Skip to main content
Log in

Antitumour Effects of Bisphosphonates

First Evidence and Possible Mechanisms

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Bisphosphonates have been used successfully for many years in the treatment of hypercalcaemia and to reduce skeletal complications of metastases. In the first years of bisphosphonate use the efficacy of these substances was thought to lie purely in the inhibition of osteoclasts. However, there is recent evidence to suggest that an antitumour effect may also play a role. As well as having an apoptotic and antiproliferative effect on osteoclasts, bisphosphonates may exert a similar influence on macrophages and tumour cells. Whether this effect (at low doses) also plays a role in vivo remains unclear and requires further investigation.

Improvements in the survival time of certain subpopulations have been found in many phase III studies with bisphosphonates to date, both in the setting of metastatic breast cancer and in multiple myeloma. However, because survival time in subgroups of patients was neither a primary nor a secondary objective in these studies, these advantages could only be seen as important pointers for future studies.

Some preclinical studies have shown that down-regulation of bone metabolism by bisphosphonates is associated with a lower incidence of bone metastases and destruction in animals, whereas activation is correlated with a higher number of metastases. However, varying results were found in animal experiments with regard to the effect of bisphosphonates on the incidence and growth pattern of non-osseous metastases.

The results of 3 randomised studies in patients with primary breast cancer who received clodronate 1600 mg/day orally have now been evaluated and presented. All 3 studies arrived at different results. In the Heidelberg study there was a reduction in both osseous and non-osseous metastases, whereas in a much larger study performed in Great Britain, Canada and Scandinavia there was a reduction only in the incidence of skeletal metastases. A third study from Finland found no effect on bone metastases, but an increase in the number of visceral metastases and a deterioration in overall survival. Because the dosage was identical in all 3 studies, the differing results can only be either random or methodological (for example inclusion criteria or sample size). Overall, the results are very promising, but there is a need for further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II
Table III

Similar content being viewed by others

References

  1. Fleisch H. Bisphosphonates in bone disease: from the laboratory to the patient. 3rd ed. New York: Parthenon, 1997

    Google Scholar 

  2. Rodan GA, Fleisch H. Bisphosphonates: mechanisms of action. J Clin Invest 1996; 97: 2692–6

    Article  PubMed  CAS  Google Scholar 

  3. Kanis JA. Bone and cancer: pathophysiology and treatment of metastases. Bone 1995; 17: 101S–5S

    Article  PubMed  CAS  Google Scholar 

  4. Averbuch SD. New bisphosphonates in the treatment of bone metastases. Cancer 1993; 72: 3443–52

    Article  PubMed  CAS  Google Scholar 

  5. Paterson AHG, Powles TJ, Kanis JA, et al. Double-blind controlled trial of oral clodronate in patients with bone metastases from breast cancer. J Clin Oncol 1993; 11: 59–65

    PubMed  CAS  Google Scholar 

  6. Van Holten-Verzantvoort ATM, Kroon HM, Bijvoet OLM, et al. Palliative pamidronate treatment in patients with bone metastases from breast cancer. J Clin Oncol 1993; 11: 491–8

    PubMed  Google Scholar 

  7. Hortobagyi GN, Theriault RL, Porter L, et al. Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases. N Engl J Med 1996; 335: 1785–91

    Article  PubMed  CAS  Google Scholar 

  8. Berenson JR, Lichtenstein A, Porter L, et al. Efficacy of pamidronate in reducing skeletal events in patients with advanced myeloma. N Engl J Med 1996; 334: 488–93

    Article  PubMed  CAS  Google Scholar 

  9. McCloskey EV, MacLennan ICM, Drayson M, et al. A randomized trial of the effect of clodronate on skeletal morbidity in multiple myeloma. Br J Haematol 1998; 100: 317–25

    Article  PubMed  CAS  Google Scholar 

  10. Thériault RL, Lipton A, Hortobagyi GN, et al. Pamidronate reduces skeletal morbidity in women with advanced breast cancer and lytic bone lesions: a randomized, placebo-controlled trial. J Clin Oncol 1999; 17: 846–54

    PubMed  Google Scholar 

  11. Galasko CSB. Skeletal metastases. London: Butterworth, 1986

    Google Scholar 

  12. Weiss L, Gilbert AH. Bone metastasis. Boston: Hall, 1981

    Google Scholar 

  13. Coleman RE, Rubens RD. Bone metastases and breast cancer. Cancer Treat Rev 1985; 12: 251–70

    Article  PubMed  CAS  Google Scholar 

  14. Coleman RE, Rubens RD. The clinical course of bone metastases in breast cancer. Br J Cancer 1987; 55: 61–6

    Article  PubMed  CAS  Google Scholar 

  15. Theriault RL, Hortobagyi GN. Bone metastasis in breast cancer. Anticancer Drugs 1992; 3: 455–62

    Article  PubMed  CAS  Google Scholar 

  16. Rubens RD, Foglman I, editors. Bone metastases: diagnosis and treatment. London: Springer, 1992

    Google Scholar 

  17. Diel IJ, Costa SD, Kaufmann M, et al. Detection and characterization of tumor cells in bone marrow of patients with primary breast cancer. In: Diel IJ, Kaufmann M, Bastert G, editors. Metastatic bone disease: fundamental and clinical aspects. Berlin: Springer, 1994: 31–45

    Chapter  Google Scholar 

  18. Mundy GR. Mechanism of osteolytic bone destruction. Bone 1991; 12: 1–6

    Article  Google Scholar 

  19. Mundy GR. Bone remodeling and its disorders. London: Dunitz, 1999

    Google Scholar 

  20. Reitsma PH, Teitelbaum SL, Bijvoet OLM, et al. Differential action of the bisphosphonates (3-amino-1-hydroxypropylidene)-1,1-bisphosphonate (APD) and disodium dichloromethylidene bisphosphonate (Cl2MDP) on rat macrophage-mediated bone resorption in vitro. J Clin Invest 1982; 70: 927–33

    Article  PubMed  CAS  Google Scholar 

  21. Mönkkönen J, Heath TD. The effects of liposome-encapsulated and free clodronate on the growth of macrophage-like cells in vitro: the role of calcium and iron. Calcif Tissue Int 1993; 53: 139–46

    Article  PubMed  Google Scholar 

  22. Mönkkönen J, Taskinen M, Auriola SOK, et al. Growth inhibition of macrophage-like and other cell types by liposome-encapsulated, calcium-bound, and free bisphosphonates in vitro. J Drug Target 1994; 2: 299–308

    Article  PubMed  Google Scholar 

  23. Hughes DE, Wright KR, Uy HL, et al. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res 1995; 10: 1478–87

    Article  PubMed  CAS  Google Scholar 

  24. Coxon FP, Russell RGG, Rogers MJ. Pathways of bisphosphonate-induced apoptosis in murine macrophage-like cells [abstract 10]. Bone 1995; 17: 600

    Article  Google Scholar 

  25. Rogers MJ, Chilton KM, Coxon FP, et al. Bisphosphonates induce apoptosis in mouse macrophage-like cells in vitro by a nitric oxide-independent mechanism. J Bone Miner Res 1996; 11: 1482–91

    Article  PubMed  CAS  Google Scholar 

  26. Selander KS, Mönkkönen J, Karhukorpi EK, et al. Characteristics of clodronate-induced apoptosis in osteoclasts and macrophages. Mol Pharmacol 1996; 50: 1127–38

    PubMed  CAS  Google Scholar 

  27. Frith JC, Mönkkönen J, Blackburn GM, et al. Clodronate and liposome-encapsulated clodronate are metabolized to a toxic ATP analog, adenosine 5-(beta, gamma-dichlormethylene) triphosphate, by mammalian cells in vitro. J Bone Miner Res 1997; 12: 1358–67

    Article  PubMed  CAS  Google Scholar 

  28. Benford HL, Frith JC, Auriola S, et al. Farnesol and geranyl-geraniol prevent activation of caspases by aminibisphosphonates: evidence for two distinct pharmacological classes of bisphosphonate drugs. Mol Pharmacol 1999; 56: 131–40

    PubMed  CAS  Google Scholar 

  29. Luckman SP, Hughes DE, Coxon FP, et al. Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent posttranslational prenylation of GTP-binding proteins. J Bone Miner Res 1998; 13: 581–9

    Article  PubMed  CAS  Google Scholar 

  30. Rogers MJ, Frith JC, Luckman SP, et al. Molecular mechanism of action of bisphosphonates. Bone 1999; 24: S73–9

    Article  Google Scholar 

  31. Shipman CM, Rogers MJ, Apperley JF, et al. Bisphosphonates induce apoptosis in human myeloma cell lines: a novel antitumor activity. Br J Haematol 1997; 98: 665–72

    Article  PubMed  CAS  Google Scholar 

  32. Shipman CM, Croucher PI, Russell RGR, et al. The bisphosphonate incadronate (YM 175) causes apoptosis of human myeloma cells in vitro by inhibiting the mevalonate pathway. Cancer Res 1998; 58: 5294–7

    PubMed  CAS  Google Scholar 

  33. Aparicio A, Gardner A, Tu Y, et al. In vitro cytoreductive effects on multiple myeloma cells induced by bisphosphonates. Leukemia 1998; 12: 220–9

    Article  PubMed  CAS  Google Scholar 

  34. Busch M, Rave-Fränk M, Hille A, et al. Influence of clodronate on breast cancer cells in vitro. Eur J Med Res 1998; 3: 427–31

    PubMed  CAS  Google Scholar 

  35. Fromigue D, Siwek B, Body JJ. Bisphosphonates inhibit breast cancer cell proliferation [abstract]. Calcif Tissue Int 1999; 64 Suppl. 1: P–261

    Google Scholar 

  36. Van der Pluijm G, Vloedgraven H, van Beek E, et al. Bisphosphonates inhibit the adhesion of breast cancer cells to bone matrices in vitro. J Clin Invest 1996; 98: 698–705

    Article  PubMed  Google Scholar 

  37. Boissier S, Magnetto S, Frappart L, et al. Bisphosphonates inhibit prostate and breast carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrix. Cancer Res 1997; 57: 3890–4

    PubMed  CAS  Google Scholar 

  38. Guaitani A, Polentarutti S, Filipeschi S, et al. Effects of disodium etidronate in murine tumor models. Eur J Cancer Clin Oncol 1984; 20: 685–93

    Article  PubMed  CAS  Google Scholar 

  39. Jung A, Bomand J, Mermillod B, et al. Inhibition by diphosphonate of bone resorption induced by the Walker tumor of the rat. Cancer Res 1984; 44: 3007–11

    PubMed  CAS  Google Scholar 

  40. Nemoto R, Uchida K, Tsutsumi M, et al. A model of localized osteolysis induced by the MBT-2 tumor in mice and its responsiveness to etidronate disodium. J Cancer Res Clin Oncol 1987; 113: 539–43

    Article  PubMed  CAS  Google Scholar 

  41. Krempien B, Manegold C. Prophylactic treatment of skeletal metastases, tumor-induced osteolysis, and hypercalcemia in rats with the bisphosphonate CL2MBP. Cancer 1993; 72: 91–8

    Article  PubMed  CAS  Google Scholar 

  42. Krempien B. Morphological findings in bone metastasis, tumorosteopathy and antiosteolytic therapy. In: Diel IJ, Kaufmann M, Bastert G, editors. Metastatic bone disease: fundamental and clinical aspects. Berlin: Springer, 1994: 59–85

    Chapter  Google Scholar 

  43. Krempien B. Experimental findings on the osteoprotective potential of bisphosphonates against bone metastases and tumor-induced osteopathy: a pleading for an early and preventive administration. In: Orr FW, Singh G, editors. Bone metastasis — mechanisms and pathophysiology. Georgetown (TX): RG Landes, 1996: 221–44

    Google Scholar 

  44. Krempien B, Diel IJ, Jöckle-Kretz B, et al. The Walker Carcinosarcoma 256 as an experimental model of bone metastasis. Influence of skeletal metabolism on the development of bone metastases. Verh Dtsch Ges Path 1984; 68: 211–6

    Google Scholar 

  45. Krempien B, Wingen F, Eichmann T, et al. Protective effect of a prophylactic treatment with the bisphosphonate 3-amino-1-hydroxypropane-1,1 bisphonic acid on the development of tumor osteopathies in rat: experimental studies with the Walker Carcinosarcoma 256. Oncology 1988; 45: 41–6

    Article  PubMed  CAS  Google Scholar 

  46. Wingen F, Eichmann T, Manegold C, et al. Effects of new bisphonic acids on tumor-induced bone destruction in the rat. J Cancer Res Clin Oncol 1986; 111: 35–41

    Article  PubMed  CAS  Google Scholar 

  47. Kostenuik PJ, Orr FW, Suyama K, et al. Increased growth rate and tumor burden of spontaneously metastatic Walker 256 cancer cells in the skeleton of bisphosphonate treated rats. Cancer Res 1993; 53: 5472–7

    Google Scholar 

  48. Müller M, Green JR, Fabbro D. The bisphosphonate pamidronate inhibits the growth of a murine myeloma cell line in syngeneic mice [abstract 2333]. Blood 1996; 88(10): 586a

    Google Scholar 

  49. Sasaki A, Boyce BF, Wright KR, et al. Bisphosphonate risedronate reduces metastatic human breast cancer burden in nude mice. Cancer Res 1995; 55: 3551–7

    PubMed  CAS  Google Scholar 

  50. Hall DG, Stoica G. Effect of the bisphosphonate risedronate on bone metastases in a rat mammary adenocarcinoma model system. J Bone Mineral Res 1994; 9: 221–30

    Article  CAS  Google Scholar 

  51. Elomaa I, Blomqvist C, Gröhn P, et al. Long-term controlled trial with diphosphonate in patients with osteolytic bone metastases. Lancet 1983; I: 146–9

    Article  Google Scholar 

  52. Elomaa I, Blomqvist C, Porkka L, et al. Treatment of skeletal disease in breast cancer: a controlled clodronate trial. Bone 1987; 8 Suppl.: 53–6

    Google Scholar 

  53. Elomaa I, Blomqvist C, Porkka L, et al. Clodronate for osteolytic metastases due to breast cancer. Biomed Pharmacother 1988; 42: 111–6

    PubMed  CAS  Google Scholar 

  54. Diel IJ, Lichinitser MR, Body JJ, et al. Improvement of bone pain, quality of life and survival time of breast cancer patients with metastatic bone disease treated with intravenous ibandronate [abstract]. Eur J Cancer 1999; 35 Suppl. 4: 269

    Google Scholar 

  55. Kanis JA, Powles TJ, Paterson AHG, et al. Clodronate decreases the frequency of skeletal metastases in women with breast cancer. Bone 1996; 19: 663–7

    Article  PubMed  CAS  Google Scholar 

  56. Diel IJ, Solomayer EF, Costa SD, et al. Reduction in new metastases in breast cancer with adjuvant clodronate treatment. N Engl J Med 1998; 339: 357–63

    Article  PubMed  CAS  Google Scholar 

  57. Diel IJ, Kaufmann M, Costa SD, et al. Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic value in comparison to nodal status. J Natl Cancer Inst 1996; 88: 1652–64

    Article  PubMed  CAS  Google Scholar 

  58. Powles TJ, Paterson AHG, Nevantaus A, et al. Adjuvant clodronate reduces the incidence of bone metastases in patients with primary operable breast cancer [abstract]. Proc Am Soc Clin Oncol 1998; 17: 468

    Google Scholar 

  59. Saarto T, Blomqvist C, Virkkunen P, et al. No reduction of bone metastases with adjuvant clodronate treatment in node-positive breast cancer patients [abstract]. Proc Am Soc Clin Oncol 1999; 18: 489

    Google Scholar 

  60. Conte PF, Latreille J, Mauriac L, et al. Delay in progression of bone metastases in breast cancer patients treated with intravenous pamidronate: results from a multinational randomized controlled trial. J Clin Oncol 1996; 14: 2552–9

    PubMed  CAS  Google Scholar 

  61. Van Holten-Verzantvoort ATM, Hermans J, Beex LVAM, et al. Does supportive pamidronate treatment prevent or delay the first manifestation of bone metastases in breast cancer patients? Eur J Cancer 1996; 32: 450–4

    Article  Google Scholar 

  62. Ford JM, van Oosterom A, Brincker H, et al. Oral pamidronate: negative results from 3 double-blind, placebo-controlled trials in hypercalcemia, myeloma, and the prevention of bone metastases [abstract]. Bone 1998; 22 Suppl. 3: B52

    Google Scholar 

  63. Diel IJ, Solomayer EF, Seibel MJ, et al. Serum bone sialoprotein in patients with primary breast cancer is a prognostic marker for subsequent bone metastasis. Clin Cancer Res 1999; 5(12): 3914–9

    PubMed  CAS  Google Scholar 

  64. Diel IJ, Solomayer EF, Seibel M, et al. Serum bone sialoprotein and crosslaps are both highly predictive for bone metastases in breast cancer. Proc Am Assoc Cancer Res 1999; 40: 2168

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo J. Diel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diel, I.J. Antitumour Effects of Bisphosphonates. Drugs 59, 391–399 (2000). https://doi.org/10.2165/00003495-200059030-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200059030-00001

Keywords

Navigation