after long-term metoprolol for dilated cardiomyopathy: preliminary observations. Br Heart J 1995; 74(4): 431–6

    Article  PubMed  CAS  Google Scholar 

  37. Kukin ML, Kaiman J, Mannino M, et al. Combined alpha-beta blockade (doxazosin plus metoprolol) compared with beta blockade alone in chronic congestive heart failure. Am J Cardiol 1996; 77(7): 486–91

    Article  PubMed  CAS  Google Scholar 

  38. Andersson B, Hamm C, Persson S, et al. Improved exercise hemodynamic status in dilated cardiomyopathy after beta-adrenergic blockade treatment. J Am Coll Cardiol 1994; 23(6): 1397–404

    Article  PubMed  CAS  Google Scholar 

  39. Eichhorn EJ, Heesch CM, Barnett JH, et al. Effect of metoprolol on myocardial function and energetics in patients with non-ischemic dilated cardiomyopathy: a randomized, double-blind, placebo-controlled study. J Am Coll Cardiol 1994; 24(5): 1310–20

    Article  PubMed  CAS  Google Scholar 

  40. Paolisso G, Gambardella A, Marrazzo G, et al. Metabolic and cardiovascular benefits deriving from beta-adrenergic blockade in chronic congestive heart failure. Am Heart J 1992; 123(1): 103–10

    Article  PubMed  CAS  Google Scholar 

  41. Suwa M, Ito T, Otake Y, et al. Comparison of the therapeutic effects of the beta-blocking agent bisoprolol and the calcium-blocking agent diltiazem in patients with heart failure due to dilated cardiomyopathy. Jpn Circ J 1996; 60(10): 767–73

    Article  PubMed  CAS  Google Scholar 

  42. Anonymous. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL randomised intervention trial in congestive heart failure (MERIT-HF) [see comments]. Lancet 1999; 353 (9169): 2001–7

  43. Haber HL, Simek CL, Gimple LW, et al. Why do patients with congestive heart failure tolerate the initiation of beta-blocker therapy? Circulation 1993; 88 (4 Pt 1): 1610–9

    Article  PubMed  CAS  Google Scholar 

  44. Waagstein F, Caidahl K, Wallentin I, et al. Long-term beta-blockade in dilated cardiomyopathy. Effects of short-and long-term metoprolol treatment followed by withdrawal and readministration of metoprolol [see comments]. Circulation 1989; 80(3): 551–63

    Article  PubMed  CAS  Google Scholar 

  45. Andersson B, Blomstrom-Lundqvist C, Hedner T, et al. Exercise hemodynamics and myocardial metabolism during long-term beta-adrenergic blockade in severe heart failure [see comments]. J Am Coll Cardiol 1991; 18(4): 1059–66

    Article  PubMed  CAS  Google Scholar 

  46. Heilbrunn SM, Shah P, Bristow MR, et al. Increased beta-receptor density and improved hemodynamic response to catecholamine stimulation during long-term metoprolol therapy in heart failure from dilated cardiomyopathy. Circulation 1989; 79(3): 483–90

    Article  PubMed  CAS  Google Scholar 

  47. Fowler MB, Laser JA, Hopkins GL, et al. Assessment of the beta-adrenergic receptor pathway in the intact failing human heart: progressive receptor down-regulation and subsensitivity to agonist response. Circulation 1986; 74(6): 1290–302

    Article  PubMed  CAS  Google Scholar 

  48. Waagstein F, Bristow MR, Swedberg K, et al. Beneficial effects of metoprolol in idiopathic dilated cardiomyopathy. Metoprolol in dilated cardiomyopathy (MDC) trial study group [see comments]. Lancet 1993; 342(8885): 1441–6

    Article  PubMed  CAS  Google Scholar 

  49. Eichhorn EJ, Heesch CM, Risser RC, et al. Predictors of systolic and diastolic improvement in patients with dilated cardiomyopathy treated with metoprolol. J Am Coll Cardiol 1995; 25(1): 154–62

    Article  PubMed  CAS  Google Scholar 

  50. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. CIBIS-II investigators and committees. Lancet 1999; 353: 9–13

    Article  Google Scholar 

  51. Copie X, Pousset F, Lechat P, et al. Effects of beta-blockade with bisoprolol on heart rate variability in advanced heart failure: analysis of scatterplots of R-R intervals at selected heart rates. Am Heart J 1996; 132 (2 Pt 1): 369–75

    Article  PubMed  CAS  Google Scholar 

  52. Pousset F, Copie X, Lechat P, et al. Effects of bisoprolol on heart rate variability in heart failure. Am J Cardiol 1996; 77(8): 612–7

    Article  PubMed  CAS  Google Scholar 

  53. Anonymous. A randomized trial of beta-blockade in heart failure. The Cardiac Insufficiency Bisoprolol Study (CIBIS). CIBIS Investigators and committees [see comments]. Circulation 1994; 90 (4): 1765–73

  54. Eichhorn EJ, McGhie AL, Bedotto JB, et al. Effects of bucindolol on neurohormonal activation in congestive heart failure. Am J Cardiol 1991; 67(1): 67–73

    Article  PubMed  CAS  Google Scholar 

  55. Gilbert EM, Anderson JL, Deitchman D, et al. Long-term beta-blocker vasodilator therapy improves cardiac function in idiopathic dilated cardiomyopathy: a double-blind, randomized study of bucindolol versus placebo. Am J Med 1990; 88(3): 223–9

    Article  PubMed  CAS  Google Scholar 

  56. Woodley SL, Gilbert EM, Anderson JL, et al. Beta-blockade with bucindolol in heart failure caused by ischemic versus idiopathic dilated cardiomyopathy. Circulation 1991; 84(6): 2426–41

    Article  PubMed  CAS  Google Scholar 

  57. Olsen SL, Gilbert EM, Renlund DG, et al. Carvedilol improves left ventricular function and symptoms in chronic heart failure: a double-blind randomized study [see comments]. J Am Coll Cardiol 1995; 25(6): 1225–31

    Article  PubMed  CAS  Google Scholar 

  58. Krum H, Sackner-Bernstein JD, Goldsmith RL, et al. Double-blind, placebo-controlled study of the long-term efficacy of carvedilol in patients with severe chronic heart failure. Circulation 1995; 92(6): 1499–506

    Article  PubMed  CAS  Google Scholar 

  59. Krum H, Gu A, Wilshire-Clement M, et al. Changes in plasma endothelin-1 levels reflect clinical response to beta-blockade in chronic heart failure. Am Heart J 1996; 131(2): 337–41

    Article  PubMed  CAS  Google Scholar 

  60. Yoshikawa T, Handa S, Akaishi M, et al. Effect of a new beta-blocker, nipradilol, on cardiac function and neurohumoral factors in idiopathic dilated cardiomyopathy. Jpn Circ J 1996; 60(5): 285–92

    Article  PubMed  CAS  Google Scholar 

  61. Virk SJ, Davies MK. Effects of xamoterol on resting and exercise haemodynamics in patients with chronic heart failure. Br J Clin Pharmacol 1989; 28 Suppl. 1: 15S–22S

    PubMed  Google Scholar 

  62. Sato H, Inoue M, Matsuyama T, et al. Hemodynamic effects of the beta 1-adrenoceptor partial agonist xamoterol in relation to plasma norepinephrine levels during exercise in patients with left ventricular dysfunction. Circulation 1987; 75(1): 213–20

    Article  PubMed  CAS  Google Scholar 

  63. McMurray JJ, Lang CC, MacLean D, et al. Neuroendocrine changes post myocardial infarction: effects of xamoterol. Am Heart J 1990; 120(1): 56–62

    Google Scholar 

  64. Erlemeier HH, Kupper W, Bleifeld W. Exercise capacity, arrhythmias, humoral and chemical parameters during long-term therapy with xamoterol. Int J Cardiol 1990; 28(2): 197–208

    Article  PubMed  CAS  Google Scholar 

  65. Domanski MJ, BEST Investigators. Beta-blocker Evaluation of Survival Trial (BEST). J Am Coll Cardiol 2000; 35 Suppl. A: 202–3

    Google Scholar 

  66. Frishman WH. Carvedilol. N Engl J Med 1998; 339(24): 1759–65

    Article  PubMed  CAS  Google Scholar 

  67. Bristow MR, Gilbert EM, Abraham WT, et al. Carvedilol produces dose-related improvements in left ventricular function and survival in subjects with chronic heart failure. MOCHA Investigators [comment] [see comments]. Circulation 1996; 94(11): 2807–16

    Article  PubMed  CAS  Google Scholar 

  68. Colucci WS, Packer M, Bristow MR, et al. Carvedilol inhibits clinical progression in patients with mild symptoms of heart failure. US Carvedilol Heart Failure Study Group. Circulation 1996; 94(11): 2800–6

    Article  PubMed  CAS  Google Scholar 

  69. Packer M, Colucci WS, Sackner-Bernstein JD, et al. Double-blind, placebo-controlled study of the effects of carvedilol in patients with moderate to severe heart failure. The PRECISE Trial. Prospective randomized evaluation of carvedilol on symptoms and exercise [see comments]. Circulation 1996; 94(11): 2793–9

    Article  PubMed  CAS  Google Scholar 

  70. Packer M, Bristow MR, Cohn JN, et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. N Engl J Med 1996; 334(21): 1349–55

    Article  PubMed  CAS  Google Scholar 

  71. Goldsmith RL, Bigger JT, Bloomfield DM, et al. Long-term carvedilol therapy increases parasympathetic nervous system activity in chronic congestive heart failure. Am J Cardiol 1997; 80(8): 1101–4

    Article  PubMed  CAS  Google Scholar 

  72. Yoshikawa T, Handa S, Anzai T, et al. Early reduction of neurohumoral factors plays a key role in mediating the efficacy of beta-blocker therapy for congestive heart failure. AmHeart J 1996; 131(2): 329–36

    CAS  Google Scholar 

  73. Binkley PF, Lewe R, Lima J, et al. Neurohumoral profile in congestive heart failure: response to beta-blockade. J Lab Clin Med 1988; 111(4): 393–8

    PubMed  CAS  Google Scholar 

  74. Snow HM. The pharmacology of xamoterol: a basis for modulation of the autonomic control of the heart. Br J Clin Pharmacol 1989; 28 Suppl. 1: 3S–13S

    Article  PubMed  CAS  Google Scholar 

  75. Anonymous. Xamoterol in severe heart failure. The Xamoterol in severe heart failure study group [published erratum appears in Lancet 1990 Sep 15; 336 (8716): 698] [see comments]. Lancet 1990; 336 (8706): 1–6

  76. Gilbert EM, Abraham WT, Olsen S, et al. Comparative hemodynamic, left ventricular functional, and antiadrenergic effects of chronic treatment with metoprolol versus carvedilol in the failing heart. Circulation 1996; 94(11): 2817–25

    Article  PubMed  CAS  Google Scholar 

  77. Newton GE, Parker JD. Acute effects of beta 1-selective and nonselective beta-adrenergic receptor blockade on cardiac sympathetic activity in congestive heart failure. Circulation 1996; 94(3): 353–8

    Article  PubMed  CAS  Google Scholar 

  78. Yamada S, Ohkura T, Uchida S, et al. A sustained increase in beta-adrenoceptors during long-term therapy with metoprolol and bisoprolol in patients with heart failure from idiopathic dilated cardiomyopathy. Life Sci 1996; 58(20): 1737–44

    Article  PubMed  CAS  Google Scholar 

  79. Ruffolo Jr RR, Feuerstein GZ. Neurohormonal activation, oxygen free radicals, and apoptosis in the pathogenesis of congestive heart failure. J Cardiovasc Pharmacol 1998; 32 Suppl. 1: S22–30

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart D. Katz MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baran, D., Horn, E.M., Hryniewicz, K. et al. Effects of β-Blockers on Neurohormonal Activation in Patients with Congestive Heart Failure. Drugs 60, 997–1016 (2000). https://doi.org/10.2165/00003495-200060050-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200060050-00003

Keywords

Navigation