Skip to main content
Log in

Pharmacological Factors that Influence the Choice of Inhaled Corticosteroids

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Local therapeutic effect relative to the risk of adverse effects of inhaled drugs, i.e. airway selectivity, is determined by the efficiency of the delivery system and the physicochemical and pharmacokinetic properties of the drug molecule. For the inhaled corticosteroid formulations, many of the pharmacokinetic prerequisites for airway selectivity have been fulfilled, but there are still differences that may influence the choice of treatment regimens. This choice should be based on disease severity, age, inhalation technique, preference and expected compliance, together with a knowledge of individual features of different corticosteroid formulations.

Simple to use, hand-held pressurised or breath-actuated inhalers have favourable lung deposition properties and are appropriate for most patients. For small children or severely ill patients, nebulised treatment or spacers may be advocated. A corticosteroid formulation with a high intrinsic activity and long duration of action allows for once-daily administration in some patient groups. These properties may also partly compensate for noncompliance when more frequent administration schemes are used. The risk of adverse effects is reduced if systemic exposure is held to a minimum by rapid elimination and low tissue distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnes PJ, Adcock I. Anti-inflammatory actions of steroids: molecular mechanisms. Trends Pharmacol Sci 1993; 14: 436–41

    Article  PubMed  CAS  Google Scholar 

  2. Olsson B. Aerosol particle generation from dry powder inhalers: can they equal pressurized metered dose inhalers? J Aerosol Med 1995; 8 Suppl. 3: 13–9

    Article  Google Scholar 

  3. Leach CL. Relevance of radiolabeled steroid inhalation studies to clinical outcomes. J Aerosol Med 1998; 11 Suppl. 1: 29–34

    Google Scholar 

  4. Higgenbottam T. Key issues in nebulized drug delivery to adults. Eur Respir Rev 1997; 7: 378–9

    Google Scholar 

  5. Borgström L, Derom E, Ståhl E, et al. The inhalation device influences lung deposition and bronchodilating effect of terbutaline. Am J Respir Crit Care Med 1996; 153: 1636–40

    PubMed  Google Scholar 

  6. Löfdahl CG, Arvidsson P, Bondesson E, et al. Higher potency of salbutamol when given via Turbuhaler than via a pressurized metered dose inhaler (pMDI). Allergy Clin Immunol News 1994; 6 Suppl. 2: 383

    Google Scholar 

  7. Matusiewicz SP, Bollért FGE, Dewar M, et al. Ipratropium bromide given by Turbuhaler® is more potent than when given by pressurised metered dose inhaler (MDI). Thorax 1995; 50(4): 469

    Google Scholar 

  8. Thorsson L, Edsbäcker S, Conradsson T-B. Lung deposition of budesonide from Turbuhaler is twice that from a pressurized metered-dose inhaler (pMDI). Eur Respir J 1994; 7: 1839–44

    Article  PubMed  CAS  Google Scholar 

  9. Leach CL, Davidson P, Vanden Burgt J, et al. Breath-actuated MDI delivers 60% airway deposition with a new CFC-free beclomethasone formulation. Eur Respir J 1996; 9 Suppl. 23: 255

    Google Scholar 

  10. Thorsson L, Edsbäcker S. Lung deposition of budesonide from a pressurized metered dose inhaler attached to a spacer. Eur Respir J 1998; 12: 1340–5

    Article  PubMed  CAS  Google Scholar 

  11. Dahlström K, Larsson P. Lung deposition and systemic availability of budesonide inhaled as nebulised suspension from different nebulisers. J Aerosol Med 1995; 8: 79

    Google Scholar 

  12. Richards JC, Pitcairn GR, Sista S, et al. A scintigraphic study to assess the deposition of flunisolide delivered by HFA and CFC metered dose inhalers. Respir Drug Deliv VI. Buffalo Grove, Illinois, USA: Interpharm Press Inc., 1998: 405–6

    Google Scholar 

  13. Johnsson M. Fluticasone propionate: pharmacokinetic and pharmacodynamic implications of different aerosol delivery systems. Respir Drug Deliv VI. Buffalo Grove, Illinois, USA: Interpharm Press Inc., 1998: 61–70

    Google Scholar 

  14. Löfdahl CG, Thorsson L. Systemic availability of inhaled fluticasone propionate and budesonide was the same in asthmatic patients and healthy subjects [abstract]. Am J Respir Crit Care Med 1999; 159: 3 (2): A118

    Google Scholar 

  15. Thorsson L, Kenyon C, Newman SP, et al. Lung deposition of budesonide in asthmatics: a comparison of different formulations. Int J Pharmaceut 1998; 168: 119–27

    Article  CAS  Google Scholar 

  16. Agertoft L, Andersen A, Weibull E, et al. Systemic availability and pharmacokinetics of nebulised budesonide in preschool children. Arch Dis Child 1999; 80: 241–7

    Article  PubMed  CAS  Google Scholar 

  17. Anhöj J, Bisgaard AM, Bisgaard H. Systemic activity of inhaled fluticasone propionate and budesonide in 1-3 years old asthmatic children. Eur Respir J 1998; 12 Suppl. 28: 268–9

    Google Scholar 

  18. Lindquist B, Linander H, Nilsson M, et al. Budesonide CR capsules in children and adults with Crohn’ s disease: a pharmacokinetic and tolerability study [abstract no. 4373]. Digestive Disease Week and the 100th annual meeting of the American Gastroenterological Association; 1999 May 16–19; Orlando, Florida, USA: A-794

  19. Liard R, Aubier M, Zureik M, et al. Advantage of breath actuated inhalers vs metered-dose-inhalers. Eur Respir J 1995; 8: 2194–6

    Article  Google Scholar 

  20. Thompson J, Irvine T, Grathwohl K, et al. Misuse of metered-dose inhalers in hospitalised patients. Chest 1994; 105: 715–7

    Article  PubMed  CAS  Google Scholar 

  21. Bisgaard H, Berg E. Cast of human airways from the lips to the trachea for in vitro estimate of lung dose. Eur Respir J 1997; 10 Suppl. 25: 236

    Google Scholar 

  22. Hultquist C, Ahlström H, Kjellman NI, et al. A double-blind comparison between a new multi-dose powder inhaler (Turbuhaler) and metered dose inhaler in children with asthma. Allergy 1989; 44: 467–70

    Article  PubMed  CAS  Google Scholar 

  23. Ståhl E, Ribeiro LB, Sandahl G. Dose response to inhaled terbutaline powder and peak inspiratory flow through Turbuhaler in children with mild to moderate asthma. Pediatr Pulmonol 1996; 22: 106–10

    Article  PubMed  Google Scholar 

  24. De Boeck K, Alifier M, Warmer G. Is the correct use of a dry powder inhaler (Turbuhaler) age dependent? J Allergy Clin Immunol 1999; 103(5): 763–7

    Article  PubMed  Google Scholar 

  25. Brown PH, Ning AC, Greening AP, et al. Peak inspiratory flow through Turbuhaler in acute asthma. Eur Respir J 1995; 8: 1940–1

    Article  PubMed  CAS  Google Scholar 

  26. Borgström L, Asking L, Beckman O, et al. Dose variation, within and between individuals, with different inhalation systems. In: Dalby RN, Byron PR, Farr SJ, editors. Respiratory Drug Delivery V. Buffalo Grove, Illinois, USA: Interpharm Press Inc., 1996: 19–24

    Google Scholar 

  27. Brattsand R. What factors determine anti-inflammatory activity and selectivity of inhaled steroids? Eur Respir Rev 1997; 7: 356–61

    Google Scholar 

  28. Högger P, Rawert I, Rohdewald P. Dissolution, tissue binding and kinetics of receptor binding of inhaled glucocorticoids [abstract]. Eur Respir J 1993; 6 Suppl. 17: 584

    Google Scholar 

  29. Thorsson L, Edsbäcker S. Lung uptake of budesonide via Turbuhaler is greater than that of fluticasone propionate via Diskus or pMDI [abstract]. Am J Respir Crit Care Med 1999; 59 (3 Pt 2): A118

    Google Scholar 

  30. Hochhaus G, Möllman H, Derendorf H, et al. Pharmacokinetic/pharmacodynamic aspects of aerosol therapy using glucocorticoids as a model. J Clin Pharmacol 1997; 37: 881–92

    PubMed  CAS  Google Scholar 

  31. Brattsand R, Axelsson BI. New inhaled glucocorticosteroids. In: Barnes PJ, editor. New drugs for asthma [chapter 13]. London: IBC Technical Services Ltd, 1992; 2: 193–208

    CAS  Google Scholar 

  32. Phillips GH. Structure-activity relationship of topically active steroids: the selection of fluticasone propionate. Respir Med 1990; 84 Suppl. A: 19–23

    Article  Google Scholar 

  33. Johansson SÅ, Andersson KE, Brattsand R, et al. Topical and systemic glucocorticosteroid potencies of budesonide and beclomethasone dipropionate in man. Eur J Clin Pharmacol 1982; 22: 523–9

    Article  PubMed  CAS  Google Scholar 

  34. Lutsky BN, Millonig RC, Wojnar RJ, et al. Androstene-17-thioketals. Arzneimittelforschung 1986; 36(II): 1787–95

    PubMed  CAS  Google Scholar 

  35. Reed CE. Glucocorticoids in asthma. Immunol Allergy Clin North Am 1993; 13: 903–15

    Google Scholar 

  36. Miller-Lars son A, Mattson H, Hjertberg E, et al. Reversible fatty acid conjugation of budesonide. Novel mechanism for prolonged retention of topically applied steroid in airway tissue. Drug Metab Dispos 1998; 26: 623–30

    CAS  Google Scholar 

  37. Barth J, Möllman H, Schmidt EW, et al. Concentration of glucocorticoids in serum and bronchoalveolar lavage (BAL) fluid. Atemwegs Lungenkrankh 1986; 12: 89–92

    Google Scholar 

  38. van den Bosch JMM, Edsbäcker S, Westermann CJ, et al. Relationship between lung tissue and blood plasma concentrations of budesonide. Biopharm Drug Dispos 1993; 14: 455–9

    Article  PubMed  Google Scholar 

  39. Esmailpour N, Högger P, Rabe KF, et al. Distribution of inhaled fluticasone propionate between lung tissue and serum in vivo. Eur Respir J 1997; 10: 1496–9

    Article  PubMed  CAS  Google Scholar 

  40. Miller-Larsson A, Ivarsson R, Mattson H, et al. High capacity of airway/lung tissue for budesonide esterification as compared to peripheral striated muscle [abstract]. European Respiratory Society; 1999 Oct 9–13: Madrid, Spain

  41. Tunek A, Sjödin K, Hallström G. Reversible formation of fatty acid esters of budesonide, an antiasthma glucocorticoid, in human lung and liver microsomes. Drug Metab Dispos 1997; 25(11): 1311–7

    PubMed  CAS  Google Scholar 

  42. Wieslander E, Delander E-L, Sjödin K, et al. Fatty acid conjugation of budesonide in normal, human epithelial cells [abstract]. Am J Respir Crit Care Med 1998; 157(3): A402

    Google Scholar 

  43. Wieslander E, Delander E-L, Järkelid L, et al. Pharmacologic importance of the reversible fatty acid conjugation of budesonide studied in a rat cell line in vitro. Am J Respir Cell Mol Biol 1998; 19: 477–84

    PubMed  CAS  Google Scholar 

  44. Miller-Lars son A, Hjertberg E, Sjödin K, et al. Inflammation does not affect the extent of fatty acid conjugation and retention of budesonide in airway and lung tissue [abstract]. Am J Respir Crit Care Med 1998; 157(3): A402

    Google Scholar 

  45. Wieslander E, Delander E-L, Mattson H, et al. Modulation of fatty acid esterification of budesonide by the GR antagonist RU486 and the ACAT-inhibitor cyclandelate in vitro [abstract]. Am J Respir Crit Care Med 1999; 159 (3 Pt 2): A114

    Google Scholar 

  46. Hochberg RB, Pahuja SL, Zielinski JE, et al. Steroidal fatty acid esters. J Steroid Biochem Mol Biol 1991; 40: 577–85

    Article  PubMed  CAS  Google Scholar 

  47. Thorsson L, Thunnisen FBJM, Korn S, et al. Formation of fatty acid conjugates of budesonide in human lung tissue in vivo [abstract]. Am J Respir Crit Care Med 1998; 157: A404

    Google Scholar 

  48. Miller-Lars son A, Jansson P, Runström A, et al. Reversible fatty acid conjugation of budesonide results in a prolonged topical anti-inflammatory activity in airways as compared to fluticasone propionate. Am J Respir Crit Care Med 1997; 155 (4 Pt 2): A353

    Google Scholar 

  49. Kolars JC, Lown KS, Schmiedlin-Ren P, et al. CYP3A gene expression in human gut epithelium. Pharmacogenetics 1994; 4: 247–59

    Article  PubMed  CAS  Google Scholar 

  50. Barnes PJ, Pedersen S, Busse W. Efficacy and safety of inhaled corticosteroids. Am J Respir Crit Care Med 1998; 157 (3 Pt 2): 1–53

    Google Scholar 

  51. Thorsson L, Dahlström K, Edsbäcker S, et al. Pharmacokinetics and systemic effects of inhaled fluticasone propionate in healthy subjects. Br J Clin Pharmacol 1997; 43: 155–61

    Article  PubMed  CAS  Google Scholar 

  52. Drouin M, Yang WH, Bertrand B, et al. Once daily mometasone furoate aqueous nasal spray is as effective as twice daily beclomethasone dipropionate for treating perennial allergic rhinitis patients. Ann Allergy Asthma Immunol 1996; 77: 153–60

    Article  PubMed  CAS  Google Scholar 

  53. Källén A, Thorsson L. The elimination rate of fluticasone is not affected by route of administration [abstract]. Am J Respir Crit Care Med 1999; 159 (3 Pt 2): A118

    Google Scholar 

  54. Harter JG, Reddy WJ, Thorn GW. Studies on an intermittent corticosteroid dosage regimen. N Engl J Med 1963; 269: 591–6

    Article  PubMed  CAS  Google Scholar 

  55. Boulet LP, Cockcroft DW, Toogood J, et al. Comparative assessment of safety and efficacy of inhaled corticosteroids: report of a Committee of the Canadian Thoracic Society. Eur Respir J 1998; 11(5): 1194–210

    Article  PubMed  CAS  Google Scholar 

  56. Andersson N, Klint S, Randwall G, et al. Equipotency of budesonide and fluticasone propionate in the vasoconstriction assay [abstract]. Am J Respir Crit Care Med 1994; 149 Suppl.rP (4:2): 467

    Google Scholar 

  57. Lipworth BJ. Systemic adverse effects of inhaled corticosteroid therapy — a systematic review and metaanalysis. Arch Intern Med 1999; 159: 941–55

    Article  PubMed  CAS  Google Scholar 

  58. Derom E, Van Schoor J, Vincken W, et al. A comparison of the systemic activity of two doses of inhaled fluticasone propionate and budesonide in asthmatic patients [abstract]. Eur Respir J 1996; 9 Suppl. 23: 162

    Google Scholar 

  59. Grahnén A, Jansson B, Brundin A, et al. A dose-response study comparing suppression of plasma cortisol induced by fluticasone propionate from Diskhaler and budesonide from Turbuhaler. Eur J Clin Pharmacol 1997; 52: 261–7

    Article  PubMed  Google Scholar 

  60. Wilson AM, Dempsey OJ, Coutie WJR, et al. Importance of drug-device interaction in determining systemic effects of inhaled corticosteroids. Lancet 1999; 353: 2128

    Article  PubMed  CAS  Google Scholar 

  61. Jones AH, Langdon CG, Lee PS, et al. Pulmicort Turbuhaler once daily as initial prophylactic therapy for asthma. Respir Med 1994; 88: 293–9

    Article  PubMed  CAS  Google Scholar 

  62. Venables TL, Addlestone MB, Smithers AJ, et al. A comparison of the efficacy and patient acceptability of once daily budesonide via Turbuhaler and twice daily fluticasone propionate via Diskhaler at an equal daily dose of 400 μg in adult asthmatics. Br J Clin Res 1996; 7: 15–32

    Google Scholar 

  63. Edsbäcker S, Jendbro M. Modes to achieve topical selectivity of inhaled glucocorticosteroids — focus on budesonide. Respir Drug Deliv VI. Buffalo Grove, Illinois, USA: Interpharm Press Inc., 1998: 71–82

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Staffan Edsbäcker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edsbäcker, S. Pharmacological Factors that Influence the Choice of Inhaled Corticosteroids. Drugs 58 (Suppl 4), 7–16 (1999). https://doi.org/10.2165/00003495-199958004-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199958004-00002

Keywords

Navigation