Skip to main content
Log in

New Uses for Old Drugs in HIV Infection

The Role of Hydroxyurea, Cyclosporin and Thalidomide

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The tenacious effort to develop new, specific agents to treat HIV infection is currently accompanied by a reconsideration of existing drugs on the basis of their known or putative effects on the retroviral life cycle and/or the tuning of immune mechanisms.

Three specific ‘older’ compounds that interfere with HIV infection by both a direct antiviral activity, and a modulation of T-cell activation and proliferation have received the most attention.

Hydroxurea, a classical chemotherapeutic agent, inhibits retroviral reverse transcription by targeting a cellular enzyme responsible for the synthesis of deoxynucleoside triphosphates. It may also have a role in reducing viral load while maintaining low numbers of potential target T cells. Beneficial effects of hydroxyurea in combination with didanosine and/or stavudine on viral load have been shown in a number of clinical trials.

Cyclosporin, a known immunosuppresant, blocks the activation of T cells, hence reducing the permissivity to HIV, and also prevents proper HIV virion maturation. However, clinical studies have produced conflicting results in HIV-infected patients with regard to immunological and disease effects and toxicity.

Thalidomide may have antiretroviral effects as a result of its primarily inhibitory effects on the production of tumour necrosis factor α (TNFα). TNFα induces expression of HIV from chronically infected cell lines by stimulating a cellular transcription factor, and blocking of TNFα-stimulated HIV replication by thalidomide has been shown in vitro and ex vivo. However, the effects on TNFa production in vivo have been inconsistent. Thalidomide has shown potential in treating some AIDS-related conditions [cachexia (weight loss and muscle wasting), and aphtous oral, oesophageal or genital ulcers]. However, because of its numerous and major adverse effects, thalidomide should always be used cautiously.

In summary, some older drugs have potential as anti-HIV agents and offer the advantage of extensive clinical experience in other therapeutic areas. They should be considered as potential partners for the products emerging from more recent research and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Donehower RC. An overview of the clinical experience with hydroxyurea. Semin Oncol 1992; 19: 11–9

    PubMed  CAS  Google Scholar 

  2. Charache S, Terrin ML, Moore RD, et al. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia: investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia. N Engl J Med 1995; 332: 1317–22

    Article  PubMed  CAS  Google Scholar 

  3. Yarbro JW. Mechanism of action of hydroxyurea. Semin Oncol 1992; 19: 1–10

    PubMed  CAS  Google Scholar 

  4. Gao WY, Cara A, Gallo RC, et al. Low levels of deoxynucleotides in peripheral blood lymphocytes: a strategy to inhibit human immunodeficiency virus type 1 replication. Proc Natl Acad Sci U S A 1993; 90: 8925–8

    Article  PubMed  CAS  Google Scholar 

  5. Stevenson M, Stanwick TL, Dempsey MP, et al. HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO J 1990; 9: 1551–60

    PubMed  CAS  Google Scholar 

  6. Zack JA, Arrigo SJ, Weitsman SR, et al. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 1990; 61: 213–22

    Article  PubMed  CAS  Google Scholar 

  7. Lori F, Malykh A, Cara A, et al. Hydroxyurea as an inhibitor of human immunodeficiency virus-type 1 replication. Science 1994; 266: 801–5

    Article  PubMed  CAS  Google Scholar 

  8. Malley SD, Grange JM, Hamedi-Sangsari F, et al. Suppression of HIV production in resting lymphocytes by combining didanosine and hydroxamate compounds [letter]. Lancet 1994; 343: 1292

    Article  PubMed  CAS  Google Scholar 

  9. Gao WY, Johns DG, Mitsuya H. Anti-human immunodeficiency virus type 1 activity of hydroxyurea in combination with 2’,3’-dideoxynucleosides. Mol Pharmacol 1994; 46: 767–72

    PubMed  CAS  Google Scholar 

  10. Lori F, Malykh AG, Foli A, et al. Combination of a drug targeting the cell with a drug targeting the virus controls human immunodeficiency virus type 1 resistance. AIDS Res Hum Retroviruses 1997; 13: 1403–9

    Article  PubMed  CAS  Google Scholar 

  11. Gao WY, Johns DG, Chokekuchai S, et al. Disparate actions of hydroxyurea in potentiation of purine and pyrimidine 2’,3’-dideoxynucleoside activities against replication of human immunodeficiency virus. Proc Natl Acad Sci U S A 1995; 92: 8333–7

    Article  PubMed  CAS  Google Scholar 

  12. Palmer S, Cox S. Increased activation of the combination of 3’-azido-3’-deoxythymidine. Antimicrob Agents Chemother 1997; 41: 460–4

    PubMed  CAS  Google Scholar 

  13. Lori F, Lisziewicz J. Hydroxyurea: mechanisms of HIV-1 inhibition. Antiviral Ther 1998; 3: 25–33

    CAS  Google Scholar 

  14. Montaner JS, Zala C, Conway B, et al. A pilot study of hydroxyurea among patients with advanced human immunodeficiency virus (HIV) disease receiving chronic didanosine therapy: Canadian HIV trials network protocol 080. J Infect Dis 1997; 175: 801–6

    Article  PubMed  CAS  Google Scholar 

  15. Rutschmann OT, Opravil M, Iten A, et al. A placebo-controlled trial of didanosine plus stavudine, with and without hydroxyurea, for HIV infection: the Swiss HIV Cohort Study. AIDS 1998; 12: F71–7

    Article  PubMed  CAS  Google Scholar 

  16. De Boer RJ, Boucher CA, Perelson AS. Target cell availability and the successful suppression of HIV by hydroxyurea and didanosine. AIDS 1998; 12: 1567–70

    Article  PubMed  Google Scholar 

  17. Havlir DV, Marschner IC, Hirsch MS, et al. Maintenance antiretroviral therapies in HIV-infected subjects with undetectable plasma HIV RNA after triple-drug therapy. N Engl J Med 1998; 339: 1261–8

    Article  PubMed  CAS  Google Scholar 

  18. Giorgi JV, Liu Z, Hultin LE, et al. Elevated levels of CD38+ CD8+ cells in HIV infection add to the prognostic value of low CD4+ T cell levels: results of 6 years of follow-up. The Los Angeles Center, Multicenter AIDS Cohort Study. J Acquir Immun Defic Syndr 1993; 6(8): 904–12

    CAS  Google Scholar 

  19. Wolthers KC, Bea G, Wisman A, et al. T cell telomere length in HIV-1 infection: no evidence for increased CD4+ T cell turnover. Science 1996; 274(5292): 1543–7

    Article  PubMed  CAS  Google Scholar 

  20. Zinkernagel RM. Are HIV-specific CTL responses salutary or pathogenic? Curr Opin Immunol 1995; 7: 462–70

    Article  PubMed  CAS  Google Scholar 

  21. Jessen H, Foli A, Lisziewicz J, et al. Long-term suppression of HIV-1 by hydroxyurea and didanosine. JAMA 1997; 277: 1437–8

    PubMed  Google Scholar 

  22. Foli A, Lori F, Maserati R, et al. Hydroxyurea and didanosine as a more potent combination than hydroxyurea and zidovudine. Antiviral Ther 1997; 2: 33–40

    Google Scholar 

  23. Biron F, Lucht F, Peyramond D, et al. Anti-HIV activity of the combination of didanosine and hydroxyurea in HIV-1-infected individuals. J Acquir Immune Defic Syndr Hum Retrovirol 1995; 10: 36–40

    PubMed  CAS  Google Scholar 

  24. Biron F, Lucht F, Peyramond D, et al. Pilot clinical trial of the combination of hydroxyurea and didanosine. Antiviral Res 1996; 29: 111–3

    Article  PubMed  CAS  Google Scholar 

  25. Clotet B, Ruiz L, Cabrera C, et al. Short-term anti-HIV activity of the combination of didanosine and hydroxyurea. Antiviral Ther 1996; 1: 189–93

    CAS  Google Scholar 

  26. Foli A, Maserati R, Minoli L, et al. Therapeutic advantage of hydroxyurea and didanosine combination therapy in patients previously treated with zidovudine. AIDS 1998; 12: 1113–4

    PubMed  CAS  Google Scholar 

  27. Federici ME, Lupo S, Cahn P, et al. Hydroxyurea in combination regimens for the treatment of antiretroviral naive, HIV-infected adults [abstract no. 287/12235]. Int Conf AIDS 1998; 12: 58–9

    Google Scholar 

  28. Kennedy BJ, Smith LR, Goltz RW. Skin changes secondary to hydroxyurea therapy. Arch Dermatol 1975; 111: 183–7

    Article  PubMed  CAS  Google Scholar 

  29. Heddle R, Calvert AF. Hydroxyurea-induced hepatitis. Med J Aust 1980; 1: 121

    PubMed  CAS  Google Scholar 

  30. Samuels M, Howe C. Renal abnormalities induced by hydroxyurea. Cancer Chemother Rep 1965: 9–13

  31. Thurman W, Bloedow C, Howe C. A phase I study of hydroxyurea. Cancer Chemother Rep 1963: 103–7

  32. Lisziewicz J, Jessen H, Finzi D, et al. HIV-1 suppression by early treatment with hydroxyurea, didanosine, and a protease inhibitor. Lancet 1998; 352: 199–200

    Article  PubMed  CAS  Google Scholar 

  33. de Jong MD, Veenstra J, Stilianakis NI, et al. Host-parasite dynamics and outgrowth of virus containing a single K70R amino acid change in reverse transcriptase are responsible for the loss of human immunodeficiency virus type 1 RNA load suppression by zidovudine. Proc Natl Acad Sci U S A 1996; 93: 5501–6

    Article  PubMed  Google Scholar 

  34. Miles SA, Winters RE, Ruane P. Salvage of multi-drug resistant HIV infection with a d4T/3TC/hydroxyurea regimen [abstract no. 12205]. 12th World AIDS Conference 1998 Jun 28–Jul 3; Geneva

  35. Emmel EA, Verweij CL, Durand DB, et al. Cyclosporin A specifically inhibits function of nuclear proteins involved in T cell activation. Science 1989; 246: 1617–20

    Article  PubMed  CAS  Google Scholar 

  36. Streblow DN, Kitabwalla M, Malkovsky M, et al. Cyclophilin a modulates processing of human immunodeficiency virus type 1 p55Gag: mechanism for antiviral effects of cyclosporin A. Virology 1998; 245: 197–202

    Article  PubMed  CAS  Google Scholar 

  37. Streblow DN, Kitabwalla M, Pauza CD. Gag protein from human immunodeficiency virus type 1 assembles in the absence of cyclophilin A. Virology 1998; 252: 228–34

    Article  PubMed  CAS  Google Scholar 

  38. Karpas A, Lowdell M, Jacobson SK, et al. Inhibition of human immunodeficiency virus and growth of infected T cells by the immunosuppressive drugs cyclosporin A and FK 506. Proc Natl Acad Sci U S A 1992; 89: 8351–5

    Article  PubMed  CAS  Google Scholar 

  39. Mlynar E, Bevec D, Billich A, et al. The non-immunosuppressive cyclosporin A analogue SDZ NIM 811 inhibits cyclophilin A incorporation into virions and virus replication in human immunodeficiency virus type 1-infected primary and growth-arrested T cells. J Gen Virol 1997; 78: 825–35

    PubMed  CAS  Google Scholar 

  40. Franke EK, Luban J. Inhibition of HIV-1 replication by cyclosporine A or related compounds correlates with the ability to disrupt the Gag-cyclophilin A interaction. Virology 1996; 222: 279–82

    Article  PubMed  CAS  Google Scholar 

  41. Kim AE, Dintaman JM, Waddell DS, et al. Saquinavir, an HIV protease inhibitor, is transported by P-glycoprotein. J Pharmacol Exp Ther 1998; 286: 1439–45

    PubMed  CAS  Google Scholar 

  42. Alsenz J, Steffen H, Alex R. Active apical secretory efflux of the HIV protease inhibitors saquinavir and ritonavir in Caco-2 cell monolayers. Pharm Res 1998; 15: 423–8

    Article  PubMed  CAS  Google Scholar 

  43. Lee CG, Gottesman MM, Cardarelli CO, et al. HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter. Biochemistry 1998; 37: 3594–601

    Article  PubMed  CAS  Google Scholar 

  44. Andrieu JM, Even P, Venet A, et al. Effects of cyclosporin on T-cell subsets in human immunodeficiency virus disease. Clin Immunol Immunopathol 1988; 47: 181–98

    Article  PubMed  CAS  Google Scholar 

  45. Levy R, Jais JP, Tourani JM, et al. Long-term follow-up of HIV-positive asymptomatic patients having received cyclosporin A. Adv Exp Med Biol 1995; 374: 229–34

    Article  PubMed  CAS  Google Scholar 

  46. Phillips A, Wainberg MA, Coates R, et al. Cyclosporine-induced deterioration in patients with AIDS. Can Med Assoc J 1989; 140: 1456–60

    CAS  Google Scholar 

  47. Schwarz A, Offermann G, Keller F, et al. The effect of cyclosporine on the progression of human immunodeficiency virus type 1 infection transmitted by transplantatio: data on four cases and review of the literature. Transplantation 1993; 55: 95–103

    Article  PubMed  CAS  Google Scholar 

  48. Tzakis AG, Cooper MH, Dummer JS, et al. Transplantation in HIV+ patients. Transplantation 1990; 49: 354–8

    Article  PubMed  CAS  Google Scholar 

  49. Thali M, Bukovsky A, Kondo E, et al. Functional association of cyclophilin A with HIV-1 virions. Nature 1994; 372: 363–5

    Article  PubMed  CAS  Google Scholar 

  50. Martin LN, Murphey-Corb M, Mack P, et al. Cyclosporin A modulation of early virologic and immunologie events during primary simian immunodeficiency virus infection in rhesus monkeys. J Infect Dis 1997; 176: 374–83

    Article  PubMed  CAS  Google Scholar 

  51. Hojo M, Morimoto T, Maluccio M, et al. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature 1999; 397: 530–4

    Article  PubMed  CAS  Google Scholar 

  52. Schuler U, Ehninger G. Thalidomide: rationale for renewed use in immunological disorders. Drug Saf 1995; 12: 364–9

    Article  PubMed  CAS  Google Scholar 

  53. Poli G, Kinter A, Justement JS, et al. Tumor necrosis factor alpha functions in an autocrine manner in the induction of human immunodeficiency virus expression. Proc Natl Acad Sci U S A 1990; 87: 782–5

    Article  PubMed  CAS  Google Scholar 

  54. Makonkawkeyoon S, Limson-Pobre RN, Moreira AL, et al. Thalidomide inhibits the replication of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 1993; 90: 5974–8

    Article  PubMed  CAS  Google Scholar 

  55. Moreira AL, Corral LG, Ye W, et al. Thalidomide and thalidomide analogs reduce HIV type 1 replication in human macrophages in vitro. AIDS Res Hum Retroviruses 1997; 13: 857–63

    Article  PubMed  CAS  Google Scholar 

  56. Klausner JD, Makonkawkeyoon S, Akarasewi P, et al. The effect of thalidomide on the pathogenesis of human immunodeficiency virus type 1 and M. tuberculosis infection. J Acquir Immune Defic Syndr Hum Retrovirol 1996; 11: 247–57

    Article  PubMed  CAS  Google Scholar 

  57. Reyes-Teran G, Sierra-Madero JG, Martinez del Cerro V, et al. Effects of thalidomide on HIV-associated wasting syndrome: a randomized, double-blind, placebo-controlled clinical trial. AIDS 1996; 10: 1501–7

    Article  PubMed  CAS  Google Scholar 

  58. Tramontana JM, Utaipat U, Molloy A, et al. Thalidomide treatment reduces tumor necrosis factor alpha production and enhances weight gain in patients with pulmonary tuberculosis. Mol Med 1995; 1:384–97

    PubMed  CAS  Google Scholar 

  59. Marriott JB, Cookson S, Carlin E, et al. A double-blind placebo-controlled phase II trial of thalidomide in asymptomatic HIV-positive patients: clinical tolerance and effect on activation markers and cytokines. AIDS Res Hum Retroviruses 1997; 13: 1625–31

    Article  PubMed  CAS  Google Scholar 

  60. Jacobson JM, Greenspan JS, Spritzler J, et al. Thalidomide for the treatment of oral aphthous ulcers in patients with human immunodeficiency virus infection. National Institute of Allergy and Infectious Diseases AIDS Clinical Trials Group. N Engl J Med 1997; 336: 1487–93

    Article  PubMed  CAS  Google Scholar 

  61. Hashimoto Y. Novel biological response modifiers derived from thalidomide. Curr Med Chem 1998; 5: 163–78

    PubMed  CAS  Google Scholar 

  62. Haslett P, Hempstead M, Seidman C, et al. The metabolic and immunologie effects of short-term thalidomide treatment of patients infected with the human immunodeficiency viras. ADS Res Hum Retroviruses 1997; 13: 1047–54

    Article  CAS  Google Scholar 

  63. Alexander LN, Wilcox CM. A prospective trial of thalidomide for the treatment of HIV-associated idiopathic esophageal ulcers. AIDS Res Hum Retroviruses 1997; 13: 301–4

    Article  PubMed  CAS  Google Scholar 

  64. Haslett P, Tramontana J, Burroughs M, et al. Adverse reactions to thalidomide in patients infected with human immunodeficiency viras. Clin Infect Dis 1997; 24: 1223–7

    Article  PubMed  CAS  Google Scholar 

  65. Andrieu JM, Lu W, Levy R. Sustained increases in CD4 cell counts in asymptomatic human immunodeficiency virus type 1-seropositive patients treated with prednisolone for 1 year. J Infect Dis 1995; 171:523–30

    Article  PubMed  CAS  Google Scholar 

  66. Nokta M, Albrecht T, Pollard R. Papaverine hydrochloride: effects on HIV replication and T-lymphocyte cell function. Immunopharmacology 1993; 26: 181–5

    Article  PubMed  CAS  Google Scholar 

  67. Turano A, Scura G, Caruso A, et al. Inhibitory effect of papaverine on HIV replication in vitro. AIDS Res Hum Retroviruses 1989; 5: 183–92

    Article  PubMed  CAS  Google Scholar 

  68. Hoff PM, Pazdur R, Benner SE, et al. UFT and leucovorin: a review of its clinical development and therapeutic potential in the oral treatment of cancer. Anticancer Drugs 1998; 9: 479–90

    PubMed  CAS  Google Scholar 

  69. Hanauske AR. UFT in gastric cancer: current status and future developments. Oncology (Huntingt) 1997; 11: 113–8

    CAS  Google Scholar 

  70. Lori F, Lisziewicz J. Cellular factors: targets for the treatment of HIV infection. Antiviral Ther 1998; 3 Suppl. 4: 81–92

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Lori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravot, E., Lisziewicz, J. & Lori, F. New Uses for Old Drugs in HIV Infection. Drugs 58, 953–963 (1999). https://doi.org/10.2165/00003495-199958060-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199958060-00001

Keywords

Navigation