Skip to main content
Log in

Inflammation, Infection and Atherosclerosis

Do Antibacterials Have a Role in the Therapy of Coronary Artery Disease?

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Since the recent publication of 3 studies on the use of antibacterials in patients with coronary artery disease (CAD), there has been a phenomenal interest in the role of infection in the genesis of CAD. It is now generally accepted that inflammation accompanies atherosclerosis from its initiation to the evolution of end-events. Inflammation may occur in response to traditional risk factors, such as hyperlipidaemia, smoking and diabetes mellitus. There is a recent resurgence of the concept that inflammation may have an infectious basis. This concept is based on the identification of microorganisms in the atherosclerotic plaque and seropositivity. The data on eradication of the offending organism with antibiotics and prevention of atherosclerosis-related events have, however, been inconsistent. This may reflect lack of precise understanding of steps leading to atherosclerosis and the evolution of acute ischaemic events. Further work in this area may help identify subsets of patient populations within which infection may play a causative role in the genesis of CAD. Targeted therapy then may be considered logical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Fig. 2

Similar content being viewed by others

References

  1. McGovern PG, Pankow JS, Shahar E, et al. Recent trends in acute coronary heart disease mortality, morbidity, medical care, and risk factors. N Engl J Med 1996; 334: 884–90

    Article  PubMed  CAS  Google Scholar 

  2. Hunink MG, Goldman L, Tosteson AN, et al. The recent decline in mortality from coronary heart disease, 1980‐1990: the effect of secular trends in risk factors and treatment. JAMA 1997; 277: 535–42

    Article  PubMed  CAS  Google Scholar 

  3. Jousilahti P, Vartiainen E, Tuomilehto J, et al. Effect of risk factors and changes in risk factors on coronary mortality in three cohorts of middle-aged people in eastern Finland. Am J Epidemiol 1995; 141: 50–60

    PubMed  CAS  Google Scholar 

  4. Tervahauta M, Pekkanen J, Enlund H, et al. Change in blood pressure and 5-year risk or coronary heart disease among elderly men: the Finnish cohorts of the Seven Countries Study. J Hypertens 1994; 12: 1183–9

    Article  PubMed  CAS  Google Scholar 

  5. Rhoads GG, Dahlen GH, Berg K, et al. LP(a) lipoprotein as a risk factor for myocardial infarction. JAMA 1986; 74: 758–69

    Google Scholar 

  6. Janus ED, Postiglione A, Singh RB, et al. The modernization of Asia: implications for coronary heart disease. Circulation 1996; 94: 2671–3

    Article  PubMed  CAS  Google Scholar 

  7. Dahlen GH. Lipoprotein (a), atherosclerosis and thrombosis. Prog Lipid Res 1991; 30: 189–97

    Article  PubMed  CAS  Google Scholar 

  8. D’Angelo A, Seihub J. Homocysteine and thrombotic disease. Blood 1997; 90: 1–11

    PubMed  Google Scholar 

  9. McCully KS. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 1969; 56: 111–28

    PubMed  CAS  Google Scholar 

  10. Nehler MR, Taylor Jr LM, Porter JM. Homocysteinemia as a risk factor for atherosclerosis: a review. Cardiovasc Surg 1997; 6: 559–67

    Article  Google Scholar 

  11. Meyers DG. The iron hypothesis — does iron cause atherosclerosis? Clin Cardiol 1996; 19: 925–9

    Article  PubMed  CAS  Google Scholar 

  12. Mehta JL, Saldeen TG, Rand K. Interactive role of infection, inflammation and traditional risk factors in atherosclerosis and coronary artery disease. J Am Coll Cardiol 1998; 31: 1217–25

    Article  PubMed  CAS  Google Scholar 

  13. Alexander RW. Inflammation and coronary artery disease. N Engl J Med 1994; 331: 468–9

    Article  PubMed  CAS  Google Scholar 

  14. Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med 1999; 340: 115–126.

    Article  PubMed  CAS  Google Scholar 

  15. Stary HC, Chandler AB, Glagov S, et al. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis: a report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1994; 89: 2462–78

    Article  PubMed  CAS  Google Scholar 

  16. Glagov S, Weisenberg E, Zarins CK, et al. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987; 316: 1371–5

    Article  PubMed  CAS  Google Scholar 

  17. Van der Wal AC, Das PK, Bentz van de Berg D, et al. Atherosclerotic lesions in humans: in situ immunophenotypic analysis suggesting an immune-mediated response. Lab Invest 1989; 61: 166–70

    PubMed  Google Scholar 

  18. Raines EW, Rosenfield ME, Ross R. The role of macrophages. In: Fuster V, Ross R, Topol EJ, editors. Atherosclerosis and coronary artery disease. Philadelphia (PA): Lippincott-Raven, 1996:492–510

    Google Scholar 

  19. Libby P, Sukhova G, Lee RT, et al. Cytokines regulate vascular function related to stability of the atherosclerotic plaque. J. Cardiovasc Pharmacol 1995: 12: 2–59

    Google Scholar 

  20. Libby P. Molecular bases of the acute coronary syndromes. Circulation 1995; 91: 2844–50

    Article  PubMed  CAS  Google Scholar 

  21. Warner SJC, Friedman GB, Libby P. Regulation of major histocompatibility gene expression in cultured human vascular smooth muscle cells. Arteriosclerosis. 1989; 9: 279–88

    Article  PubMed  CAS  Google Scholar 

  22. Van der Wal AC, Becker AE, Van der Loos CM, et al. Site of intimai rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 1994; 89: 36–44

    Article  PubMed  Google Scholar 

  23. Galis ZS, Sukhova GK, Lark MW, et al. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 1994; 94: 2493–503

    Article  PubMed  CAS  Google Scholar 

  24. Mach F, Schönbeck U, Sukhova GK, et al. Reduction of atherosclerosis in mice by inhibition of CD40 signaling. Nature 1998; 394: 200–3

    Article  PubMed  CAS  Google Scholar 

  25. Kostis JB, Turkevich D, Sharp J. Association between leukocyte count and the presence and extent of coronary atherosclerosis as determined by coronary arteriography. Am J Cardiol 1984; 53: 997–9

    Article  PubMed  CAS  Google Scholar 

  26. Friedman GD, Klatsky AL, Sieglaub AB. The leukocyte count as a predictor of acute myocardial infarction. N Engl J Med 1974; 290: 1275–8

    Article  PubMed  CAS  Google Scholar 

  27. Lowe GD, Machado SG, Krol WF, et al. White blood cell count and hematocrit as predictors of coronary recurrence after myocardial infarction. Thromb Hemost 1985; 54: 700–3.

    CAS  Google Scholar 

  28. Mehta J, Dinerman J, Mehta P, et al. Neutrophil function in ischemic heart disease. Circulation 1989; 79: 549–56

    Article  PubMed  CAS  Google Scholar 

  29. Dinerman JL, Mehta JL, Saldeen TGP, et al. Increased neutrophil elastase release in unstable angina pectoris and acute myocardial infarction. J Am Coll Cardiol 1990; 15: 1559–63

    Article  PubMed  CAS  Google Scholar 

  30. Neri Serneri GG, Abbate R, Gori et al. Transient intermittent lymphocyte activation is responsible for the instability of angina. Circulation 1992; 86: 790–7

    Article  Google Scholar 

  31. Haught WH, Mansour M, Rothlein R, et al. Alterations in circulating intercellular adhesion molecule-1 and L-selectin: further evidence for chronic inflammation in ischemic heart disease. Am Heart J 1996; 132: 1–6

    Article  PubMed  CAS  Google Scholar 

  32. Liuzzo G, Biasucci LM, Gallimore JR, et al. The prognostic value of C-reactive protein and serum amyloid A protein in severe unstable angina. N Engl J Med 1994; 331: 417–24

    Article  PubMed  CAS  Google Scholar 

  33. Ridker PM, Cushman M, Stampfer MJ, et al. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med 1997; 336: 973–9

    Article  PubMed  CAS  Google Scholar 

  34. Biasucci LM, Liuzzo G, Grillo RL, et al. Elevated levels of C-reactive protein at discharge in patients with unstable angina predict recurrent instability. Circulation 1999; 99: 855–60

    Article  PubMed  CAS  Google Scholar 

  35. Buja LM. Does atherosclerosis have an infectious etiology? Circulation 1996; 94: 872–3

    Article  PubMed  CAS  Google Scholar 

  36. Libby P, Egan D, Skarlatos S. Roles of infectious agents in atherosclerosis and restenosis: an assessment of the evidence and need for future research. Circulation 1997; 96: 4095–103

    Article  PubMed  CAS  Google Scholar 

  37. Frothingham C. The relation between acute infectious diseases and arterial lesions. Arch Intern Med 1911; 8: 153–62

    Article  Google Scholar 

  38. Ophuls W. Arteriosclerosis and cardiovascular disease: their relation to infectious diseases. JAMA 1921; 76: 700–1

    Article  Google Scholar 

  39. Fabricant CG, Fabricant J, Litrenta MM, et al. Virus-induced atherosclerosis. J Exp Med 1978; 148: 335–40

    Article  PubMed  CAS  Google Scholar 

  40. Mattila KJ. Viral and bacterial infections in patients with acute myocardial infarction. J Intern Med 1989; 225: 293–6

    Article  PubMed  CAS  Google Scholar 

  41. Benditt EP, Barrett T, McDougall JK. Viruses in the etiology of atherosclerosis. Proc Natl Acad Sci U S A 1983; 80: 6386–9

    Article  PubMed  CAS  Google Scholar 

  42. Zhou YF, Leon MB, Waclawiw MA, et al. Association between prior cytomegalovirus infection and the risk of restenosis after coronary atherectomy. N Engl J Med 1996; 335: 624–30

    Article  PubMed  CAS  Google Scholar 

  43. Loebe M, Schuler S, Zais O, et al. Role of cytomegalovirus infection in the development of coronary artery disease in the transplanted heart. J Heart Transplant 1990; 9: 707–11

    PubMed  CAS  Google Scholar 

  44. Melnick JL, Adam E, DeBakey ME. Possible role of cytomegalovirus in atherogenesis. JAMA 1990; 263: 2204–7

    Article  PubMed  CAS  Google Scholar 

  45. Melnick JL, Adam E, Debakey ME. Cytomegalovirus and atherosclerosis. Eur Heart J 1993; 14: 30–8

    PubMed  Google Scholar 

  46. Kuo CC, Grayston JT, Campbell LA, et al. Chlamydia pneumoniae (TWAR) in coronary arteries of young adults (15–34 years old). Proc Natal Acad Sci U S A 1995; 92: 6911–14

    Article  CAS  Google Scholar 

  47. Saikku P, Leinonen M, Mattila K, et al. Serological evidence of an association of a novel Chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction. Lancet 1988; II: 983–6

    Article  Google Scholar 

  48. Thorn DH, Grayston JT, Siscovick DS, et al. Association of prior infection with Chlamydia pneumoniae and angiographically demonstrated coronary artery disease. JAMA 1992; 268: 68–72

    Article  Google Scholar 

  49. Saikku P, Leinonen M, Tenkanen L, et al. Chronic Chlamydia pneumoniae infection as a risk factor for coronary heart disease in the Helsinki Heart Study. Ann Intern Med. 1992; 116: 273–278

    PubMed  CAS  Google Scholar 

  50. Folsom AR, Nieto FJ, Sorlie P, et al. Helicobacterpylori seropositivity and coronary heart disease incidence (Atherosclerosis Risk In Communities (ARIC) Study Investigators). Circulation 1998; 98: 845–50

    Article  PubMed  CAS  Google Scholar 

  51. Adam E, Melnick JL, Probtsfield JL, et al. High level of cytomegalovirus antibody in patients requiring vascular surgery for atherosclerosis. Lancet 1987; II: 291–3

    Article  Google Scholar 

  52. Jacob HS, Visser M, Key NS, et al. Herpes virus infection of endothelium: new insights into atherosclerosis. Trans Am Clin Climatol Assoc 1992; 103: 95–104.

    PubMed  CAS  Google Scholar 

  53. Span AH, van Dam Mieras MC, et al. The effect of virus infection on the adherence of leukocytes or platelets to endothelial cells. Eur J Clin Invest 1991; 21: 331–8

    Article  PubMed  CAS  Google Scholar 

  54. Hendrix MG, Salimans MM, van Boven et al. High prevalence of latently present cytomegalovirus in arterial walls of patients suffering from grade III atherosclerosis. Am J Pathol 1990; 136: 23–8

    PubMed  CAS  Google Scholar 

  55. Wu TC, Hruban RH, Ambinder RF, et al. Demonstration of cytomegalovirus nucleic acids in the coronary arteries of transplanted hearts. Am J Pathol 1992; 140: 739–47

    PubMed  CAS  Google Scholar 

  56. Hendrix MG, Dormans PH, Kitslaar P, et al. The presence of cytomegalovirus nucleic acids in arterial walls of atherosclerotic and non-atherosclerotic patients. Am J Pathol 1998; 134: 1151–7

    Google Scholar 

  57. Hendrix MG, Daemen M, Bruggeman CA. Cytomegalovirus nucleic acid distribution within the human vascular tree. Am J Pathol 1991; 138: 563–7

    PubMed  CAS  Google Scholar 

  58. Hosenpud JD, Chou SW, Wagner CR. Cytomegalovirus-induced regulation of major histocompatibility complex class I antigen expression in human aortic smooth muscle cells. Transplantation 1991; 52: 896–903

    Article  PubMed  CAS  Google Scholar 

  59. Geist LJ, Dai LY. Cytomegalovirus modulates interleukin-6 gene expression. Transplantation 1996; 62: 653–8

    Article  PubMed  CAS  Google Scholar 

  60. Galloway DA, McDougall JK. The oncogenic potential of herpes simplex viruses: evidence for a ‘hit-and-run’ mechanism. Nature 1983; 302: 21–4

    Article  PubMed  CAS  Google Scholar 

  61. Nieto FJ, Adam E. Sorlie P, et al. Cohort study of cytomegalovirus infection as a risk factor for carotid intimal-medial thickening, a measure of subclinical atherosclerosis. Circulation 1996; 94: 922–7

    Article  PubMed  CAS  Google Scholar 

  62. Heiss G, Sharrett AR, Barnes R, et al. Carotid atherosclerosis measured by B-mode ultrasound in populations: associations with cardiovascular risk factors in the ARIC study. Am J Epidemiol 1991; 134: 250–6

    PubMed  CAS  Google Scholar 

  63. Adler SP, Hur JK, Wang JB, et al. Prior infection with cytomegalovirus is not a major risk factor for angiographically demonstrated coronary artery atherosclerosis. J Infect Dis 1998; 177: 209–12

    Article  PubMed  CAS  Google Scholar 

  64. Birnie DH, Holme ER, McKay IC, et al. Association between antibodies to heat shock protein 65 and coronary atherosclerosis. Possible mechanism of action of Helicobacter pylori and other bacterial infections in increasing cardiovascular risk. Eur Heart J 1998; 19: 387–94

    CAS  Google Scholar 

  65. Laurila A, Bloigu A, Nayha S, et al. Association of Helicobacter pylori infection with elevated serum lipids. Atherosclerosis 1999; 142: 207–10

    Article  PubMed  CAS  Google Scholar 

  66. Abdelmouttaleb I, Danchin N, Ilardo C, et al. C-Reactive protein and coronary artery disease: additional evidence of the implication of an inflammatory process in acute coronary syndromes. Am Heart J 1999; 137: 346–51.

    Article  PubMed  CAS  Google Scholar 

  67. Danesh J, Peto R. Risk factors for coronary heart disease and infection with Helicobacter pylori: meta-analysis of 18 studies. BMJ 1998; 316: 1130–2

    Article  PubMed  CAS  Google Scholar 

  68. Pasceri V, Cammarota G, Patti G, et al. Association of virulent Helicobacter pylori strains with ischemic heart disease. Circulation 1998; 97: 1675–9

    Article  PubMed  CAS  Google Scholar 

  69. Fryer RH, Schwobe EP, Woods ML, et al. Chlamydia species infect human vascular endothelial cells and induce procoagulant activity. J Invest Med 1997; 45: 168–74

    CAS  Google Scholar 

  70. Gaydos CA, Summersgill JT, Sahney NN, et al. Replication of Chlamydia pneumoniae in vitro in human macrophages, endothelial cells, and aortic artery smooth muscle cells. Infect Immun 1996; 64: 1614–20

    PubMed  CAS  Google Scholar 

  71. Wyrick PB, Brunridge EA. Growth of Chlamydia psittaci in macrophages. Infect Immun 1978; 19: 1054–60

    PubMed  CAS  Google Scholar 

  72. Godzik KL, O’Brien ER, Wang S, et al. In vitro susceptibility of human vascular wall cells to infection with Chlamydia pneumoniae. J Clin Microbiol 1995; 33: 2411–4

    PubMed  CAS  Google Scholar 

  73. Fong IW, Chiu B, Viira E, et al. Rabbit model for Chlamydia pneumoniae infection. J Clin Microbiol 1997; 35: 48–52

    PubMed  CAS  Google Scholar 

  74. Moazed TC, Kuo CG, Grayston JT, et al. Murine models of Chlamydia pneumoniae infection and atherosclerosis. J Invest Med 1997; 45: 168–74

    Google Scholar 

  75. Muhlestein JB, Anderson JL, Hammond EH, et al. Infection with Chlamydia pneumoniae accelerates the development of atherosclerosis and treatment with azithromycin prevents it in a rabbit model. Circulation 1998; 97: 633–6

    Article  PubMed  CAS  Google Scholar 

  76. Hu H, Pierce GN, Zhong G. The atherogenic effects of Chlamydia are dependent on serum cholesterol and specific to Chlamydia pneumoniae. J Clin Invest 1999: 103: 747–53

    Article  PubMed  CAS  Google Scholar 

  77. Romeo F, Ericson K, Saldeen TGP, et al. Seropositivity against Chlamydia pneumoniae in patients with coronary atherosclerosis disease. Clin Cardiol 1999. In press

  78. Kuo CC, Coulson AS, Campbell LA, et al. Detection of Chlamydia pneumoniae in atherosclerotic plaques in the walls of arteries of lower extremities from patients undergoing bypass operation for arterial obstruction. J Vasc Surg 1997; 26: 29–31

    Article  PubMed  CAS  Google Scholar 

  79. Campbell LA, O’Brien ER, Cappuccio AL, et al. Detection of Chlamydia pneumoniae TWAR in human coronary atherectomy tissues. J Infect Dis 1995; 172: 585–8

    Article  PubMed  CAS  Google Scholar 

  80. Ouchi K, Fujii B, Kanamoto Y, et al. Chlamydia pneumoniae in coronary and iliac arteries of Japanese patients with atherosclerotic cardiovascular diseases. J Med Microbiol 1998; 47 907–13

    Article  PubMed  CAS  Google Scholar 

  81. Juvonen J, Juvonen T, Laurila A, et al. Demonstration of Chlamydia pneumoniae in the walls of abdominal aortic aneurysms. J Vasc Surg 1997; 25: 499–505

    Article  PubMed  CAS  Google Scholar 

  82. Shor A, Kuo CC, Patton DL. Detection of Chlamydia pneumoniae in coronary arterial fatty streaks and atheromatous plaques. S Afr Med J 1992; 82: 158–61

    PubMed  CAS  Google Scholar 

  83. Muhlestein JB, Hammond EH, Carlquist JF, et al. Increased incidence of Chlamydia species within the coronary arteries of patients with symptomatic atherosclerotic versus other forms of cardiovascular disease. J Am Coll Cardiol 1996; 27: 1555–61

    Article  PubMed  CAS  Google Scholar 

  84. Andreasen JJ, Farholt S, Jensen JS. Failure to detect Chlamydia pneumoniae in calcific and degenerative arteriosclerotic aortic valves excised during open heart surgery. APMIS 1998; 106: 717–20

    Article  PubMed  CAS  Google Scholar 

  85. Patherson DL, Hall J, Rasmussen SJ, et al. Failure to detect Chlamydia pneumoniae in atherosclerotic plaques of Australian patients. Pathology 1998; 30: 169–72

    Article  Google Scholar 

  86. Weiss SM, Roblin PM, Gaydos CA, et al. Failure to detect Chlamydia pneumoniae in coronary atheromas of patients undergoing atherectomy. J Infect Dis 1996; 173: 957–62

    Article  PubMed  CAS  Google Scholar 

  87. Saldeen TGP, Ericsson K, Lindquist O, et al. Chlamydia and HLA-DR genotypes in coronary atherosclerosis [abstract]. J Am Coll Cardiol 1998; 31: 272A

    Article  Google Scholar 

  88. Dahlen GH, Boman J, Birgander LS, et al. Lp(a) lipoprotein, IgG, IgA and IgM antibodies to Chlamydia pneumoniae and HLA class II genotype in early coronary artery disease. Atherosclerosis 1995; 114: 165–74

    Article  PubMed  CAS  Google Scholar 

  89. Dahlen GH, Slunga L, Lindblom B. Importance of Lp(a) lipoprotein and HLA genotypes in atherosclerosis and diabetes. Clin Genet 1994; 46: 46–56

    Article  PubMed  CAS  Google Scholar 

  90. Ossewaarde JM, Ferkens EJ, Devries A, et al. Chlamydia pneumoniae is a risk factor for coronary heart disease in symptom-free elderly men, but Helicobacter pylori and cytomegalovirus are not. Epidemiol Infect 1998; 120: 93–9

    Article  PubMed  CAS  Google Scholar 

  91. Blasi F, Denti F, Erba M, et al. Detection of Chlamydia pneumoniae, but not Helicobacter pylori, in atherosclerotic plaques of aortic aneurysms. J Clin Microbiol 1996; 34: 2766–9

    PubMed  CAS  Google Scholar 

  92. Ramirez JA. Isolation of Chlamydia pneumoniae from the coronary artery of a patients with coronary atherosclerosis, the Chlamydia pneumoniae/atherosclerosis study group. Ann Intern Med 1996; 125: 979–82

    PubMed  CAS  Google Scholar 

  93. Jackson LA, Campbell LA, Schmidt RA, et al. Specificity of detection of Chlamydia pneumoniae in cardiovascular atheroma: evaluation of the innocent bystander hypothesis. Am J Pathol 1997; 150: 1785–90

    PubMed  CAS  Google Scholar 

  94. Danesh J, Wong Y, Ward M, et al. Chronic infection with Helicobacter pylori, Chlamydia pneumoniae, or cytomegalovirus: population based study of coronary heart disease. Heart 1999; 81: 245–7

    PubMed  CAS  Google Scholar 

  95. Danesh J, Wong YK, Ward M, et al. Strong correlation between Helicobacter pylori seropositivity and Chlamydia pneumoniae IgG concentrations. J Epidemiol Community Health 1998; 52: 821–2

    Article  PubMed  CAS  Google Scholar 

  96. Kol A, Sukhova GK, Lichtman AH, et al. Chlamydial heat shock protein 60 localizes in human atheroma and regulates macrophage tumor necrosis factor-alpha and matrix metalloproteinase expression. Circulation 1998; 98: 300–7

    Article  PubMed  CAS  Google Scholar 

  97. Mayr M, Metzler B, Kiechl S, et al. Endothelial cytotoxicity mediated by serum antibodies to heat shock proteins of Escherichia coli and Chlamydia pneumoniae. Circulation 1999; 99: 1560–6

    Article  PubMed  CAS  Google Scholar 

  98. Kalayoglu MV, Byrne GI. A Chlamydia pneumoniae component that induces macrophage foam cell formation is Chlamydial lipopolysaccharide. Infect Immun 1998; 66: 5067–72

    PubMed  CAS  Google Scholar 

  99. Rasmussen SJ, Eckmann L, Quayle AJ, et al. Secretion of proinflammatory cytokines by epithelial cells in response to Chlamydia infection suggests a central role for epithelial cells in Chlamydial pathogenesis. J Clin Invest 1997; 99: 77–87

    Article  PubMed  CAS  Google Scholar 

  100. Pober JS, Cotran RS. Cytokines and endothelial cell biology. Physiol Rev 1990; 70: 427–51

    PubMed  CAS  Google Scholar 

  101. Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991; 43: 109–42

    PubMed  CAS  Google Scholar 

  102. Carbon C. Pharmacodynamics of macrolides, azalides, and streptogramins: effect on extracellular pathogens. Clin Infect Dis 1998; 27: 28–32

    Article  PubMed  CAS  Google Scholar 

  103. Gupta S, Leatham EW, Carrington D, et al. Elevated Chlamydia pneumoniae antibodies, cardiovascular events, and azithronmycin in male survivors of acute myocardial infarction. Circulation 1997; 96: 404–7

    Article  PubMed  CAS  Google Scholar 

  104. Gurfinkel E, Bozovich G, Daroca A, et al., ROXIS Study Group. Randomised trial of roxithromycin in non-Q-wave coronary syndromes: ROXIS pilot study. Lancet 1997; 350: 404–7

    Article  PubMed  CAS  Google Scholar 

  105. Gurfinkel E, Bozovich G, Beck E, et al. Treatment with the antibiotic roxithromycin in patients with acute non-Q-wave coronary syndromes: the final report of the ROXIS study. Eur Heart J 1999;20: 121–7

    Article  PubMed  CAS  Google Scholar 

  106. Anderson JL, Muhlestein JB, Carlquist J, et al. Randomized secondary prevention trial of azithromycin in patients with coronary artery disease and serological evidence for Chlamydia pneumoniae infection. Circulation 1999; 99: 1540–7

    Article  PubMed  CAS  Google Scholar 

  107. Martin D, Bursill J, Qui MR, et al. Alternative hypothesis for efficacy of macrolides in acute coronary syndromes. Lancet 1998; 351: 1858–9

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehta, J.L., Romeo, F. Inflammation, Infection and Atherosclerosis. Drugs 59, 159–170 (2000). https://doi.org/10.2165/00003495-200059020-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200059020-00001

Keywords

Navigation