Skip to main content

Mechanisms of Fluoroquinolone Resistance: An Update 1994–1998

Abstract

Fluoroquinolone resistance is mediated by target changes (DNA gyrase and/ or topoisomerase IV) and/or decreased intracellular accumulation. The genes (gyrA/gyrB/parC/parE) and proteins of DNA topoisomerase IV show great similarity, both at the nucleotide and amino acid sequence level to those of DNA gyrase. It has been shown that there are hotspots, called the quinolone resistance determining region (QRDR), for mutations within gyrA and parC. Based on the Escherichia coli co-ordinates, the hotspots most favoured for giving rise to decreased susceptibility and/or full resistance to quinolones are at serine 83 and aspartate 87 of gyrA, and at serine 79 and aspartate 83 for parC. Few mutations in gyrB or parE/grlB of any bacteria have been described. Efflux of fluoroquinolones is the major cause of decreased accumulation of these agents; for Staphylococcus aureus, the efflux pump involved in norfloxacin resistance is NorA, and for Streptococcus pneumoniae, PmrA. By analysis of minimum inhibitory concentration (MIC) data derived in the presence and absence of the efflux inhibitor reserpine, it has been shown that up to 50% of ciprofloxacin-resistant clinical isolates of S. pneumoniae may possess enhanced efflux. This suggests that efflux may be an important mechanism of clinical resistance in this species. In Pseudomonas aeruginosa, several efflux operons have been demonstrated genetically and biochemically. These operons are encoded by mex (Multiple EffluX) genes: mexAmexB-oprM, mexCD-OprJ system and mexEF-oprN system. The E. coli efflux pump is the acrAB — tolC system. Both the mar operon and the sox operon can give rise to multiple antibiotic resistance. It has been shown that mutations giving rise to increased expression of the transcriptional activators marA and soxS affect the expression of a variety of different genes, including ompF and acrAB. The net result is that expression of OmpF is reduced and much less drug is able to enter the cell; expression of acrAB is increased, enhancing efflux from the cell.

This is a preview of subscription content, access via your institution.

References

  1. Martínez Martínez L, Pascual A, Jacoby GA. Quinolone resistance from a transferable plasmid. Lancet 1998; 351: 797–9

    PubMed  Article  Google Scholar 

  2. Piddock LJV. Mechanisms of resistance to fluoroquinolones: state-of-the-art 1992–1994. Drugs 1995; 49 Suppl. 2: 29–35

    Article  Google Scholar 

  3. Cabrai JHM, Jackson AP, Smith CV, et al. Crystal structure of the breakage-reunion domain of DNA gyrase. Nature 1997; 388: 903–6

    Article  Google Scholar 

  4. Vila J, Ruiz J, Goni P, et al. Mutation in the gyrA gene of quinolone-resistant clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother 1995; 39: 1201–3

    PubMed  Article  CAS  Google Scholar 

  5. Oppegaard H, Sorum H. GyrA mutations in quinolone-resistant isolates of the fish pathogen Aeromonas salmonicida. Antimicrob Agents Chemother 1994; 38: 2460–4

    PubMed  Article  CAS  Google Scholar 

  6. Taylor DE, Chau ASS. Cloning and nucleotide sequence of the gyrA gene from Campylobacter fetus subsp fetus ATCC27374 and characterization of ciprofloxacin-resistant laboratory and clinical isolates. Antimicrob Agents Chemother 1997; 41: 665–71

    PubMed  CAS  Google Scholar 

  7. Wang Y, Huang WM, Taylor DE. Cloning and nucleotide sequence of the Campylobacter jejuni gyrA gene and characterization of quinolone resistance mutations. Antimicrob Agents Chemother 1993; 37: 457–63

    PubMed  Article  CAS  Google Scholar 

  8. Ruiz J, Goni P, Marco F, et al. Increased resistance to quinolones in Campylobacter jejuni: genetic analysis of gyrA gene mutations in quinolone-resistant clinical isolates. Microbiol Immunol 1998; 42: 223–6

    PubMed  CAS  Google Scholar 

  9. Charvalos E, Peteinaki E, Spyridaki I, et al. Detection of ciprofloxacin resistance mutations in Campylobacter jejuni gyrA by non-radioisotopic single-stranded conformational polymorphism and direct sequencing. J Clin Lab Anal 1996; 10: 129–33

    PubMed  Article  CAS  Google Scholar 

  10. Deguchi T, Yasuda M, Kawamura T, et al. In-vitro antimicrobial activity of HSR-903, a new fluoroquinolone against clinical isolates of Klebsiella pneumoniae, and Enterobacter cloacae with fluoroquinolone resistance associated amino acid alterations in gyrA and parC. J Antimicrob Chemother 1997; 40: 907–9

    PubMed  Article  CAS  Google Scholar 

  11. Deguchi T, Yasuda M, Nakano M, et al. Detection of mutations in the gyrA and parC genes in quinolone-resistant clinical isolates of Enterobacter cloacae. J Antimicrob Chemother 1997; 40: 543–9

    PubMed  Article  CAS  Google Scholar 

  12. Yoshida H, Komjima T, Yamagishi, J, et al. Quinolone-resistant mutations of the gyrA gene of Escherichia coli. Mol Gen Genet 1988; 211: 1–7

    PubMed  Article  CAS  Google Scholar 

  13. Yoshida H, Bogaki M, Nakamura M, et al. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob Agents Chemother 1990; 34: 1271–2

    PubMed  Article  CAS  Google Scholar 

  14. Cambau E, Bordon F, Collatz E, et al. Novel gyrA point mutation in a strain of Escherichia coli resistant to fluoroquinolones but not to nalidixic acid. Antimicrob Agents Chemother 1993; 37: 1247–52

    PubMed  Article  CAS  Google Scholar 

  15. Oram M, Fisher LM. 4-Quinolone resistance mutations in the DNA gyrase of Escherichia coli clinical isolates identified by using the polymerase chain reaction. Antimicrob Agents Chemother 1991; 35: 387–9

    PubMed  Article  CAS  Google Scholar 

  16. Cullen Me, Wyke AW, Kuroda R, et al. Cloning and characterization of a DNA gyrase A gene from Escherichia coli that confers clinical resistance to 4-quinolones. Antimicrob Agents Chemother 1989; 33: 886–94

    PubMed  Article  CAS  Google Scholar 

  17. Hallett P, Maxwell A. Novel quinolone resistance mutations of the Escherichia coli DNA gyrase A protein: enzymatic analysis of the mutant proteins. Antimicrob Agents Chemother 1991; 35: 335–40

    PubMed  Article  CAS  Google Scholar 

  18. Yonezawa M, Takahata M, Banzawa N, et al. Analysis of the NH2-terminal 83rd amino-acid of Escherichia coli gyrA in quinolone-resistance. Microbiol Immunol 1995; 39: 243–7

    PubMed  CAS  Google Scholar 

  19. Everett MJ, Jin Y-F, Ricci V, et al. Contribution of individual mechanisms to fluoroquinolone resistance in 36 Escherichia coli isolated from humans and animals. Antimicrob Agents Chemother 1996; 40: 2380–6

    PubMed  CAS  Google Scholar 

  20. Ouabdesselam S, Hooper DC, Tankovic J, et al. Detection of gyrA and gyrB mutations in quinolone resistant clinical isolates of Escherichia coli by sscp analysis and determination of levels of resistance conferred by two different single gyrA mutations. Antimicrob Agents Chemother 1995; 39: 1667–70

    PubMed  Article  CAS  Google Scholar 

  21. Conrad S, Oethinger M, Kaifel K, et al. gyrA muations in high-level fluoroquinolone resistant clinical isolates of Escherichia coli. J Antimicrob Chemother 1996; 38: 443–55

    PubMed  Article  CAS  Google Scholar 

  22. Korten V, Huang WM, Murray BE. Analysis by PCR and direct sequencing of gyrA mutations associated with fluoroquinolone resistance in Enterococcus faecalis. Antimicrob Agents Chemother 1994; 38: 2091–4

    PubMed  Article  CAS  Google Scholar 

  23. Kanematsu E, Deguchi T, YasudaM, et al. Alterations in the gyrA subunit of DNA gyrase and the parC subunit of DNA topoisomerase IV associated with quinolone resistance in Enterococcus faecalis. Antimicrob Agents Chemother 1998; 42: 433–5

    PubMed  CAS  Google Scholar 

  24. Tankovic J, Mahjoubi F, Courvalin P, et al. Development of fluoroquinolone resistance in Enterococcus faecalis and role of mutations in DNA gyrase gyrA gene. Antimicrob Agents Chemother 1996; 40: 2258–61

    Google Scholar 

  25. Georgiou M, Munoz R, Roman F, et al. Ciprofloxacin-resistant Haemophilus influenzae strains possess mutations in analogous positions of gyrA and parC. Antimicrob Agents Chemother 1996; 40: 1741–4

    PubMed  CAS  Google Scholar 

  26. Moore RA, Beckthold B, Wong S, et al. Nucleotide sequence of the gyrA gene and characterization of ciprofloxacin-resistant mutants of Helicobacter pylori. Antimicrob Agents Chemother 1995; 39: 107–11

    PubMed  Article  CAS  Google Scholar 

  27. Deguchi T, Fukouka A, Yasuda M, et al. Alterations in the gyrA subunit of DNA gyrase and the parC subunit of topoisomerase IV in quinolone-resistant clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother 1997; 41: 699–701

    PubMed  CAS  Google Scholar 

  28. Cambau E, Sougakoff W, Jarlier V Amplification and nucleotide sequence of the quinolone resistance determining region in the gyrA gene of mycobacteria. FEMS Microbiol Lett 1994; 116: 49–54

    PubMed  Article  CAS  Google Scholar 

  29. Revel V, Cambau E, Jarlier V, et al. Characterization of mutations in Mycobacterium smegmatis involved in resistance to f luoroquinolones. Antimicrob Agents Chemother 1994; 38: 1991–6

    PubMed  Article  CAS  Google Scholar 

  30. Takiff HE, Salazar L, Ruerrero C, et al. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob Agents Chemother 1994; 38: 773–80

    PubMed  Article  CAS  Google Scholar 

  31. Williams KJ, Chan R, Piddock LJV gyrA of ofloxacin-resistant clinical isolates of Mycobacterium tuberculosis from Hong Kong. J Antimicrob Chemother 1996; 37:1032–4

    PubMed  Article  CAS  Google Scholar 

  32. Deguchi T, Yasuda M, Nakano, M, et al. Rapid screening of point mutations of the Neisseria gonorrhoeae parC gene associated with resistance to quinolones. J Clin Microbiol 1997; 35: 948–50

    PubMed  CAS  Google Scholar 

  33. Deguchi T, Yasuda M, Asano M, et al. DNA gyrase mutations in quinolone-resistant clinical isolates of Neisseria gonorrhoeae. Antimicrob Agents Chemother 1995; 39: 561–3

    PubMed  Article  CAS  Google Scholar 

  34. Ison C A, Woodford PJ, Madders H, et al. Drift in susceptibility of Neisseria gonorrhoeae to ciprofloxacin and emergence of therapeutic failure. Antimicrob Agents Chemother 1998; 42: 2919–22

    PubMed  CAS  Google Scholar 

  35. Tanaka M, Takahashi K, Saika T, et al. Development of fluoroquinolone resistance and mutations involving gyrA and parC proteins among Neisseria gonorrhoeae isolates in Japan. J Urol 1998; 159: 2215–9

    PubMed  Article  CAS  Google Scholar 

  36. Tanaka M, Matsumoto T, Sakumoto M, et al. Reduced clinical efficacy of pazufloxacin against gonorrhea due to high prevalence of quinolone-resistant isolates with the gyrA mutation. Antimicrob Agents Chemother 1998; 42: 579–82

    PubMed  CAS  Google Scholar 

  37. Kureishi A, Diver JM, Beckthold B, et al. Cloning and nucleotide sequence of Pseudomonas aeruginosa DNA gyrase gyrA gene from strain PAO1 and quinolone-resistant clinical isolates. Antimicrob Agents Chemother 1994; 38: 1944–52

    PubMed  Article  CAS  Google Scholar 

  38. Pumbwe L, Everett MJ, Hancock REW, et al. Role of gyrA mutation and loss of OprF in the multiple antibiotic resistance (MAR) phenotype of Pseudomonas aeruginosa G 49. FEMS Microbiol Lett 1996; 143: 25–8

    PubMed  Article  CAS  Google Scholar 

  39. Rahman M, Mauf G, Levy J, et al. Detection of 4-quinolone resistance mutations in the gyrA gene of Shigelia dysenteriae Type 1 by PCR. Antimicrob Agents Chemother 1994; 38: 2488–91

    PubMed  Article  CAS  Google Scholar 

  40. Ouabdesselam S, Tankovic J, Soussy CJ. Quinolone resistance mutations in the gyrA gene of clinical isolates of salmonella. Microb Drug Resist 1996; 2: 299–302

    PubMed  Article  CAS  Google Scholar 

  41. Griggs DJ, Gensberg K, Piddock LJV. Mutations in gyrA gene of quinolone-resistant salmonella serotypes isolated from humans and animals. Antimicrob Agents Chemother 1996; 40: 1009–13

    PubMed  CAS  Google Scholar 

  42. Yonezawa M, Takahata M, Banzawafutakuchi N, et al. DNA gyrase gyrA mutations in quinolone-resistant clinical isolates of Staphylococcus haemolyticus. Antimicrob Agents Chemother 1996; 40: 1065–6

    PubMed  CAS  Google Scholar 

  43. Kim JH, Cho EH, Kim KS, et al. Cloning and nucleotide sequence of the DNA gyrase gyrA gene from Serratia marcescens and characterization of mutations in gyrA of quinolone-resistant clinical isolates. Antimicrob Agents Chemother 1998; 42: 190–3

    PubMed  CAS  Google Scholar 

  44. Janoir C, Zeller V, Kitzis MD, et al. High-level fluoroquinolone resistance in Streptococcus pneumoniae requires mutations in parC and gyrA. Antimicrob Agents Chemother 1996; 40: 2760–4

    PubMed  CAS  Google Scholar 

  45. Tankovic J, Perichon B, Duval J, et al. Contribution of mutations in gyrA and parC genes to fluoroquinolone resistance of mutants of Streptococcus pneumoniae obtained in-vivo and in-vitro. Antimicrob Agents Chemother 1997; 40: 2505–10

    Google Scholar 

  46. Brown JC, Shanahan PMA, Jesudason MV, et al. Mutation responsible for reduced susceptibility to 4-quinolones in clinical isolates of multiresistant Salmonella typhimurium in India. J Antimicrob Chemother 1996; 37: 891–900

    PubMed  Article  CAS  Google Scholar 

  47. Wain J, Hoa NTT, Chinh NT, et al. Quinolone-resistant salmonella typhi in Vietnam: molecular basis of resistance and clinical response to treatment. Clin Infect Dis 1997; 25: 1404–10

    PubMed  Article  CAS  Google Scholar 

  48. Reyna F, Huesca M, Gonzalez V, et al. Salmonella typhimurium gyrA mutations associated with fluoroquinolone resistance. Antimicrob Agents Chemother 1995; 39: 1621–3

    PubMed  Article  CAS  Google Scholar 

  49. Heisig P, Kratz B, Halle E, et al. Identification of DNA gyrase A mutations in ciprofloxacin-resistant isolates of Salmonella typhimurium from men and cattle in Germany. Microb Drug Resist 1995; 1: 211–8

    PubMed  Article  CAS  Google Scholar 

  50. Wang T, Tanaka M, Sato K. Detection of grlA and gyrA mutations in 344 Staphylococcus aureus strains. Antimicrob Agents Chemother 1998; 42: 236–40

    PubMed  CAS  Google Scholar 

  51. Sreedharan S, Oram M, Jenson B, et al. DNA gyrase gyrA mutations in ciprofloxacin-resistant strains of Staphylococcus aureus: close similarity with quinolone resistance mutations in Escherichia coli. J Bacteriol 1990; 172: 7260–2

    PubMed  CAS  Google Scholar 

  52. Goswitz JJ, Willard KE, Fasching CE, et al. Detection of gyrA gene mutations associated with ciprofloxacin resistance in methicillin-resistant Staphylococcus aureus: analysis by polymerase chain reaction and automated direct DNA sequencing. Antimicrob Agents Chemother 1992; 36: 1166–9

    PubMed  Article  CAS  Google Scholar 

  53. Tokue Y, Sugano K, Saito D, et al. Detection of novel mutations in the gyrA gene of Staphylococcus aureus by nonradioisotopic single-stranded conformational polymorphism analysis and direct DNA sequencing. Antimicrob Agents Chemother 1994; 38: 428–31

    PubMed  Article  CAS  Google Scholar 

  54. Takenouchi T, Ishii C, Sugawara M, et al. Incidence of various gyrA mutants in 451 Staphylococcus aureus strains isolated in Japan and their susceptibilities to 10 fluoroquinolones. Antimicrob Agents Chemother 1995; 39: 1414–8

    PubMed  Article  CAS  Google Scholar 

  55. Ito H, Yoshida H, Bogaki-Shonai M, et al. Quinolone resistance mutations in the DNA gyrase gyrA and gyrB genes of Staphylococcus aureus. Antimicrob Agents Chemother 1994; 38: 2014–23

    PubMed  Article  CAS  Google Scholar 

  56. Sreedharan S, Peterson LR, Fisher LM. Ciprofloxacin resistance in coagulase-positive and -negative staphylococci: role of mutations at serine 84 in the DNA gyrase A protein of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother 1991; 35: 2151–4

    PubMed  Article  CAS  Google Scholar 

  57. Tsai FTF, Singh OMP, Skarzynski T, et al. The high-resolution crystal structure of a 24-kDa gyrase B fragment from E. coli complexed with one of the most potent coumarin inhibitors, clorobiocin. Proteins 1997; 28: 41–52

    PubMed  Article  CAS  Google Scholar 

  58. Nakamura S, Nakamura M, Kojima T, et al. gyrA and gyrB mutations in quinolone-resistant strains of Escherichia coli. Antimicrob Agents Chemother 1989; 33: 254–5

    PubMed  Article  CAS  Google Scholar 

  59. Tanaka M, Zhang YX, Ishida H, et al. Mechanisms of 4-quinolone resistance in quinolone-resistant and methicillin resistant Staphylococcus aureus isolates from Japan and China. J Med Microbiol 1995; 42: 214–9

    PubMed  Article  CAS  Google Scholar 

  60. Takahashi H, Kikuchi T, Shoji S, et al. Characterization of gyrA, gyrB, grlA and grlB mutations in fluoroquinolone-resistant clinical isolates of Staphylococeus aureus. J Antimicrob Chemother 1998; 41: 49–57

    PubMed  Article  CAS  Google Scholar 

  61. Pan XS, Fisher LM. DNA gyrase and topoisomerase IV are dual targets of clinafloxacin action in Streptococcus pneumoniae. Antimicrob Agents Chemother 1998; 42: 2810–6

    PubMed  CAS  Google Scholar 

  62. Gensberg K, Jin YF, Piddock LJV. A novel gyrB mutation in a fluoroquinolone-resistant clinical isolates of Salmonella typhimurium. FEMS Microbiol Lett 1996; 137: 293

    CAS  Google Scholar 

  63. Ferrero L, Cameron B, Crouzet J. Analysis of gyrA and GrlA mutations in stepwise selected ciprofloxacin-resistant mutants of Staphylococcus aureus. Antimicrob Agents Chemother 1995; 39: 1554–8

    PubMed  Article  CAS  Google Scholar 

  64. Vila J, Ruiz J, Goni P, et al. Quinolone-resistance mutations in the topoisomerase IV parC gene of Acinetobacter baumannii. J Antimicrob Chemother 1997; 39: 757–62

    PubMed  Article  CAS  Google Scholar 

  65. Lee S, Lee Y. Laboratory developed fluoroquinolone resistant Escherichia coli has a new missense mutation in QRDR of parC. J Microbiol 1998; 36: 106–10

    CAS  Google Scholar 

  66. Vila J, Ruiz J, Goni P, et al. Detection of mutations in parC in quinolone-resistant clinical isolates of Escherichia coli. Antimicrob Agents Chemother 1996; 40: 491–3

    PubMed  CAS  Google Scholar 

  67. Heisig P. Genetic evidence for a role of parC mutations in development of high-level fluoroquinolone resistance in Escherichia coli. Antimicrob Agents Chemother 1996; 40: 879–85

    PubMed  CAS  Google Scholar 

  68. Kumagai Y, Kato J, Hoshino K, et al. Quinolone-resistant mutants of Escherichia coli DNA topoisomerase IV parC gene. Antimicrob Agents Chemother 1996; 40: 710–4

    PubMed  CAS  Google Scholar 

  69. Trees DL, Sandul AL, Whittington WL, et al. Identification of novel mutation patterns in the parC gene of ciprofloxacin-resistant isolates of Neisseria gonorrhoeae. Antimicrob Agents Chemother 1998; 42: 2103–5

    PubMed  CAS  Google Scholar 

  70. Deguchi T, Yasuda M, Nakano M, et al. Quino lone-resistant Neisseria gonorrhoeae — correlation of alterations in the gyrA subunit of DNA gyrase and the parC subunit of topoisomerase IV with antimicrobial susceptibility profiles. Antimicrob Agents Chemother 1996; 40: 1020–3

    PubMed  CAS  Google Scholar 

  71. Deguchi T, Yasuda M, Nakano M, et al. Uncommon occurrence of mutations in the gyrB gene associated with quinolone resistance in clinical isolates of Neisseria gonorrhoeae. Antimicrob Agents Chemother 1996; 40: 2437–8

    PubMed  CAS  Google Scholar 

  72. Nakano M, Deguchi T, Kawamura T, et al. Mutations in the gyrA and parC genes in fluoroquinolone-resistant clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1997; 41: 2289–91

    PubMed  CAS  Google Scholar 

  73. Fournier B, Hooper DC. Effects of mutations in GrlA of topoisomerase IV from Staphylococcus aureus on quinolone and coumarin activity. Antimicrob Agents Chemother 1998; 42: 2109–12

    PubMed  CAS  Google Scholar 

  74. Yamagishi JI, Kojkna T, Oyamada Y, et al. Alterations in the DNA topoisomerase IV grlA gene responsible for quinolone resistance in Staphylococcus aureus. Antimicrob Agents Chemother 1996; 40: 1157–63

    PubMed  CAS  Google Scholar 

  75. Breines DM, Ouabdesselam S, Ng EY, et al. Quinolone resistance locus nfxD of Escherichia coli is a mutant allele of the parE gene encoding a subunit of topoisomerase IV Antimicrob Agents Chemother 1997; 41: 175–9

    PubMed  CAS  Google Scholar 

  76. Perichon B, Tankovic J, Courvalin P. Characterization of a mutation in the parE gene that confers fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 1997; 41: 1166–7

    PubMed  CAS  Google Scholar 

  77. Piddock LJV. Mechanism of quinolone uptake into bacterial cells. J Antimicrob Chemother 1991; 27: 399–403

    PubMed  Article  CAS  Google Scholar 

  78. Kaatz GW, Seo SM, Ruble CA. Efflux-mediated fluoroquinolone resistance in Staphylococcus aureus. Antimicrob Agents Chemother 1993; 37: 1086–94

    PubMed  Article  CAS  Google Scholar 

  79. Roland GE, Gracheck SJ. Differential selection of grlA and gyrA mutants in Staphylococcus aureus to clinafloxacin and ciprofloxacin as determined by Haemophilus influenzae I restriction fragment length polymorphism [abstract C65]. Proceedings of the 35th Interscience Conference of Antimicrobial Agents and Chemotherapy; 1995; New Orleans, Louisiana. Washington DC: American Society for Microbiology, 1995

    Google Scholar 

  80. Gill MJ, Brenwald N, Wise R. Identification of an efflux pump gene, pmrA, associated with fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 1999; 43: In Press

  81. Brenwald NP, Gill MJ, Wise R. Prevalence of a putative efflux mechanism among fluoroquinolone-resistant clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother 1998; 42: 2032–5

    PubMed  CAS  Google Scholar 

  82. Piddock LJV, Johnson M, Ricci V, et al. Activity of new fluoroquinolones for fluoroquinolone-resistant pathogens of the lower respiratory tract. Antimicrob Agents Chemother 1998; 42: 2956–60

    PubMed  CAS  Google Scholar 

  83. Poole K, Krebes K, McNally C, et al. Multiple antibiotic-resistance in Pseudomonas aeruginosa evidence for involvement of an efflux operon. J Bacteriol 1993; 175: 7363–72

    PubMed  CAS  Google Scholar 

  84. Poole K, Gotoh N, Tsujknoto H, et al. Overexpression of the mexC-mexD-oprJ efflux operon in nfxB type multidrug resistant strains of Pseudomonas aeruginosa. Mol Microbiol 1996; 21: 713–24

    PubMed  Article  CAS  Google Scholar 

  85. Kohler T, MicheaHamzehpour M, Henze U, et al. Characterization of MexE-MexF-OprN, a positively regulated multi-drug efflux system of Pseudomonas aeruginosa. Mol Microbiol 1997; 23: 345–54

    PubMed  Article  CAS  Google Scholar 

  86. Fralick JA. Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of Escherichia coli. J Bacteriol 1996; 178: 5803–5

    PubMed  CAS  Google Scholar 

  87. Okusu H, Ma D, Nikaido H. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J Bacteriol 1996; 178: 306–8

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura J. V. Piddock.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Piddock, L.J.V. Mechanisms of Fluoroquinolone Resistance: An Update 1994–1998. Drugs 58, 11–18 (1999). https://doi.org/10.2165/00003495-199958002-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199958002-00003

Keywords

  • Efflux Pump
  • Antimicrob Agent
  • Neisseria Gonorrhoeae
  • Quinolone Resistance
  • Fluoroquinolone Resistance